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Abstract

This paper presents an mtegrated charge amplifier that measures a small charge. This charge 1s generated by a pytaclectric detector. The
charge amphifier consists of a single-stage ¢ smmon source conhiguration with a passive teedbach network. The charge amplifier has abandwidth
of 700 kHz and an output noise voltage of 20 nV He™'"2 at | kHz. A 2X 2 integrated pyroelectric sensor based on VDF/TTFE copolymer has

been realized. The voltage tesponse of this sznsor—amiphifier 1s 1eported
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1. Introduction

In the fast two decadces integrated single, lear array or
matrix pyroelectric sensors on silicon have been developed.
The advantage of these integrated sensors, in which the sens-
ing element is placed near to the readout electronics, is mm-
imized interference. Much research activity is concentrated
on developing new and composite materials, deposition of
the material on a silicon substrate, and new device configu-
rations for pyroelectric sensors [ I 1. Conversely, the readout
electronics get less attention. Hammes et al. discussed three
designs of readout electronics for a pyroelectric sensor based
on JFET and MOSFET processes [2—4]. This work high-
lighted the major problem of the realization of an integrated
high impedance R, for biasing the FET.

One of three major parameters that determine the sensitiv-
ity of an integrated pyroelectric sensor is the electrical transter
function of the reudout electronics [5]. Furthermore, the
notse of the pyroelectric sensor is dominated by the noise of
the pre-amplifier, particularly in the case of a mattix sensor
in which the size of the pixels is small 14,51, Thercfore, to
achieve a sensitive integrated pyroeleciric sensor with alow
nose equivalent power (NEP), we have studied and designed
a new pre-amplifier for an integrated pyroelectric sensor.

When the temperature ot a pyroelectnic material 1s
changed, an electric charge is generaied. The relation between
the primary information, temperature change T and the charge
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¢ 1s lincar. The internal impedance of a pyroelectric detector
is a capacitance C,,y,,,. The capacitance C,,., is not accurately
delined. It depends on constructional variation; it is non-linear
and temperature dependent. Consequently, the voltage
Upyro =4/ Cpgro 18 MOL A accurate representation cfthe primary
information. In the Norton representation, /.., = dg/dfholds.
Hence, the short-circuit current does not depend on the unre-
liable value of C,y.. Therefore, i, is an accurate analogue
of the primary information. Hence, lor accurate information
teansfer, a currcnt amplifier is required, t.e., the input impe-
dance of the amplifier has to be as low as possible, ideally
zero. Other requirements for the amplifier are circuit simplic-
ity duc to the large number of elements in a matrix sensor,
and low noise, which preferably must be lower than the noise
produced by the sensing element 1tself

In this paper we shall discuss the charge amplifier. The
charactenstics of the amplifier, such us bandwidth and noise,
will be presented A 2 X 2 matrix VDF/TrFE copolymer-on-
silicon pyroelectric sensor using the charge amplifier has been
realized. Sensitivity and noise will be presented. These values
will be compated with those of a voltage amplificr.

2. Charge amplifiers

In this primary design we use a single commeon source
configuration with feedback provided by a capacitor €, and
T-form R, R, and C,, as shown in Fig. 1. An equivalent
circuit of the sensing element is represented by the current
source I, =pAoT, where p is the pyroelectric coefficient of
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Fig 1 A charge smplther of a pvrocleetric sensor.

the pyroelectric material, A the area of the sensing clement,
T the spatial average ol the teniperatuc in the pyroelectiic
layer, @ the angular modulation frequency and Cy,, the
inteinal impedance.

The transfer function ol the charge amplifier is
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where gy, is the transconductitnce of the FET.

From the above equations, clearly an electric transfer func-
tion of the charge amplifier is set by R, the transconduct-
ance of the FET, the input impedance Z, and the feedbach
impedance Z. The bandwidth of the amplifier is determined
by Z, and Z. Unlike the voltage amplifier as described in
previons publications [4.5], we can increase the amplifica-
tion factor without decreasing the bandwidth. Moreover, var-
iability of R,,,, does not dircctly influence the amplification
factot of the pre-amplificr. We choose the components of the
charge amplifier as follows; R, =10 k2, R,=10 k{},
Ripa =10 k€, Ry, .= 10 k. €, =10 pF and C,=10 pF. A
transfer function i/l of 1.10* V A7, and an input
impedance of 3 k() are obtarned. Reststors and capacitors are
formed in 2 separate isolation island so that they are inde-
pendent of other devices on the chip. The resistors ace fabri-
cated by making two contacts to the epitaxial layer. The
capacitors are formed in an emitter-base junction.

The JFET charge amplhfier has been rcalized i the
DIMESQ] double-metal-layer process at the DIMES Labo-
ratory of Delft University of Technology. The paramieters of
the JFET are given in Table I Fig. 2 shows a microphoto-
graph of a single cell of the 2 X 2 integrated charge amplifier
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Table |

Parameters of the JFET seadout

Propetty Sire Uity
Extended gale area 500X 500 n?
T #x1077 mA
Zu (=04 mA) 7.0%107! Av!
witL 160

B 36%107! AVT?
o I hHz
v, 1.5 v

Fig 2. A microphotograph of a single cell of the 2X2 integrated charge
amplifier with an extended gate of 500 jm X 500 g,
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Fig, 3, Frequency and phase charactenstics of the charge amplilier

with an extended gate of 500 pm X 500 pm®. Fig. 3 shows
the frequency and phase charactensuics of the charge ampli-
fier The bandwidth of the charge amplifier is around 700
kHz and there is no phase shift under frequencies of 100 kHz.

The main noise sources of the charge amphfier are (1)
gate current shot notse of the JFET, (2) the channei thermal
noise of the JFET, (3) the iticker or 1/f noise of the JFET
and thermal noise of Ry, ., Ryo.a. R) and R, Furthermore, since
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Fig. 4. Nowse ol the charge amphifier i a dunction of frequency

the pixel is small, diclectric loss noise from the sensing
element { VDF/TIFE copolymer) can be neglected.

Fig. 4 shows the output voltage noise of the charge ampli-
fier as a function of frequency. Up to 100 Hz, the [// noise
gives the largest contribution Lo the total noisc; the total output
voltage noise decteases with increasing frequency. It is 25
nV Hz~ "2 at 100 Hz. The thermal noise of R,,,,, dominates
the noise sources at frequencies between | kHz and 0.3 MHe,
the total output voltage noise is 20 nV Hz™ "2 at I kHz. Itis
less than that of a voltage amplifier [4,5].

3. Pyroclectric sensor

The gate of each JFET 15 connected to a large piece of
aluminium bottom electiode (the so-called exiended gate)

on the chip surface and the defining pixel area. This extended
gate has an extra external connection that allows poling of
the copolymer. The pixe! pitch is 300 wm. Fig. 5 shows a
vertical cross section of the layout of a single pyroelectric
sensor, The resistors and cap acitors, which are shown hete in
discrete form for clarity, arc also integrated on tlie chip. VDF/
TrFE copolymers are deposited on the silicon substrate that
contains readout clectronics using the spin-coating techmque.

After anncaling, a 100 nm aluminium top electrode is
deposited. The aluminiumn electrode is also used as a mask
for ctching the copolymer. To avoid the adhesion problem
between the electrodes and the copolymer, the top aluminium
electrode is deposited directly by using a shadow mask.

To allow aluminium wire bonding and IC packaging, the
copolymer has to be removed from the bonding pads There-
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Fig. 5. Vertical crows section of the Liyout of u single pyroelectric sensor,
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fore, some arca of the copolymer has been etched. The selec-
tive etching of VDF/TrFE copolymer is donc by wet etching
with 2-butanone. A postanneal is carried out before the etch-
ing process. Finally, this top clectrode is connected to ground
by gluing a bonding wire from the chip housing to the alu-
minium electrode, using conductive adhesive.

The VDF/TrFE copolymer is poled by step-wise poling,
This is performed by a series of pulses 8 min long of an
clectric field between he electrodes and with increasing
height. Between two pulses, the electric field is zero (short
circuit) for 2 min. The number of pulses is five, with a con-
stant increase of 20 V um ™', This poling treatment is carried
out al room temperature. The step-wise poling method 15
described in more detail elsewhere [4].

4., Experimental results

Fig. 6 shows the experimental set-up of the output voltage
measurement. A chopper modulates the beam to provide an
a.c. signal for the pyroelectric sensor and a reference signal
for the phase-scnsitive readout of the sensor output (lock-in
amplifier). A germanium filter was used for screening ambi-
ent visible light from the sensor. A frequency response for
the sensor was then determined by varying the chopper fre-
quency. The heat source has been calibrated using a power
measurerient instrument, Therefore, we are able to calculate
the sensutivity of the sensor.

There is inevitably some variation between pixels. If this
system is to be exlended to arrays containing more pixels,
then the repeatability must be such that it is still possible to
capture images without serious variation from pixel to pixel.
Experimental results confirm that the basic circuitry shows
Iittle vanation across pixels Fig. 7 shows the output voltage
of atl cells of the pyroelectric sensor using the charge
amplifier as a function of the chopper frequency.
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Fig, 6. Experimental set-up fos the py

In order to facilitate a comparison between the voltage and
charge amplifier configurations, both were 1ealized on the
same chip. The voltage sensitivity of the sensor using the
voltage and charge amplifiers is shown in Fig. 8. The sensi-
tivity of the sensor using the voltage amphfier is larger than
that of the charge amplifier at low frequencies (below 100
Hz).

5. Conclusions

A simple integrated charge amplifier for a pyroelectric
sensor has been realized. The charge amplifier has a band-
width of 0.7 MHz and an output noise voltage of 20 nV Hz™ "
2

at | kHz. A 2X2 matrix integrated pyroelectric sensor has
been made. A voltage sensitivity of 0.76 V W~' at 100 Hz
is achieved. Since the noise of the sensor is dominated by the
noise of the charge amplifier, the voltage noise decreases with
increasing frequency, for frequencies up to 100 Hz. It 15 25
nV Hz™ ' at 100 Hz and is constant for frequencies between
1 kHz and 1 MHz. The noise equivalent power of the inte-

Fag. 7. Output voliage of all cells of the pyroelectric sensor using the charge amplifier as a function of the frequency.
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Fig. 8. Voltage sensitivily of the pyroelecinie sensor usig the charge and voltage umplitiers,

grated pyroelectric sensor is 3.3x107% W Hz-'"? at

100 Hz.
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