
JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 1

FastAdaBelief: Improving Convergence Rate for
Belief-based Adaptive Optimizers by Exploiting

Strong Convexity
Yangfan Zhou, Kaizhu Huang, Cheng Cheng, Xuguang Wang, Amir Hussain, and Xin Liu

Abstract—AdaBelief, one of the current best optimiz-
ers, demonstrates superior generalization ability to the
popular Adam algorithm by viewing the exponential
moving average of observed gradients. AdaBelief is
theoretically appealing in that it has a data-dependent
O(
√
T) regret bound when objective functions are con-

vex, where T is a time horizon. It remains however an
open problem whether the convergence rate can be
further improved without sacrificing its generalization
ability. To this end, we make a first attempt in this
work and design a novel optimization algorithm called
FastAdaBelief that aims to exploit its strong convexity
in order to achieve an even faster convergence rate.
In particular, by adjusting the step size that better
considers strong convexity and prevents fluctuation,
our proposed FastAdaBelief demonstrates excellent
generalization ability as well as superior convergence.
As an important theoretical contribution, we prove that
FastAdaBelief attains a data-dependant O(log T) regret
bound, which is substantially lower than AdaBelief. On
the empirical side, we validate our theoretical analysis
with extensive experiments in both scenarios of strong
and non-strong convexity on three popular baseline
models. Experimental results are very encouraging:
FastAdaBelief converges the quickest in comparison
to all mainstream algorithms while maintaining an
excellent generalization ability, in cases of both strong
or non-strong convexity. FastAdaBelief is thus posited
as a new benchmark model for the research community.

Index Terms—Adaptive Learning Rate, Stochastic
Gradient Descent, Online Learning, Optimization Algo-
rithm, Strong Convexity

I. Introduction

Y. Zhou, C. Cheng, X. Wang, and X. Liu are with Suzhou Institute
of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of
Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou City,
Jiangsu Province, 215123 China.

Y.Zhou and X. Liu are also with School of Nano-Tech and Nano-
Bionics, University of Science and Technology of China, 96 Jinzhai
Road, Hefei City, Anhui Province, 230026 China.

K. Huang is with School of Advanced Technology, Xi’an Jiaotong-
Liverpool University, Suzhou, 215123, China.
A. Hussain is with School of Computing, Edinburgh Napier

University, Edinburgh, EH11 4BN, UK
E-mail addresses: yfzhou2020@sinano.ac.cn (Y. Zhou),

kaizhu.huang@xjtlu.edu.cn (K. Huang), ccheng2017@sinano.ac.cn
(C. Cheng), xgwang2009@sinano.ac.cn (X. Wang),
A.Hussain@napier.ac.uk (A. Hussain), xliu2018@sinano.ac.cn
(X. Liu).

Corresponding author: Xin Liu (email: xliu2018@sinano.ac.cn).

THE training process is a significant part in many
fields of artificial neural networks such as deep

learning [1], transfer learning [2] and meta learning [3].
From an optimization perspective, the purpose of the
training process is to minimize (or maximize) the loss
value (or reward value), and thus can be considered as
an optimization process [4]. As a popular paradigm, the
training process can be conducted in a supervised way
that requires a large number of labeled samples in order
to achieve satisfactory performance [5]. On one hand, it
may however practically be very difficult due to the high
cost involving in annotating samples manually (or even
automatically) [6]; on the other hand, even in the case
of sufficient label data, it is still a big challenge on how
to design both fast and accurate training or optimization
algorithms. To tackle this problem, many researchers have
been paying great efforts in improving the convergence
speed of optimization algorithms, so as to both reduce
the need for labeled samples and speed up the training
process with available data at hand [7], [8]. Specifically,
online learning is often used to accomplish such training
tasks because it does not require the information to be
collected in batches at the same time [9].
One classic online optimization algorithm is online

Stochastic Gradient Descent (SGD) [10]. SGD has been
extensively applied over the last few decades in many
training tasks of deep learning owing to its simple logic
and good generalization ability [11], [12]. However, SGD
has the limitation of slow convergence. This disadvantage
hinders its application especially in large-scale problems
which may take extremely long to converge. To address
this issue, researchers have developed various methods
trying to speed up the convergence rate for SGD. For
example, one type of methods focus on exploring the first-
order momentum to accelerate SGD; such methods include
SGD with momentum [13] and Nesterov momentum [14].
Typically adopting a fixed step size, these methods may
not be conducive to accelerate the convergence rate. To
alleviate this problem, recent studies including the popular
Adam [15] and AMSGrad [16] attempt to apply the second-
order momentum and prefer an adaptive step size while
maintaining the first-order momentum.

As one of the most successful adaptive online algorithms,
Adam enjoys a fast convergence which is guaranteed with
the regret bound of O(

√
T). Despite the outstanding

performance, Reddi et al. indicated that Adam has the issue

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 2

TABLE I
Comparison of performance on convergence and generalization ability of FastAdaBelief and the current mainstream

optimizers.

Optimizer Loss Function Regret Bound Convergence Generalization

SGD ([10]) convex O(
√

T) slow excellent
Adam([15]) convex O(

√
T) medium poor

SAdam ([23]) strongly convex O(log T) fast poor
AdaBelief ([22]) convex O(

√
T) medium excellent

FastAdaBelief (Ours) strongly convex O(log T) fast excellent

of non-convergence [16], which is caused by not satisfying
Γt � 0 for all t ∈ {1, . . . , T}, where Γt =

√vt

αt
−
√vt−1
αt−1

.
Moreover, another limitation with Adam is that it could
lead to a worse generalization ability than SGD. To tackle
this issue, many variants of Adam have been further
proposed. For instance, Luo et al. [17] proposed AdaBound
with a dynamic bound of learning rate; Zaheer et al.
considered the effect of increasing mini-batch size, and
proposed Yogi [18]; Liu et al. developed RAdam [19] to
rectify the variance of the learning rate; Balles and Hennig
dissected Adam in the sign, magnitude, and variance of
stochastic gradients, and proposed MSVAG [20]; Loshchilov
and Hutter invented AdamW [21] to decouple the weight
decay from the loss function.
Although these variants perform better than Adam in

generalization ability, there is still a generalization gap
compared with SGD on large-scale datasets. To fill this
gap, Zhuang et al. proposed AdaBelief [22], which adapts
the step size by the belief in observed gradients and leads to
an superior generalization to Adam. Specifically, AdaBelief
re-designs the second-order momentum into a novel form
that more was closer to the ideal choice. Moreover, the
regret bound of AdaBelief is proved to be O(

√
T) when

loss functions are convex.
Albeit its success, it remains however as an open problem

if the convergence rate of AdaBelief can be further improved
while not sacrificing its generalization ability. To this end,
in this work we design a novel optimization algorithm called
FastAdaBelief that aims to exploiting the strong convexity
in order to achieve an even faster convergence rate but
maintaining an excellent generalization ability. Particularly,
by adjusting the step size that better considers strong
convexity, appropriately utilizes curvature information,
and prevents fluctuation, our proposed FastAdaBelief
attains a substantially lower data-dependant regret bound,
which generally promotes AdaBelief from a sublinear level
O(
√
T) to a logarithmic level O

(∑n
i=1 log

(
‖g1:T,i‖2)),

and to O(log T) in the worst case. Despite that SGD
and some other first-order optimization algorithms can
achieve a data-independent bound O(log T) in online
strongly convex optimization, the data-dependent regret
bound O

(∑n
i=1 log

(
‖g1:T,i‖2)) can be much tighter than

the data-independent bound whenever the gradients are
sparse or small that because of ‖g1:T,i‖2 � TG2

∞. To our
best knowledge, FastAdaBelief presents a first attempt in
designing a powerful optimizer that converges faster with
a logarithmic regret bound while maintaining an excellent

generalization ability simultaneously.
It is noted that Wang et al. proposed SAdam [23] to

implement Adam into strong convexity, which is also able
to accelerate the regret bound of Adam from O(

√
T) to

O(log T). Unfortunately, SAdam generally has a poor gen-
eralization ability as rooted from Adam, which may hence
limit its application in practice. In a closer examination,
FastAdaBelief adopts the new second order form that is
significantly different from the form of SAdam; this brings
a brand new challenge for the convergence analysis of
FastAdaBelief. Additionally, in order to fit strongly con-
vex conditions, FastAdaBelief designs a tailored diagonal
matrix of the second order momentum, which also lead to
non-trivial challenge in the convergence analysis compared
with Adam. For a simple summary, the performance on
convergence and generalization ability of FastAdaBelief and
the current mainstream optimizers can be seen in Table I.
Our major contributions are summarized below:
• We propose a fast variant of AdaBelief, named Fas-
tAdaBelief, to further improve the convergence rate
under strongly convex conditions. We show that
FastAdaBelief can lead to adaptive stepsize that is
more in line with an ideal optimizer.

• We provide a convergence analysis for
FastAdaBelief that presents a data-dependant
O
(∑n

i=1 log
(
‖g1:T,i‖2)) guaranteed regret bound,

which is substantially better than AdaBelief.
• We conduct extensive experiments to demonstrate

that FastAdaBelief outperforms the other state-of-the-
art main-stream optimization algorithms in a variety
of tasks. Interestingly, even in case of non-strong
convexity, FastAdaBelief shows superior performance
to the other comparison algorithms consistently in all
the datasets.

II. Notation and Preliminaries
A. Notation
In this paper, we use lower case bold letters to denote

vectors, such as x. Moreover, xt denotes the value of vector
x at time t. Furthermore, the i-th coordinate of vector xt is
denoted by vector xt,i. In addition, matrices are represented
in capital letters, such as M . LetMn

+ denote the set of n
dimensional positive definite matrices. The `2-norm and
the `∞-norm are denoted by ‖ · ‖ and ‖ · ‖∞ respectively.
The M -weighted `2-norm is defined by ‖x‖2

M = xTMx.
We denote the loss function by ft(·) at time t, and its

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 3

gradient is represented by gt. Moreover, we use g1:T,i =
[g1,i, . . . , gT,i] to denote the sequence consisting of the i-th
element of the gradient sequence {g1, . . . ,gT }. The M -
weighted projection operation of x on F is represented by∏
F,M (x) = arg miny∈F ‖y−x‖2

M for x ∈ Rn. Furthermore,
we use x2 to denote element-wise square, x

y for element-
wise division, and

√
x to represent element-wise square

root, where x,y ∈ Rn. Moreover, we take A = diag{x} to
denote the fact that A is a diagonal matrix composed of
the elements of vector x. We denote Id as a d× d identity
matrix. Furthermore, x∗ is used to denote the best decision
in hindsight, i.e., x∗ = minx∈F

∑T
t=1 ft(x).

B. Online Learning
Machine learning (ML) plays an important role in the

field of artificial intelligence. Moreover, offline learning in
ML is usually expected to enable a batch of tasks at the
same time, but this situation is difficult to meet. In contrast,
online learning based on regret considers a sequential set-
ting in which tasks are revealed one by one. Online learning
can better adapt to complex and changeable practical
applications and has become a prominent paradigm for
machine learning, which is attractive in both theory and
practice [24]. Within this paradigm, a learner generates
iteratively a decision xt from a convex and compact domain
F ⊂ Rn in each round t ∈ {1, . . . , T}. In response, an
adversary produces a convex loss function ft(·) : F → R in
round t, which causes the learner to suffer the loss ft(xt).
The goal of the learner is to generate a decision xt so that
the regret can decrease quickly as T . Moreover, the regret
is defined as follows:

R(T) =
T∑
t=1

ft(xt)−min
x∈F

T∑
t=1

ft(x). (1)

To improve the generalization ability of the Adam
optimizer family, AdaBelief fully considers the curvature
information of loss functions, which will be introduced as
one preliminary background in the next subsection.

C. AdaBelief
The algorithm design of AdaBelief is shown in Algo-

rithm 1. Reviewing that Adam designs its second-order
momentum as the following form:

vt = β2vt−1 + (1− β2)g2
t ,

where gt is the gradient, and t ∈ {1, . . . , T}. Moreover,
Algorithm 1 shows that AdaBelief’s novel seconde-order
momentum is designed as:

st = β2st−1 + (1− β2)(gt −mt)2,

where mt is the first-order momentum. Note that since
the second order momentums of AdaBelief and Adam are
quite different, thereby that of Adabelief is symbolized by
st, and that of Adam by vt [15].
To better illustrate the difference of various optimizers,

we exploit one illustrative example similarly utilized by

Region 2: the ideal optimizer favors large stepsize;

∆𝑡 𝐴𝑑𝑎𝑚 , ∆𝑡(𝑆𝐴𝑑𝑎𝑚) is small;

∆𝑡(𝑆𝐺𝐷), ∆𝑡 𝐴𝑑𝑎𝐵𝑒𝑙𝑖𝑒𝑓 , ∆𝑡 𝐹𝑎𝑠𝑡𝐴𝑑𝑎𝐵𝑒𝑙𝑖𝑒𝑓 is large.

Region 3: the ideal optimizer favors small stepsize;

∆𝑡(𝑆𝐺𝐷) is large; ∆𝑡 𝐴𝑑𝑎𝑚 , ∆𝑡(𝑆𝐴𝑑𝑎𝑚)
∆𝑡 𝐴𝑑𝑎𝐵𝑒𝑙𝑖𝑒𝑓 , ∆𝑡 𝐹𝑎𝑠𝑡𝐴𝑑𝑎𝐵𝑒𝑙𝑖𝑒𝑓 is small.

Region 1: the ideal optimizer favors large stepsize;

∆𝑡(𝑆𝐺𝐷) is small; ∆𝑡 𝐴𝑑𝑎𝑚 , ∆𝑡(𝑆𝐴𝑑𝑎𝑚)
∆𝑡 𝐴𝑑𝑎𝐵𝑒𝑙𝑖𝑒𝑓 , ∆𝑡 𝐹𝑎𝑠𝑡𝐴𝑑𝑎𝐵𝑒𝑙𝑖𝑒𝑓 is large.

Fig. 1. An ideal optimizer considers the curvature of the loss function
and prefers adaptive stepsize. ∆t denotes the stepsize. FastAdaBelief
selects a stepsize more in line with the ideal optimizer (see more
details in Table II)(The figure is adapted from [22]).

Algorithm 1: AdaBelief
Input: β1, β2
Output: xt+1

1 Initialize: x0,m0, s0
2 for t = 1 . . . T do
3 t← t+ 1
4 αt ← α√

t

5 gt ← ∇ft(xt)
6 mt ← β1mt−1 + (1− β1)gt
7 st ← β2st−1 + (1− β2)(gt −mt)2

8 ŝt ← max{ŝt−1, st}
9 Ŝt ← diag{ŝt}

10 xt+1 ←
∏
F,
√
Ŝt

(
xt − αtmt√

Ŝt+ε

)
11 return xt+1

AdaBelief as shown in Figure 1. In region 1 where the loss
function is flat, the gradient gt and |gt(x1)− gt(x2)| are
both very small. Therefore, a large stepsize should be taken
in this case for the efficiency of the optimizer. In this case,
AdaBelief and Adam both take large stepsizes, but SGD
takes a small one.
In region 2 called the “large gradient, small curvature"

case, the gradient gt and vt are both large while |gt−gt−1|
and st are both small. Therefore, the stepsize of an ideal
optimizer should be increased. To this end, AdaBelief takes
a large stepsize since that denominator √st is small, and
SGD also takes a large stepsize. Instead, Adam takes a
small stepsize because of the large denominator √vt.
In region 3, the loss function is “steep". Hence the

gradient gt and |gt(x8)− gt(x9)| are both very large. For
this reason, an ideal optimizer should take a small stepsize.
By the design of the second order momentums in AdaBelief
and Adam, they take a small stepsize in this case while
SGD exploits a large stepsize.
To sum up, AdaBelief fully considers all the above

curvature situations, and adopts a good stepsize selection
strategy in each situation. For this reason, AdaBelief has
the same good generalization ability as the SGD optimizer

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 4

family. Though AdaBelief retains the same regret bound
guarantee O(

√
T) as Adam, it is interesting to explore if it

can be further sped up. To this end, we propose to utilize
the strong convexity and develop a new model that is able
to advance the regret bound of Adabelief to logarithmic
convergence in this paper.

III. FastAdaBelief
In this section, we first present the detailed design of

the proposed algorithm, and then analyze the theoretical
guarantee of its regret bound.

A. Algorithm Design
Before presenting the proposed algorithm, we introduce

some standard definitions and general assumptions, which
follow the previous successful works including [15], [16],
[22], [23], [25].
Definition 1: A function f(·) : F → R is σ-strongly

convex, where σ is a positive constant, if for all x,y ∈ F
the following equation is satisfied

f(x)− f(y) ≥ ∇f(y)T(x− y) + σ

2 ‖x− y‖2. (2)

Assumption 1: The feasible region F ∈ Rn is bounded,
that is, for all x,y ∈ F , maxx,y∈F ‖x−y‖∞ ≤ D∞, where
D∞ > 0 is a constant.
Assumption 2: For all t ∈ {1, . . . , T}, the gradients of all

loss functions, {∇ft(x)}Tt=1, are bounded. Specially, there
exists a constant G∞ > 0 such that maxx∈F ‖∇ft(x)‖∞ ≤
G∞.

Algorithm 2: FastAdaBelief
Input: {β1t}Tt=1, {β2t}Tt=1, δ
Output: xt+1

1 Initialize: x0,m0, s0
2 for t = 1 . . . T do
3 t← t+ 1
4 αt ← α

t
5 gt ← ∇ft(xt)
6 mt ← β1tmt−1 + (1− β1t)gt
7 st ← β2tst−1 + (1− β2t)(gt −mt)2

8 ŝt ← max{ŝt−1, st}
9 Ŝt ← diag{ŝt}+ δ

t In

10 xt+1 ←
∏
F,Ŝt

(
xt − αtŜ−1

t mt

)
11 return xt+1

Now we present an accelerated and accurate belief-
based optimization algorithm for strongly convex functions
based on the above standard definitions and assumptions,
called FastAdaBelief. The detailed design of the proposed
algorithm is shown in Algorithm 2, which follows the
general design of [22]. In the proposed algorithm, β1t
and β2t are time-variant non-increasing hyper-parameters,
and δ is a positive constant. Moreover, the parameter
of step size, αt, is assigned as αt = α

t , where α is a
constant. Furthermore, the gradient of loss function at

time t, gt, is calculated by gt = ∇ft(xt). Next, the
proposed algorithm computes the first-order momentum,
mt, through Exponential Moving Average (EMA) of gt,
which is shown as follows:

mt = β1tmt−1 + (1− β1t)gt. (3)

Then, the second-order momentum, st, in the proposed
algorithm is calculated by EMA of the square of the
observed gradient belief (gt −mt), i.e.,

st = β2tst−1 + (1− β2t)(gt −mt)2. (4)

Moreover, to satisfy the condition of convergence, i.e., Γt =√st

αt
−
√st−1
αt−1

� 0, the proposed algorithm further provides
the following operation on the second-order momentum:

ŝt = max{ŝt−1, st}. (5)

Furthermore, to avoid step size explosion caused by too
small gradients, the proposed algorithm adds a vanishing
factor δ

t to the second-order momentum, and obtains the
following diagonal matrix:

Ŝt = diag{ŝt}+ δ

t
In. (6)

Finally, the proposed algorithm updates the decision point,
xt+1, conditional on the projection to the feasible region,
and attains the following:

xt+1 =
∏
F,Ŝt

(
xt − αtŜ−1

t mt

)
. (7)

In general, the proposed algorithm has two main modifi-
cations compared with AdaBelief. The first modification
is about the step size, which is modified to α

t Ŝ
−1. The

motivation behind this modification is to satisfy the
property of strongly convex optimization. Moreover, the
second modification is to change β2 of AdaBelief to β2t.
Such time-varying parameter, β2t, is set to constant β2 in
AdaBelief, which simplifies application and convergence
proof but may lead to stepsize fluctuations. In this work,
we apply β2t in its original form which achieves good
convergence [16].

The detailed design of the proposed algorithm has been
introduced in this section. Next, we interpret why the
proposed FastAdaBelief can choose a better stepsize and
leads to faster convergence. After that, we theoretically
prove that when the strong convexity of the loss functions
holds, the proposed algorithm has a guaranteed regret
bound, which is much better than AdaBelief.

B. Why FastAdaBelief can choose a better stepsize?
From the design o Ŝt in FastAdaBelief, our algorithm

adds a vanishing factor to the stepsize, which is originally
considered to meet the strongly convex condition, but
unexpectedly brings significant benefits to the choice of
step size. If we let ∆ denote the stepsize, then stepsizes
of SGD, Adam, SAdam, AdaBelief, and FastAdaBelief are
shown in the following:

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 5

∆t(SGD) = αmt;
∆t(Adam) = αmt/

(√
tvt
)
;

∆t(SAdam) = αmt/
(
tvt + δ

)
;

∆t(AdaBelief) = αmt/
(√
tst
)
;

∆t(FastAdaBelief) = αmt/
(
tst + δ

)
.

If we look back into Figure 1, in regions 1 and 2, although
the step size of FastAdaBelief is slightly smaller than that
of AdaBelief, it is still consistent with the optimal choice.
FastAdaBelief has large step sizes in both region 1 and 2,
but SAdam takes small step sizes. Thereby FastAdaBelief
outperforms SAdam on generalization ability. Importantly,
the step size of FastAdaBelief decays in general on the
order of O(1/t) that allows the optimal solution to be
approximated at a smaller step size later in the training
process without unnecessary oscillations. In addition, in
region 3, the ideal optimizer would prefer a small stepsize.
Indeed, FastAdaBelief takes a smaller stepsize than that
of AdaBelief in this region, which is due to the addition of
vanishing factors.

In a brief summary, comparison of stepsize selection by
FastAdaBelief, AdaBelief, SAdam, Adam and SGD can be
seen in Table II.This analysis shows that FastAdaBelief,
likes AdaBelief, is in line with the choice of the ideal
optimizer and therefore can lead to better performance than
the other mainstream optimizers. Moreover, FastAdaBelief
has a smaller step size than that of AdaBelief in the later
stage of training, which allows the optimizer approximates
the optimal solution more steadily.

C. Theoretical Guarantee
In this section, we first review some convergence con-

ditions as earlier developed by Reddi [16], which solves
the convergence issue for Adam [15]. Let {β2t} satisfy the
following conditions:

a) Condition 1: For some ζ > 0 and all t ∈ {1, . . . , T},
j ∈ {1, . . . , n}, we have that

√
t

α

√√√√ t∑
j=1

t−j∏
k=1

β2(t−k+1)(1− β2j)g2
j,i ≥

1
ζ

√√√√ t∑
j=1

g2
j,i.

b) Condition 2.: For all t ∈ {1, . . . , T} and i ∈
{1, . . . , n}, we have that

√
t

α
s

1/2
t,i ≥

√
t− 1
α

s
1/2
t−1,i.

As a matter of fact, Condition 1 is an important and
standard condition for convergence analysis of adaptive
momentum algorithms, such as Adam and AdaBelief.
Furthermore, the intrinsic motivation for Condition 2 is
to follow the key condition of SGD, where its step size
α√
t
satisfies that

√
t
α −

√
t−1
α ≥ 0,∀t ∈ [T]. For this reason,

we also follow this motivation, and propose the following
conditions with minor modifications:

c) Condition 3.: For some ζ > 0 and all t ∈ {1, . . . , T},
j ∈ {1, . . . , n}, we have that

t

t∑
j=1

t−j∏
k=1

β2(t−k+1)(1− β2j)g2
j,i ≥

1
ζ

t∑
j=1

g2
j,i. (8)

d) Condition 4.: For all t ∈ {1, . . . , T} and i ∈
{1, . . . , n}, we have that

0 ≤ t

α
s

1/2
t,i −

t− 1
α

s
1/2
t−1,i ≤ σ(1− β1). (9)

Now, we present the main results in the following for the
convergence analysis when Conditions 3 and 4 are satisfied.
Theorem 1: Suppose that Assumptions 1 and 2 are

satisfied, Conditions 3 and 4 hold, and loss functions ft(·)
are σ-strongly convex. Moreover, let parameter sequences
{β1t}, {β2t} and {αt} are generated by the proposed
algorithm, where β1t = β1λ

t, β1 ∈ [0, 1), λ1 ∈ [0, 1), β2t ∈
[0, 1), δ > 0, t ∈ {1, . . . , T}. For decision point xt generated
by the proposed algorithm, we have the following upper
bound of the regret

R(T) ≤ nδD2
∞

2α(1− β1) + D2
∞(G∞ + δ)

2α

n∑
i=1

T∑
t=1

β1t

1− β1t
t

+ αζ

$2(1− β1)3

n∑
i=1

log
(

1
ζδ
‖g1:T,i‖2 + 1

)
.

The proof of Theorem 1 is provided in Appendix A. Ac-
cordingly, Theorem 1 implies that our proposed algorithm
converges with O

(∑n
i=1 log

(
‖g1:T,i‖2)) regret bound in

the case of strong convexity. Moreover, the regret bound
of the worst case is O(n log T). In addition, the bound of
the regret can be more tighter if the gradients are sparse
or small such that ‖g1:T,i‖2 � TG2

∞.
Corollary 1: Letting β1t = β1λ

t, where λ ∈ (0, 1) in
Theorem 1, we have the following upper bound of the
regret

R(T) ≤ nδD2
∞

2α(1− β1) + nβ1λD
2
∞(G∞ + δ)

2α(1− β1)(1− λ)2

+ αζ

$2(1− β1)3

n∑
i=1

log
(

1
ζδ
‖g1:T,i‖2 + 1

)
.

The above Corollary 1 also implies that our proposed
algorithm has a convergence guarantee O(n log T) for
condition β1t = β1λ

t, λ ∈ (0, 1), t ∈ {1, . . . , T}. Then,
our proposed algorithm executes with limT→+∞

R(T)
T = 0.

Therefore, our proposed algorithm converges when loss
functions are strongly convex, and its theoretical proof is
provided in Appendix A. In order to verify the performance
of our algorithm in specific applications, we present a
series of experiments on benchmark public datasets in
the following section.

IV. Experiments
In this section, we conduct two groups of experiments

to verify that our proposed algorithm works excellently for
standard optimization problems in both cases of strong
and non-strong convexity. In the first group, we consider

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 6

TABLE II
Stepsize selected by the ideal optimizer, FastAdaBelief, AdaBelief, SAdam, Adam and SGD in three regions of Figure 1.

FastAdaBelief is more in line with the idea optimizer.

Stepsize Region 1 Region 2 Region 3 Later Period

∆t(ideal) Large value Large value Small value steady

∆t(SGD) S L L oscillating

∆t(Adam) L S S oscillating

∆t(SAdam) L S S steady

∆t(AdaBelief) L L S oscillating

∆t(F astAdaBelief) L L S steady

a strongly convex optimization problem of mini-batch `2-
regularized softmax regression; in the second group, we
apply our algorithm into non strongly convex cases of deep
training tasks with the traditional softmax function. To
be specific, the traditional softmax function is generally
convex but not strongly convex when the data is uniformly
distributed. In some extreme cases such as sparse or
imbalanced data [27], [28], for example, when a certain
category does not appear in the training set, softmax may
even not satisfy convexity [29]. To examine the effectiveness
of FastAdaBelief in real scenarios, we intentionally conduct
the second group of experiments on image classification
with CNN and language modeling with LSTM respectively,
both of which are commonly seen in practice. In all of
our experiments, the source codes are implemented in the
torch 1.1.0 module of python 3.6 and executed on 4×1080ti
GPUs. Furthermore, we compare FastAdaBelief with other
algorithms in both experiments, including SGD [13], Adam
[15], Yogi [18], AdaBound [17], AdaBelief [22], SAdam [23].

A. Hyperparameter Tuning
We perform the following hyperparameter tuning in ex-

periments of image classification and language modeling. To
be fair, we initialize the decision variables and momentums
of each algorithm to x0 = 0,m0 = 0,v0 = 0, and s0 = 0.

SGD: We follow the standard settings of ResNet [30] and
DenseNet [31], and set the momentum as 0.9. We choose
the learning rate from {10.0, 1.0, 0.1, 0.01, 0.001}.
Adam: We adopt the same parameter setting as the
original article [15] where the first-order momentum β1 is
set to 0.9, and the second-order momentum β2 is set to
0.999. Moreover, the step size αt is set to α/

√
t, where α

is chosen from {0.1, 0.01, 0.001, 0.0001}.
Yogi: Following [18], we set the first-order momentum β1
to 0.9 and set the second-order momentum β2 to 0.999. In
addition, the step size αt is set to α/

√
t, where α is

chosen from {0.1, 0.01, 0.001, 0.0001}.
AdaBound: We directly apply the default
hyper-parameters following [17] for AdaBound (i.e.,
β1 = 0.9 and β2 = 0.999). Moreover, the step size αt is set
to α/

√
t, where α is chosen from {0.1, 0.01, 0.001, 0.0001}.

AdaBelief: We use the default hyperparameters as
suggested in [22], i.e., β1 = 0.9, β2 = 0.999, and ε = 10−8.

In addition, the step size αt is set to α/
√
t, where α is

chosen from {0.1, 0.01, 0.001, 0.0001}.
SAdam: We set the hyperparameters by following [23], i.e.,
β1 = 0.9, β2t = 1− 0.9

t . The step size αt is set to α/t,
where α is chosen from {0.1, 0.01, 0.001, 0.0001}.
FastAdaBelief: We adopt the same hyperparameters as
SAdam: β1 = 0.9, β2t = 1− 0.9

t . Moreover, the step size is
set to α/t, where α is chosen from
{0.1, 0.01, 0.001, 0.0001}.

It can be seen that, for fair comparison, all the above
algorithms basically follow a similar parameter setting.

B. Datasets
In the experiments of CNN based image classification, we

perform evaluations on the benchmark CIFAR-10 dataset.
Moreover, we apply the algorithms on three standard
baseline models, i.e., DenseNet-121, ResNet-34, and VGG-
11. DenseNet-121 is a dense convolutional network, which
connects each layer to all other layers feed-forwardly;
ResNet-34 is a residual learning framework; VGG-11 is a
deep network using an architecture with small convolution
filters. In the LSTM based language modeling experiments,
we test the various algorithms on Penn Treebank dataset.
Furthermore, we compare the algorithms in 1,2,3-layer
LSTM models. For clarity, we show the summary of
datasets and architectures used in our experiments in
Table III.

C. Optimization with Strong Convexity
In this group of experiments, we consider a mini-batch

task. In round t of this task, the optimizer receives a mini-
batch of training samples denoted by {xm, ym}mi=1, where
m is the batch size,K is the number of classes, and yi ∈ [K]
and ∀i ∈ [m]. Then the optimizer generates decision vectors
denoted by {wi, bi}Ki=1. Finally, the generated result suffers
a loss. The loss function is then given as

J(w) =− 1
m

m∑
i=1

log
(

ew>yi
xi+byi∑K

j=1 e
w>

j
xi+bj

)
+ σ1

K∑
k=1
‖wk‖2

+ σ2

K∑
k=1

b2
k. (10)

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 7

TABLE III
Datasets and architectures used in our experiments.

Task Dataset Architecture

Image Classification MNIST 4-layers CNN
Image Classification CIFAR-10 4-layers CNN,DenseNet-121, ResNet-34, VGG-11
Image Classification CIFAR-100 4-layers CNN
Language Modeling Penn Treebank 1,2,3-Layer LSTM.

0 200 400 600 800 1000

Iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Lo
ss

(a) MNIST.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

0 200 400 600 800 1000

Iterations

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Lo
ss

(b) CIFAR-10.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

0 200 400 600 800 1000

Iterations

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Lo
ss

(c) CIFAR-100.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

Fig. 2. Loss v.s. iterations for mini-batch `2-regularized softmax regression (strongly convex). FastAdaBelief converges the quickest.

0 20 40 60 80 100 120 140 160 180 200

Epoches

0

0.05

0.1

0.15

0.2

0.25

Lo
ss

(a) Denesnet-121.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

0 20 40 60 80 100 120 140 160 180 200

Epoches

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Lo
ss

(b) ResNet-34.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

0 50 100 150 200

Epoches

0

0.5

1

1.5

Lo
ss

(c) VGG-11.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

Fig. 3. Comparison of loss of SGD, Adam, AdaBound, Yogi, AdaBelief, SAdam and FastAdaBelief on CIFAR-10. FastAdaBelief converges
the quickest.

0 50 100 150 200

Epoches

70

75

80

85

90

95

100

T
ra

in
in

g
A

cc
ur

ac
y

(%
)

(a) DenseNet-121.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

0 50 100 150 200

Epoches

70

75

80

85

90

95

100

T
ra

in
in

g
A

cc
ur

ac
y

(%
)

(b) ResNet-34.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

0 50 100 150 200

Epoches

60

65

70

75

80

85

90

95

100

T
ra

in
in

g
A

cc
ur

ac
y

(%
)

(c) VGG-11.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

Fig. 4. Comparison of training accuracy of SGD, Adam, AdaBound, Yogi, AdaBelief, SAdam and FastAdaBelief on CIFAR-10. FastAdaBelief
achieves the highest training accuracy.

0 50 100 150 200

Epoches

70

75

80

85

90

95

100

T
es

t A
cc

ur
ac

y
(%

)

(a) Denesnet-121.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

0 50 100 150 200

Epoches

70

75

80

85

90

95

100

T
es

t A
cc

ur
ac

y
(%

)

(b) ResNet-34.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

0 50 100 150 200

Epoches

60

65

70

75

80

85

90

95

100

T
es

t A
cc

ur
ac

y
(%

)

(c) VGG-11.

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

Fig. 5. Comparison of test accuracy of SGD, Adam, AdaBound, Yogi, AdaBelief, SAdam and FastAdaBelief on CIFAR-10. FastAdaBelief
achieves the highest test accuracy.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 8

0 50 100 150

Epoches

80

85

90

95

100

105

110

115

120

P
er

pl
ex

ity

(a) 1-layer LSTM

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

0 50 100 150

Epoches

65

70

75

80

85

90

95

100

105

110

115

120

P
er

pl
ex

ity

(b) 2-layer LSTM

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

0 50 100 150

Epoches

60

70

80

90

100

110

120

P
er

pl
ex

ity

(c) 3-layer LSTM

AdaBelief
Adabound
Adam
SGD
Yogi
SAdam
FastAdaBelief

Fig. 6. Comparison of perplexity of SGD, Adam, AdaBound, Yogi, AdaBelief, SAdam and FastAdaBelief (Lower is better) on Penn Treebank.
FastAdaBelief converges the quickest.

TABLE IV
Test perplexity (lower is better) of 1,2,3-layer LSTM on Penn Treebank. Note that the two best performing algorithms are

marked in bold.

Model SGD Adam AdaBound Yogi AdaBelief SAdam FastAdaBelief

1-layer LSTM 85.07 84.28 84.78 86.59 84.21 84.19 84.18

2-layer LSTM 67.42 67.27 67.53 71.33 66.29 68.11 66.08

3-layer LSTM 63.58 64.28 63.58 67.51 61.23 64.71 61.21

In our experiments, we set parameters σ1 and σ2 both to
0.01. In addition, we conduct the experiment on the loss
v.s. iterations. The results of this experiment are shown
in Figure 2. As clearly observed, the loss of our proposed
algorithm decreases the quickest and FastAdaBelief leads to
the best convergence in all the mainstream algorithms. As
guaranteed theoretically, the strongly convex optimization
algorithms (such as FastAdaBelief and SAdam) outperform
the convex optimization algorithms (like Adam, AdaBelief,
etc.) in the strongly convex case. When we inspect the
difference between the two strongly convex optimization
algorithms, FastAdaBelief generates much lower losses
(particularly on CIFAR10 and CIFAR100) than SAdam,
which echos the advantages of FastAdaBelief than SAdam
regarding the generalization ability.

D. Training DNN with Non-strong Convexity
FastAdaBelief enjoys the theoretical superiority to the

other mainstream optimizers when strong convexity holds.
On the empirical side, the current DNNs may however
adopt loss functions that are typically not strongly convex
(e.g. only convex). Thus it is both interesting and important
to investigate if the proposed fast algorithm can still work
well. For this purpose, we conduct a series of empirical
study on the tasks of image classification and language
modeling in the following.
1) Image Classification: In the experiments of image

classification, we take the CIFAR-10 as one typical example
and compare the various algorithms with DenseNet-121,
ResNet-34 and VGG-11. First, we compare the convergence
rate for all the algorithms used in our experiment. Such
results are reported in Figure 3. As clearly observed, though
the strong convexity may not hold, FastAdaBelief still
leads to remarkable convergence, which is consistently

faster than all the other algorithms. In comparison, SAdam
also converges well, which empirically demonstrates the
power of the strongly convex algorithms. Furthermore,
SGD converges the slowest; Adam and Adabelief are also
much slower than both SAdam and FastAdaBelief. All
these empirical results are consistent with the theoretical
analysis as we discussed earlier in Section II and Section III
though the loss functions are not strongly convex.

Second, we record the training and test accuracy curves
of all the algorithms executed in our experiments, which
are shown in Figure 4 and Figure 5. We can see that Fas-
tAdaBelief outperforms the other comparison algorithms
in 200 epochs on DenseNet-121, ResNet-34 and VGG-
11. In more details, FastAdaBelief demonstrates much
faster convergence as well as the highest accuracy within
200 epochs than all the other comparison algorithms on
the three baseline DNN models. Additionally, it is also
evident that AdaBelief and FastAdaBelief generally lead
to the best accuracy in the 200 epoch, which verifies the
excellent generalization ability of the belief-based adaptive
algorithms. It is noted that SGD did not converge actually
due to its slow convergence rate though it could still catch
up with the accuracy of AdaBelief and FastAdaBelief in
the long run.
To sum up, the experiments of image classification

with DenseNet-121, ResNet-34 and VGG-11 on CIFAR-10
validate the fast convergence rate and excellent accuracy
performance of FastAdaBelief even when strong convexity
does not hold in the loss functions.
2) Language Modeling: We also conduct a group of

experiments on the language modeling task. In this group of
experiments, we use a classic recurrent network (i.e., LSTM)
and an open dataset (i.e., Penn Treebank). Same as the
previous works [22], [23], [32], [33], we take the perplexity to
measure the performance of all the comparison algorithms.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 9

Note that the lower perplexity is better.
The perplexity curves of all the algorithms are shown

in Figure 6. In the figure, once again we can see that
FastAdaBelief performs similar to SAdam on 1-layer LSTM,
and these two algorithms both perform better than the
rest of the algorithms. However, on the 2,3-layer LSTM,
FastAdaBelief performs better than SAdam and the other
algorithms. Moreover, the perplexity of FastAdaBelief
decreases the fastest among all the algorithms, which
further validates the convergence analysis of FastAdaBelief.
We also summarize the test perplexities of all the

algorithms performed in this group of experiments, which
are shown in Table IV. From the table, we can see that
FastAdaBelief attains superior performance to the other
algorithms on all three models (i.e., 1,2,3-layer LSTM).
In summary, FastAdaBelief also keeps both excellent
generalization ability and fast convergence rate for language
modeling tasks even when loss functions are not strongly
convex. These empirical results are very encouraging,
suggesting that FastAdaBelief has a high potential to be
widely applied in real scenarios.

V. Conclusion and Future Work

In this paper, we made a first attempt and presented
an affirmative answer to the question whether AdaBelief
can be further improved on its convergence rate under
the strongly convex condition. Specifically, we exploited
strong convexity and proposed a new algorithm named Fas-
tAdaBelief, which exhibits an even faster data-dependent
regret bound of O(log T) while maintaining excellent
generalization ability. In light of our theoretical findings,
we carried out a series of empirical studies which validated
the superiority of our proposed algorithm. Importantly,
we showed that FastAdaBelief converged the fastest in
not only strong convexity, but also non-strong convexity,
hence demonstrating its high potential as a new benchmark
model that can be widely utilised in various scenarios.
In our current work, by exploiting its strong convexity,

FastAdaBelief has empirically demonstrated excellent gen-
eralization as well as fast convergence even when the loss
functions are not strongly convex. We believe that such
phenomenon may be partially due to the vanishing factor
δ/t as engaged in the second order moment that enables
a closer approximation to an ideal step size. However, it
remains unclear why this may happen strictly in theory.
We will leave this investigation as future work. Besides,
research on the sparsity of samples can improve the
convergence rate of SGD, such as [34], [35], [36]. However,
it remains unclear whether sparse samples will further
improve FastAdaBelief’s convergence rate. Hence, we will
leave this investigation as another future work.

Acknowledgment

This work was partially supported by Chinese Academy
of Sciences (No. Y9BEJ11001).

References

[1] Huang, K., Zhang, S., Zhang, R., and Hussain, A. “Pattern Field
Classification Using Deep Neural Networks," Neural Networks,
vol. 127, pp. 82-95, 2020.

[2] Jiang, Y., Wu, D., Deng, Z., etc. “Seizure Classification From
EEG Signals Using Transfer Learning, Semi-Supervised Learning
and TSK Fuzzy System," IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 25, no. 12, pp. 2270-2284,
2017 Dec.

[3] Wang, J., Hu, J., Min, G., Zomaya, A. Y., and Georgalas, N.
“Fast Adaptive Task Offloading in Edge Computing Based on
Meta Reinforcement Learning," IEEE Transactions on Parallel
and Distributed Systems, vol. 32, no. 1, pp. 242-253, 2021 Jan.

[4] Jin, X., Zhang, X., Huang, K., Geng, G. “Stochastic Conjugate
Gradient Algorithm with Variance Reduction," IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 30, no. 5,
pp. 1360-1369, 2019.

[5] Jia, X., Li, Z., Zheng, X., Li, W., and Huang, S. J. “Label
Distribution Learning with Label Correlations on Local Samples,"
IEEE Transactions on Knowledge and Data Engineering, vol. 33,
no. 4, pp. 1619-1631, 2021 April.

[6] Niu, S., Li, B., Wang, X., and Lin, H. “Defect Image Sample
Generation With GAN for Improving Defect Recognition," IEEE
Transactions on Automation Science and Engineering, vol. 17, no.
3, pp. 1611-1622, 2020 July.

[7] Khan, M., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y. “Fast
and Scalable Bayesian Deep Learning by Weight-Perturbation in
Adam," in International Conference on Machine Learning, 2018,
vol. 80, pp. 2611-2620.

[8] Mukkamala, M. C. and Hein, M. “Variants of RMSProp and
Adagrad with Logarithmic Regret Bounds," in International
Conference on Machine Learning, 2017, vol. 70, pp. 2545-2553.

[9] Zhou, Y., Zhang, M., Zhu, J., Zheng, R., Wu, Q. “A Randomized
Block-Coordinate Adam online learning optimization algorithm,"
Neural Computing and Applications, vol. 32, pp. 12671-1268, 2020
Aug.

[10] Zinkevich, M. “Online convex programming and generalized
infinitesimal gradient ascent," in International Conference on
Machine Learning, 2003, pp. 928-936.

[11] Lei, Y., Hu, T., Li, G., and Tang, K. “Stochastic Gradient
Descent for Nonconvex Learning Without Bounded Gradient
Assumptions," IEEE Transactions on Neural Networks and
Learning Systems, vol. 31, no. 10, pp. 4394-4400, 2020 Oct.

[12] Gu, B., Shan, Y., Quan, X., and Zheng, G. “Accelerating
Sequential Minimal Optimization via Stochastic Subgradient
Descent," IEEE Transactions on Cybernetics, vol. 51, no. 4, pp.
2215-2223, 2021 April.

[13] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. “On the
importance of initialization and momentum in deep learning," in
International conference on machine learning, 2013, pp. 1139-
1147.

[14] Nesterov, Y. “A method of solving a convex programming
problem with convergence rate o(1/k2)," in Soviet Mathematics
Doklady, 1983, vol. 27.

[15] Kingma, D.P. and Ba, J.L. “Adam: A method for stochastic
optimization," in International Conference on Learning Repre-
sentations, 2015.

[16] Reddi, S. J., Kale, S., and Kumar, S. “On the convergence of
adam and beyond," in International Conference on Learning
Representations, 2018.

[17] Luo, L., Xiong, Y., Liu, Y., Sun, X. “Adaptive gradient methods
with dynamic bound of learning rate," in International Conference
on Learning Representations, 2019.

[18] Zaheer, M., Reddi, S., Sachan, D., Kale, S., and Kumar, S. “Adap-
tive methods for nonconvex optimization," in Neural Information
Processing Systems, 2018, pp. 9793-9803.

[19] Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and Han,
J. “On the variance of the adaptive learning rate and beyond," in
International Conference on Learning Representations, 2020.

[20] Balles, L. and Hennig, P. “Dissecting adam: The sign, magnitude
and variance of stochastic gradients," in International Conference
on Machine Learning, 2018.

[21] Loshchilov, I. and Hutter, F. “Decoupled weight decay regulariza-
tion," in International Conference on Learning Representations,
2019.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 10

[22] Zhuang, J., Tang, T., Ding, Y., Takiconda, S., Dvornek, N.,
Papademetris, X., and Duncan, J. “AdaBelief Optimizer: Adapt-
ing Stepsizes by the Belief in Observed Gradients," in Neural
Information Processing Systems, 2020.

[23] Wang, G., Lu, S., Tu, W., and Zhang, L. “SAdam: A Variant of
Adam for Strongly Convex Functions," in International Confer-
ence on Learning Representations, 2020.

[24] Shalev-Shwartz, S. “Online Learning and Online Convex Opti-
mization," Foundations and Trends in Machine Learning, vol. 4,
no. 2, pp. 107-194, 2011.

[25] Boyd, S. and Vandenberghe, L. “Convex optimization," Cam-
bridge university press, 2004.

[26] McMahan, B. H. and Streeter, M. “Adaptive bound optimization
for online convex optimization," arXiv preprint arXiv:1002.4908,
2010.

[27] Song, Y., Li, M., Luo, X., Yang, G., and Wang, C. “Im-
proved Symmetric and Nonnegative Matrix Factorization Models
for Undirected, Sparse and Large-Scaled Networks: A Triple
Factorization-Based Approach," in IEEE Transactions on In-
dustrial Informatics, vol. 16, no. 5, pp. 3006-3017, May 2020.

[28] Luo, X., Zhou, M., Li, S., Wu, D., Liu, Z., and Shang, M. “Al-
gorithms of Unconstrained Non-Negative Latent Factor Analysis
for Recommender Systems," in IEEE Transactions on Big Data,
vol. 7, no. 1, pp. 227-240, 1 March 2021.

[29] Liu, W., Wen, Y., Yu, Z., and Yang, M. “Large-Margin Softmax
Loss for Convolutional Neural Networks," in Proceedings of The
33rd International Conference on Machine Learning, PMLR, vol.
48, pp. 507-516, 2016.

[30] He, K., Zhang, X., Ren, S., and Sun, J. “Deep residual learning
for image recognition," in IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

[31] Huang, G., Liu, Z., Maaten, L. V. D., and Weinberger, K., Q.
“Densely connected convolutional networks," in IEEE conference
on computer vision and pattern recognition, 2017, pp. 4700-4708.

[32] Shuang, K., Li, R.,Gu, M.,Loo, J., and Su, S. “Major-Minor
Long Short-Term Memory for Word-Level Language Model," in
IEEE Transactions on Neural Networks and Learning Systems,
vol. 31, no. 10, pp. 3932-3946, Oct. 2020.

[33] Huang, S. and Renals, S. “Hierarchical Bayesian Language Mod-
els for Conversational Speech Recognition," in IEEE Transactions
on Audio, Speech, and Language Processing, vol. 18, no. 8, pp.
1941-1954, Nov. 2010.

[34] Wu, D., Luo, X., Shang, M., et al. “A Deep Latent Factor Model
for High-Dimensional and Sparse Matrices in Recommender Sys-
tems," in IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 51, no. 7, pp. 4285-4296, July 2021.

[35] Luo, X., Liu, Z., Li, S., et al. “A Fast Non-Negative Latent
Factor Model Based on Generalized Momentum Method," in IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 51,
no. 1, pp. 610-620, Jan. 2021.

[36] Luo, X., Wang, D., Zhou, M. and Yuan, H. “Latent Factor-
Based Recommenders Relying on Extended Stochastic Gradient
Descent Algorithms," in IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 51, no. 2, pp. 916-926, Feb. 2021.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 11

Appendix A
Convergence Analysis in Strongly Convex

Online Optimization

Before presenting the proof of Theorem 1, we first review
the following Lemma 1.
Lemma 1: [26] For all M ∈ Mn

+ and convex feasible
region F ∈ Rn, let

y1 = min
x∈F

∥∥∥M1/2(x− z1)
∥∥∥ ,

and
y2 = min

x∈F

∥∥∥M1/2(x− z2)
∥∥∥ ,

then we obtain the following:∥∥∥M1/2(y1 − y2)
∥∥∥ ≤ ∥∥∥M1/2(z1 − z2)

∥∥∥ .
Theorem 1 Suppose that Assumptions 1 and 2 are

satisfied, Conditions 3 and 4 hold, and loss functions ft(·)
are σ-strongly convex. Moreover, let parameter sequences
{β1t}, {β2t} and {αt} are generated by the proposed al-
gorithm, where β1t = β1λ

t, β1 ∈ [0, 1), λ1 ∈ [0, 1), β2t ∈
[0, 1), δ > 0, t ∈ {1, . . . , T}. For decision point xt generated
by the proposed algorithm, we have the following upper
bound of the regret

R(T) ≤ nδD2
∞

2α(1− β1) + D2
∞(G∞ + δ)

2α

n∑
i=1

T∑
t=1

β1t

1− β1t
t

+ αζ

$2(1− β1)3

n∑
i=1

log
(

1
ζδ
‖g1:T,i‖2 + 1

)
.

a) Proof: By the updating method of decision variable,
i.e., Equation (7), we have:

xt+1 =
∏
F,Ŝt

(
xt − αtŜ−1

t mt

)
= min

x∈F

∥∥∥Ŝ1/2
t

[
x− (xt − αtŜ−1

t mt)
]∥∥∥ . (11)

From the definitions of x∗ and projection
∏

(·), we have
that x∗ =

∏
F,Ŝt

(x∗) = minx∈F (x − x∗). In addition, if
we apply Lemma 1, let y1 = xt+1,y2 = x∗, by the update
rules of xt and mt, we obtain the following:∥∥∥Ŝ1/2

t (xt+1 − x∗)
∥∥∥2

≤
∥∥∥Ŝ1/2

t

(
xt − αtŜ−1

t mt − x∗
)∥∥∥2

=
∥∥∥Ŝ1/2

t (xt − x∗)
∥∥∥2
− Ŝt

〈
xt − x∗, αtŜ−1

t mt

〉
+
∥∥∥αtŜ−1/2

t mt

∥∥∥2

=
∥∥∥Ŝ1/2

t (xt − x∗)
∥∥∥2

+ α2
t

∥∥∥Ŝ−1/2
t mt

∥∥∥2

− 2αt 〈xt − x∗,mt〉

=
∥∥∥Ŝ1/2

t (xt − x∗)
∥∥∥2

+ α2
t

∥∥∥Ŝ−1/2
t mt

∥∥∥2

− 2αt 〈xt − x∗, β1tmt−1 + (1− β1t)gt〉 . (12)

Next, rearranging equation (12), we have that

〈gt,xt − x∗〉

≤

[∥∥∥Ŝ1/2
t (xt − x∗)

∥∥∥2
−
∥∥∥Ŝ1/2

t (xt+1 − x∗)
∥∥∥2
]

2αt(1− β1t)

+ αt
2(1− β1t)

∥∥∥Ŝ−1/2
t mt

∥∥∥2
− β1t

1− β1t
〈mt−1,xt − x∗〉︸ ︷︷ ︸

(a)

.

(13)

Applying Young’s inequality (i.e., 〈a, b〉 ≤ a2ε
2 + b2

2ε ,∀ε > 0)
into the term (a) of Equation (13), and considering αt >
0, β1t ∈ [0, 1), we can attain

(a) = − β1t

1− β1t
〈mt−1,xt − x∗〉

≤ αtβ1t

2(1− β1t)

(
Ŝ
−1/2
t mt−1

)2

+ β1t

2αt(1− β1t)

(
Ŝ

1/2
t (xt − x∗)

)2
. (14)

Furthermore, applying Cauchy-Schwartz inequality into
Equation (14), we have

(a) ≤ αtβ1t

2(1− β1t)

∥∥∥Ŝ−1/2
t mt−1

∥∥∥2

+ β1t

2αt(1− β1t)

∥∥∥Ŝ1/2
t (xt − x∗)

∥∥∥2
. (15)

Then, plugging Equation (15) into Equation (13), we obtain
the following

〈gt,xt − x∗〉

≤

[∥∥∥Ŝ1/2
t (xt − x∗)

∥∥∥2
−
∥∥∥Ŝ1/2

t (xt+1 − x∗)
∥∥∥2
]

2αt(1− β1t)

+ αt
2(1− β1t)

∥∥∥Ŝ−1/2
t mt

∥∥∥2
+ αtβ1t

2(1− β1t)

∥∥∥Ŝ−1/2
t mt−1

∥∥∥2

+ β1t

2αt(1− β1t)

∥∥∥Ŝ1/2
t (xt − x∗)

∥∥∥2
. (16)

On the other hand, let x = x∗,y = xt in Equation (2).
With the strong convexity of ft(·), we attain

ft(xt)− ft(x∗) ≤ 〈gt,xt − x∗〉 − σ

2 ‖xt − x∗‖2. (17)

Therefore, from definition of the regret (i.e., Equation (1)),
and Equation (17), we obtain the following

R(T) =
T∑
t=1

ft(xt)−min
x∈F

T∑
t=1

ft(x)

=
T∑
t=1

ft(xt)−
T∑
t=1

ft(x∗)

≤
T∑
t=1
〈gt,xt − x∗〉 − σ

2

T∑
t=1
‖xt − x∗‖2. (18)

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 12

In addition, plugging Equation (16) into Equation (18), we
can attain the following

R(T) ≤
T∑
t=1

[∥∥∥Ŝ1/2
t (xt − x∗)

∥∥∥2
−
∥∥∥Ŝ1/2

t (xt+1 − x∗)
∥∥∥2
]

2αt(1− β1t)

+
T∑
t=1

αt
2(1− β1t)

∥∥∥Ŝ−1/2
t mt

∥∥∥2

+
T∑
t=1

αtβ1t

2(1− β1t)

∥∥∥Ŝ−1/2
t mt−1

∥∥∥2

+
T∑
t=1

β1t

2αt(1− β1t)

∥∥∥Ŝ1/2
t (xt − x∗)

∥∥∥2

− σ

2

T∑
t=1
‖xt − x∗‖2. (19)

Furthermore, since 0 ≤ st−1,i ≤ st,i, 0 ≤ αt ≤ αt−1, 0 ≤
β1t ≤ β1 < 1, by Equation (19), we have

R(T) ≤
T∑
t=1

[∥∥∥Ŝ1/2
t (xt − x∗)

∥∥∥2
−
∥∥∥Ŝ1/2

t (xt+1 − x∗)
∥∥∥2
]

2αt(1− β1t)︸ ︷︷ ︸
−σ2

T∑
t=1
‖xt − x∗‖2

︸ ︷︷ ︸
E1

+
T∑
t=1

αt
2(1− β1t)

∥∥∥Ŝ−1/2
t mt

∥∥∥2

︸ ︷︷ ︸
+

T∑
t=2

β1αt−1

2(1− β1)

∥∥∥Ŝ−1/2
t−1 mt−1

∥∥∥2

︸ ︷︷ ︸
E2

+
T∑
t=1

β1t

2αt(1− β1t)

∥∥∥Ŝ1/2
t (xt − x∗)

∥∥∥2

︸ ︷︷ ︸
E3

. (20)

Next, we consider the upper bounds of three parts (E1, E2
and E3) in Equation (20) respectively. For part E1, we

attain the following

E1 = 1
2α1(1− β1)

∥∥∥Ŝ1/2
1 (x1 − x∗)

∥∥∥2

+
T∑
t=2

1
2αt(1− β1t)

∥∥∥Ŝ1/2
t (xt − x∗)

∥∥∥2

−
T∑
t=2

1
2αt−1(1− β1(t−1))

∥∥∥Ŝ1/2
t−1 (xt − x∗)

∥∥∥2

− 1
2αT (1− β1T)

∥∥∥Ŝ1/2
T (xT+1 − x∗)

∥∥∥2

− σ

2

T∑
t=1
‖xt − x∗‖2

≤
T∑
t=2

1
1− β1t

[∥∥∥Ŝ1/2
t (xt − x∗)

∥∥∥2

2αt

−

∥∥∥Ŝ1/2
t−1 (xt − x∗)

∥∥∥2

2αt−1

]

+ 1
2α1(1− β1)

∥∥∥Ŝ1/2
1 (x1 − x∗)

∥∥∥2
− σ

2

T∑
t=1
‖xt − x∗‖2.

(21)

Since αt = α
t and from Equation (21), we have the following

E1 ≤
T∑
t=2

1
1− β1t

[
t
∥∥∥Ŝ1/2

t (xt − x∗)
∥∥∥2

2α

−
(t− 1)

∥∥∥Ŝ1/2
t−1 (xt − x∗)

∥∥∥2

2α

]
+ 1

2α1(1− β1)

∥∥∥Ŝ1/2
1 (x1 − x∗)

∥∥∥2

− σ

2

T∑
t=2
‖xt − x∗‖2 − σ

2 ‖x1 − x∗‖2

=
T∑
t=2

1
2α(1− β1t)

[
t
∥∥∥Ŝ1/2

t (xt − x∗)
∥∥∥2

︸ ︷︷ ︸
−(t− 1)

∥∥∥Ŝ1/2
t−1 (xt − x∗)

∥∥∥2
− σα(1− β1t)‖xt − x∗‖2

]
︸ ︷︷ ︸

E
′
1

+ 1
2α1(1− β1)

∥∥∥Ŝ1/2
1 (x1 − x∗)

∥∥∥2
− σ

2 ‖x1 − x∗‖2︸ ︷︷ ︸
E
′′
1

.

(22)

In addition, for term E
′

1 of Equation (22), and from

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 13

Equation (6), we can obtain

E
′

1 =
n∑
i=1

(xt,i − x∗,i)2

[
t

(
ŝt,i + δ

t

)1/2

− (t− 1)
(
ŝt−1,i + δ

t− 1

)1/2
− σα(1− β1t)

]
, (23)

where i ∈ {1, . . . , n}, and n is the dimension of decision
vectors. Moreover, since (a+b)1/2 ≤ a1/2+b1/2 and 1−β1 ≤
1− β1t, by Equation (9), we can have the following

E
′

1 ≤
n∑
i=1

(xt,i − x∗,i)2

[
tŝ

1/2
t,i − (t− 1)ŝ1/2

t−1,i−

√
δ(t− 1)− σα(1− β1t)

]

≤
n∑
i=1

(xt,i − x∗,i)2

[
ts

1/2
t,i − (t− 1)s1/2

t−1,i −
√
δ(t− 1)

− σα(1− β1t)
]

≤
n∑
i=1

(xt,i − x∗,i)2

[
σα(1− β1)−

√
δ(t− 1)

− σα(1− β1t)
]

≤ 0. (24)

Next, for term E
′′

1 of Equation (22), we have

E
′′

1 = 1
2α1(1− β1)

∥∥∥Ŝ1/2
1 (x1 − x∗)

∥∥∥2
− σ

2 ‖x1 − x∗‖2

=
n∑
i=1

[
s1 + δ − σα1(1− β1)

2α1(1− β1)

]
(x1,i − x∗,i)2. (25)

By Equation (9), s1 − σα1(1 − β1) ≤ 0 when t = 1, and
from Equation (25), we obtain the following

E
′′

1 ≤
n∑
i=1

δ

2α1(1− β1) (x1,i − x∗,i)2. (26)

Moreover, from Assumption 1, we have that x1,i−x∗,i ≤ D∞.
Then, combining Equations (22), (24) and (26), we finally
attain

E1 ≤
n∑
i=1

δD2
∞

2α1(1− β1) = nδD2
∞

2α(1− β1) . (27)

Therefore, we have obtained the upper bound of part E1.
Then we consider part E2 of the remaining two parts in
Equation (20). Since β1t ≤ β1, we have the following

E2 ≤
T∑
t=1

αt
2(1− β1)

∥∥∥Ŝ−1/2
t mt

∥∥∥2

+
T∑
t=2

β1αt−1

2(1− β1)

∥∥∥Ŝ−1/2
t−1 mt−1

∥∥∥2
. (28)

For Equation (28), we first consider the term∑T
t=1 αt

∥∥∥Ŝ−1/2
t mt

∥∥∥2
, we obtain

T∑
t=1

αt

∥∥∥Ŝ−1/2
t mt

∥∥∥2

=
T−1∑
t=1

αt

∥∥∥Ŝ−1/2
t mt

∥∥∥2
+ αT

∥∥∥Ŝ−1/2
T mT

∥∥∥2

≤
T−1∑
t=1

αt

∥∥∥Ŝ−1/2
t mt

∥∥∥2
+ αT

n∑
i=1

mT,i

sT,i + δ
T︸ ︷︷ ︸

E
′
2

. (29)

Moreover, assuming gt,i−mt,i

gt,i
= $t where $t ∈ (0, 1) and

i ∈ {1, . . . , n}, and let $ = min{$1, . . . , $t}. Furthermore,
applying the recursive algorithm to (3) and (4), we have
that

E
′
2 = α

n∑
i=1

(∑T

j=1(1− β1j)
∏T −j

k=1 β1(T −k+1)gj,i

)2

T
∑T

j=1(1− β2j)
∏T −j

k=1 β2(T −k+1)(gj,i −mj,i)2 + δ

≤ α
n∑

i=1

(∑T

j=1(1− β1j)
∏T −j

k=1 β1(T −k+1)gj,i

)2

$2T
∑T

j=1(1− β2j)
∏T −j

k=1 β2(T −k+1)g2
j,i + δ

.

(30)

From Equation (30) and β1t ∈ (0, 1], E′2 can be further
bounded as

E
′

2 ≤ α
n∑
i=1

(∑T
j=1

∏T−j
k=1 β1(T−k+1)gj,i

)2

$2T
∑T
j=1(1− β2j)

∏T−j
k=1 β2(T−k+1)g

2
j,i + δ

.

(31)

Furthermore, according to Cauchy-Schwarz inequality,
i.e., (

∑n
k=1〈ak, bk〉)

2 ≤
(∑n

k=1 a
2
k

) (∑n
k=1 b

2
k

)
, and from

Equation (31), we attain the following

E
′

2 ≤

α

n∑
i=1

(∑T
j=1

∏T−j
k=1 β1(T−k+1)

)(∑T
j=1

∏T−j
k=1 β1(T−k+1)g

2
j,i

)
$2T

∑T
j=1(1− β2j)

∏T−j
k=1 β2(T−k+1)g

2
j,i + δ

≤ α
n∑
i=1

(∑T
j=1 β

T−j
1

)(∑T
j=1

∏T−j
k=1 β1(T−k+1)g

2
j,i

)
$2T

∑T
j=1(1− β2j)

∏T−j
k=1 β2(T−k+1)g

2
j,i + δ

.

(32)

Since β1t ≤ β1 and from Equation (32), we can further
attain the following bound for E′2:

E
′
2 ≤

α

$2(1− β1)

n∑
i=1

∑T

j=1

∏T −j

k=1 β1(T −k+1)g
2
j,i

T
∑T

j=1(1− β2j)
∏T −j

k=1 β2(T −k+1)g2
j,i + δ

≤ α

$2(1− β1)

n∑
i=1

∑T

j=1 β
T −j
1 g2

j,i

T
∑T

j=1(1− β2j)
∏T −j

k=1 β2(T −k+1)g2
j,i + δ

.

(33)

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 14

By Equation (8), we have the following

E
′

2 ≤
αζ

$2(1− β1)

n∑
i=1

∑T
j=1 β

T−j
1 g2

j,i∑T
j=1 g

2
j,i + ζδ

≤ αζ

$2(1− β1)

n∑
i=1

T∑
j=1

βT−j1
g2
j,i∑j

k=1 g
2
k,i + ζδ

. (34)

Moreover, plugging Equation (34) into Equation (29), and
applying recursive algorithm, we attain

T∑
t=1

αt

∥∥∥Ŝ−1/2
t mt

∥∥∥2
≤
T−1∑
t=1

αt

∥∥∥Ŝ−1/2
t mt

∥∥∥2

+ αζ

$2(1− β1)

n∑
i=1

T∑
j=1

βT−j1
g2
j,i∑j

k=1 g
2
j,i + ζδ

≤ αζ

$2(1− β1)

n∑
i=1

T∑
t=1

t∑
j=1

βt−j1
g2
j,i∑j

k=1 g
2
k,i + ζδ

≤ αζ

$2(1− β1)

n∑
i=1

T∑
j=1

T−j∑
l=0

βl1
g2
j,i∑j

k=1 g
2
k,i + ζδ

≤ αζ

$2(1− β1)

n∑
i=1

T∑
j=1

∑T−j
l=0 βl1g

2
j,i∑j

k=1 g
2
k,i + ζδ

≤ αζ

$2(1− β1)2

n∑
i=1

T∑
j=1

g2
j,i∑j

k=1 g
2
k,i + ζδ

. (35)

If let Ψ = g2
j,i∑j

k=1
g2

j,i
+ζδ

, ωj =
∑j
k=1 g

2
k,i + ζδ, and ω0 = ζδ,

we obtain

Ψ = ωj − ωj−1

ωj
. (36)

In addition, for any a ≥ b > 0, the inequality 1 + x ≤ ex

implies that

a− b
a
≤ log a

b
. (37)

Therefore, by Equation (37), Equation (36) has the follow-
ing bound:

Ψ ≤ log ωj
ωj−1

. (38)

Plugging Equation (38) into Equation (35), we have

T∑
t=1

αt

∥∥∥Ŝ−1/2
t mt

∥∥∥2

≤ αζ

$2(1− β1)2

n∑
i=1

T∑
j=1

log ωj
ωj−1

≤ αζ

$2(1− β1)2

n∑
i=1

log ωT
ω0

≤ αζ

$2(1− β1)2

n∑
i=1

log
(∑T

k=1 g
2
k,i

ζδ
+ 1
)
. (39)

From Equations (28) and (39), E2 can be further bounded
as

E2 ≤
1

1− β1

T∑
t=1

αt

∥∥∥Ŝ−1/2
t mt

∥∥∥2

≤ αζ

$2(1− β1)3

n∑
i=1

log
(∑T

k=1 g
2
k,i

ζδ
+ 1
)

≤ αζ

$2(1− β1)3

n∑
i=1

log
(

1
ζδ
‖g1:T,i‖2 + 1

)
. (40)

Next, we consider the last term E3 in Equation (20).
From the definition of Ŝt and Assumption 2, we obtain the
following

E3 ≤
T∑
t=1

tβ1t

2α(1− β1t)

∥∥∥∥∥
(

st + δ

t

)1/2
(xt − x∗)

∥∥∥∥∥
2

≤
n∑
i=1

T∑
t=1

tβ1t

2α(1− β1t)

∥∥∥∥∥
(
st,i + δ

t

)1/2
(xt,i − x∗,i)

∥∥∥∥∥
2

≤ D2
∞(G∞ + δ)

2α

n∑
i=1

T∑
t=1

β1t

1− β1t
t. (41)

Finally, combining Equations (20), (27), (40) and (41), we
obtain the upper bound of R(T) as follows

R(T) ≤ nδD2
∞

2α(1− β1) + D2
∞(G∞ + δ)

2α

n∑
i=1

T∑
t=1

β1t

1− β1t
t

+ αζ

$2(1− β1)3

n∑
i=1

log
(

1
ζδ
‖g1:T,i‖2 + 1

)
. (42)

Therefore, the proof of Theorem 1 is completed. �
Corollary 1 Let β1t = β1λ

t, where λ ∈ (0, 1) in
Theorem 1. Then we have the following upper bound of
the regret

R(T) ≤ nδD2
∞

2α(1− β1) + nβ1λD
2
∞(G∞ + δ)

2α(1− β1)(1− λ)2

+ αζ

$2(1− β1)3

n∑
i=1

log
(

1
ζδ
‖g1:T,i‖2 + 1

)
.

b) Proof.: Since β1t = β1λ
t, Equation (41) can be

further bounded as follows

E3 ≤
β1D

2
∞(G∞ + δ)

2α(1− β1)

n∑
i=1

T∑
t=1

tλt

≤ β1D
2
∞(G∞ + δ)

2α(1− β1)

n∑
i=1

[
λ(1− λT)
(1− λ)2 −

TλT+1

1− λ

]
≤ β1D

2
∞(G∞ + δ)

2α(1− β1)

n∑
i=1

λ

(1− λ)2

= nβ1λD
2
∞(G∞ + δ)

2α(1− β1)(1− λ)2 . (43)

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 15

In addition, plugging Equation (43) into Equation (42), we
further attain the upper bound of R(T) as follows

R(T) ≤ nδD2
∞

2α(1− β1) + nβ1λD
2
∞(G∞ + δ)

2α(1− β1)(1− λ)2

+ αζ

$2(1− β1)3

n∑
i=1

log
(

1
ζδ
‖g1:T,i‖2 + 1

)
. (44)

Therefore, the proof of Corollary 1 is completed. �

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, MAY 2021 16

Yangfan Zhou is currently pursuing the Ph.D.
degree in the School of Nano-Tech and Nano-
Bionics, University of Science and Technology
of China. His current research interests are fo-
cused theoretical and algorithmic issues related
to on large-scale optimization, stochastic opti-
mization, convex online optimization, and their
applications to deep learning, meta learning,
and networking. He is currently a reviewer for
many well-known journals, such as the IEEE
Transactions on Neural Networks and Learning

Systems.

Kaizhu Huang is currently a Professor at De-
partment of Intelligent Science, Xi’an Jiaotong-
Liverpool University (XJTLU), China. He acts
as associate dean of research in School of
Advanced Technology, XJTLU and is also the
founding director of Suzhou Municipal Key
Laboratory of Cognitive Computation and
Applied Technology. Prof. Huang obtained his
PhD degree from Chinese University of Hong
Kong (CUHK) in 2004. He worked in Fujitsu
Research Centre, CUHK, University of Bristol,

National Laboratory of Pattern Recognition, Chinese Academy of
Sciences from 2004 to 2012. Prof. Huang has been working in pattern
recognition, machine learning, and neural information processing.
He was the recipient of 2011 Asia Pacific Neural Network Society
Young Researcher Award. He received best paper or book award
six times. Until October 2020, he has published 9 books and over
200 international research papers (80+ international journals) e.g., in
journals (JMLR, Neural Computation, IEEE T-PAMI, IEEE T-NNLS,
IEEE T-BME, IEEE T-Cybernetics) and conferences (NeurIPS,
IJCAI, SIGIR, UAI, CIKM, ICDM, ICML, ECML, CVPR). He serves
as associated editors/advisory board members in a number of journals
and book series. He was invited as keynote speaker in more than 30
international conferences or workshops.

Cheng Cheng is currently an associate pro-
fessor. He received the B.S. degree and M.S. de-
gree in Computer Science and Technology from
Guizhou University, Guiyang, China, in 2004
and 2009, respectively, and the Ph.D. degree in
Information Engineering from Tokyo Univer-
sity of Agriculture and Technology (TUAT),
Japan, in 2013. His current research interests
focus on 3D vision, particularly on 3D feature
learning, 3D modeling, 3D object recognition,
and 3D shape measurement, etc.

Xuguang Wang received the Ph.D. degree
from the Department of Electronic Engineer-
ing, University of Texas, Austin, USA, with
a master’s degree from the Department of
Electronic Engineering, Rice University, USA,
and a bachelor’s degree from the Department
of Materials, Tsinghua University, Beijing. Dr.
Wang has been engaged in the research of semi-
conductor storage technology for 10 years, and
has undertaken the research of semiconductor
memory in many scientific research institutions

such as National Natural Science Foundation of the United States,
MARCO, SRC, etc. Dr. Wang has published many important papers
as the first author in the top two journals and conferences of the
international semiconductor device category, all of which belong to
SCI and have been cited more than 100 times.

Amir Hussain received his B.Eng (highest
1st Class Honours with distinction) and Ph.D
degrees, from the University of Strathclyde,
Glasgow, U.K., in 1992 and 1997, respectively.
He is a member of the member of the UK
Computing Research Committee (UKCRC) -
the Expert Panel of the Institution of Engi-
neering and Technology (IET) and the BCS,
The Chartered Institute for IT, for comput-
ing research in the UK. He has been invited
Advisor/Consultant for various international

Governments and organisations, including at: Kuwait Institute for
Scientific Research (KISR), Kuwait Government; and the National
Centre of Big Data & Cloud Computing (NCBC), Higher Education
Commission, Pakistan Government. He acts as a Consultant for
various global companies and is co-founder/Advisor for a number
of successful spin-out/start-up companies, including SenticNet, Smart
Big Data Solutions Ltd. and AiGenics. He has been appointed invited
Associate Editor/Editorial Board member for a number of prestigious
journals, including: the IEEE Transactions on Artificial Intelligence
(AI), the IEEE Transactions on Neural Networks and Learning
Systems, IEEE Transactions on Systems, Man, and Cybernetics:
Systems, Information Fusion, AI Review, IEEE Computational
Intelligence Magazine, and the IEEE Transactions on Emerging Topics
in Computational Intelligence.

Xin Liu received the Ph.D. degree from the De-
partment of Electrical and Electronic Engineer-
ing, Nanyang Technological University (NTU),
Singapore, in 2007. Dr. Liu worked as a re-
search scientist, principal researcher and direc-
tor of intelligent Computing Chips at the Sin-
gapore Institute of Microelectronics, Singapore
Technology Development Board, from 2007 to
2018. Dr. Liu joined the Suzhou Institute of
Nano-Tech and Nano-Bionics (SINANO), Chi-
nese Academy of Sciences in 2018. His research

interests include artificial intelligence, wireless communications, signal
processing algorithms and chip design, high-performance large-scale
parallel processing chip architecture design, ultra-low power digital
processor design, embedded non-volatile memory circuit design, and so
on. As the person in charge, he has presided over and completed more
than 10 large and national semiconductor chip research and industrial
projects, with a total research fund of about 200 million RMB. He has
more than 10 international invention patents authorized in relevant
technical fields, published more than 60 articles in international core
journals and conferences, and been cited nearly a thousand times.

	Introduction
	Notation and Preliminaries
	Notation
	Online Learning
	AdaBelief

	FastAdaBelief
	Algorithm Design
	Why FastAdaBelief can choose a better stepsize?
	Theoretical Guarantee

	Experiments
	Hyperparameter Tuning
	Datasets
	Optimization with Strong Convexity
	Training DNN with Non-strong Convexity
	Image Classification
	Language Modeling

	Conclusion and Future Work
	References
	Appendix A: Convergence Analysis in Strongly Convex Online Optimization
	Biographies
	Yangfan Zhou
	Kaizhu Huang
	Cheng Cheng
	Xuguang Wang
	Amir Hussain
	Xin Liu

