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Abstract

We study low-gain (P)roportional (I)ntegral control of multivariate discrete-
time, forced Lur’e systems to solve the output-tracking problem for con-
stant reference signals. We formulate an incremental sector condition which
is sufficient for a usual linear low-gain PI controller to achieve exponential
disturbance-to-state and disturbance-to-tracking-error stability in closed-loop,
for all sufficiently small integrator gains. Output tracking is achieved in the
absence of exogenous disturbance (noise) terms. Our line of argument invokes
a recent circle criterion for exponential incremental input-to-state stability. The
discrete-time theory facilitates a similar result for a continuous-time forced Lur’e
system in feedback with sampled-data low-gain integral control. The theory is

illustrated by two examples.
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1 | INTRODUCTION

We consider Proportional Integral (PI) control in the context that the plant is specified by a system of controlled nonlinear
difference equations called a forced Lur’e (also Lurie or Lurye) system—a well-studied and ubiquitous class of nonlinear
control systems—comprising the feedback connection of a linear control system and a static nonlinear output feedback.

Integral control is a classical control engineering technique for robustly tracking constant reference signals, and refers
to the feedback connection of an integrator and a (stable) plant. Low-gain integral control is a special case wherein the
integrator gain is sufficiently small, which is known to be sufficient for closed-loop stability under a sign condition on the
steady-state gain. Early literature on integral control includes References 1-7. Low-gain integral control has been further
generalized to, for example: discrete-time systems; sampled-data systems; input-output approaches; classes of distributed
parameter systems; adaptively determined integrator gains, and; integral control in the presence of input and output
nonlinearities. Literature across these areas is vast and includes References 8-17.

Given the importance of output regulation in applied settings, much attention has been devoted to the extension of
integral control, and related notions, to nonlinear plants, with early contributions including References 18, and 19,20 are
recent papers in the area. These latter works both contain a bibliographic overview of contributions to integral control in
the nonlinear setting, see also Reference 21, the research monograph?? and the references therein.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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The academic study of stability and convergence properties of Lur’e systems is broadly termed absolute stability theory,
and is also a much-researched area. Absolute stability theory seeks to conclude stability (referring to a number of possible
notions) via the interplay of frequency-domain properties of the linear component and sector or boundedness properties
of the nonlinearity. Relevant background on absolute stability theory includes the texts,?>2* and the papers?>?° specifically
consider the discrete-time case. Recently, a line of enquiry has arisen investigating how classical absolute stability type
results generalise to guarantee the so-called input-to-state stability (ISS) property; see, for instance References 27-29. As is
well-known, ISS is a stability concept for nonlinear control systems which accommodates the contribution of exogenous
control terms. For further background on ISS, we refer the reader to the survey.*

Here we exploit recent ISS theory for discrete-time Lur’e systems developed in Reference 31 to derive sufficient con-
ditions for the feedback connection of a usual (linear) low-gain PI controller and a forced Lur’e system to admit an
exponential disturbance-to-tracking-error estimate. This result is in the spirit of the well-known circle criterion from
absolute stability theory, and is presented in Theorem 1. In the absence of forcing terms, exponential convergence of the
output to the desired reference is guaranteed. The results in Reference 31 are applicable here as the studied feedback con-
nection may itself be written as a Lur’e system with an augmented state. Our working assumption is that the nonlinear
component in the Lur’e system is not known and, therefore, is not available for feedback purposes. The main technical
challenge is to obtain a result which is in the spirit of low-gain integral control and absolute stability theory—namely
ensuring that there is a sufficiently small positive integrator gain y. such that the closed-loop feedback system has desired
stability and convergence properties for all integrator gains y € (0, y.) and all nonlinear terms satisfying, in this case, a
suitable incremental sector condition.

As an application, we consider sampled-data low-gain integral control, now of a plant specified by a system of forced
and controlled Lur’e differential equations. Sampled-data control broadly refers to controlling continuous-time plants by
discrete-time controllers, via the use of sample- and hold-operations. For more background on sampled data control, we
refer to the texts.3>33 Proposition 1 is analogous to Theorem 1, and provides an exponential disturbance-to-tracking-error
estimate for sufficiently small sampling times and integrator gains.

The manuscript is organised as follows. Section 2 contains the discrete-time theory, and also contains comparisons
with known results from the literature. The results of Section 2 are used in the context of ssmpled-data control in Section 3.
Two worked examples are presented in Section 4, and Section 5 is the conclusion. Proofs of our results appear in the
Appendix.

1.1 | Notation

Most notation we use is standard. As usual, N, Z, R, and C denote the positive integers (natural numbers), integers, real
numbers, and complex numbers, respectively. Furthermore, let

Zy:={meZ : m>0} and R, :={heR : h>0}.

We let
Cp:={seC : Re(s) >0} and E:={ze€C : |z >1},

denote the (open) right-half complex plane and the exterior of the closed unit disc, respectively. For F = R or C, we let
F" and F"™™ denote n-dimensional (real or complex) Euclidean space, and the space of matrices with elements in [F of
format n x m, respectively. We equip " with its usual 2-norm, denoted || - ||, which is induced by the usual inner product
(+,-) on F". We use the same symbol || - || to denote the induced operator norm on F"".

Given a square matrix M, the symbols ¢(M), p(M), M* and Re M denote: the spectrum of M; the spectral radius of M;
its Hermitian transpose; and real part of M, namely, ReM := (M + M*)/2, respectively.

For F = Cy or E, we let H*(IF, CP*™) denote the Hardy space of bounded, analytic, matrix-valued functions F — CP*™,
with respective norms

IH||z=c,) :=supl[H()[| and [IG]la= 3=SuIIE>||G(Z)II~
Z€E

seC,

As usual, such functions will play the role of transfer functions of stable continuous-time and discrete-time linear control
systems, respectively.
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Given a rational, matrix-valued function H : F — CP*", we say that a matrix K € C™? is feedback admissible for H
if det(/ — KH) # 0 on F. Furthermore, in the case that m = p, we call H positive real if Re H(s) is positive semi-definite
for all s € F which are not poles of H; see, for example, Reference 34. Here F = C or E corresponds to positive realness
in the continuous-time and discrete-time settings, respectively. It is well-known, for example from Reference 34, Propo-
sition 3.3 or Reference 31, Lemma 3.5, that rational positive real functions have no poles in Cy or E U {eo}, respectively.
Furthermore, such a function H is called strongly positive real or strictly positive real if s — H(s) — el or s — H(s — ¢) is
positive real, respectively, for some € > 0.

Finally, F(Z,,V) are sequences Z, — V, for normed space V. We set

Vllgo ey s=max{|lv(@)|| @ 1 <7<t} Vi,bE€Zy, bt <h.

Ifv € F(Z,,V)is bounded, then we set ||[V]|s~ := supiez, V(O]
For presentational reasons, we write column vectors inline as row vectors.

2 | LOW-GAIN PICONTROL FOR DISCRETE-TIME FORCED LUR’E
SYSTEMS

2.1 | Preliminaries

Our focus is the following multivariate discrete-time controlled Lur’e system

{x+ = Ax + BF (Gx +v,) + Du+v;, x(0) =x°, W

y=Cx+vs,

where x*(¢) = x(t + 1) for all t € Z,.. We denote the linear data in (1) by X := (A, B, C, D, G), with A € R™", B € R™"™,
C e RP" D e R™™: and G € RP*". Here my, m;, 1, p1, and p;, are fixed positive integers. The term F : R - R™ isa
(nonlinear) function which shall require the properties defined in Assumption (A3) and Theorem 2.2. Roughly speaking,
F is a function which will be required to satisfy a so-called incremental sector condition.

As usual, the variables u, x, and y in (1) denote the input, state, and measured output, respectively, and they take values
in R", R™, and RP:, respectively. The variables v; are exogenous input signals, which we call forcing terms. The terms v;,
v, and v; take values in R", RP1, and RP2, respectively.

We assume throughout that we have access to only the (noisy) output for control purposes. Thus, for output regulation
of constant references, we introduce the low-gain integrator

wr=w+yLi(r—y), w0)=u", )

where r € Rz is the desired reference, L; € R™>P: is a (matrix) integrator gain, y > 0 is a low-gain parameter, and w° €
R™: is the initial integrator state. In the case that m, = p, = 1, then we simply take L; = 1, leaving y as the sole integrator
gain parameter.

We consider the feedback connection of (1), (2) and the PI controller u := Lpy + w, where Lp € R"*P2 ig the pro-
portional feedback gain. Substituting the variables u and y into (1) and (2) yields the folllowing closed-loop feedback
system

{ x* = (A + DLpC)x + BF (Gx +v;) + Dw 4+ v; + DLpv;, x(0) = x°, 3)

wr =w+ yLi(r — Cx) — yLiv;, w(0) =wP.

It is clear that, for every (x°,u®) € R* x R™ and all (v1,v,,v3) € F(Zy, R" x RP1 x RP:), there is a unique solution of 3
which we denote by (x, w). We comment that (3) is in fact a forced Lur’e system with an augmented state. A block diagram
of the closed-loop feedback system (3) is contained in Figure 1.
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FIGURE 1 Block diagram of the closed-loop feedback system (3). The bottom loop contains the nonlinear components in (1), and the
top loops contain the controller components.

For Lp € R™*P2 we set Al» := A 4+ DLpC, and let G¢p denote the transfer function
Gep(z) := C(xl — A™)7'B.

The functions Gc¢p, Ggp, Gop are defined analogously, and they capture the various input-output relationships in (3).
We proceed to introduce assumptions used in our main result, Theorem 1 below, and convenient notation. To min-
imize disruption to the presentation, we provide commentary on the various assumptions after the statement of the
theorem.
The first two assumptions pertain to the linear components of the model data X, Lp and L.

(A1) Lp € R™*P2 js such that p(A + DLpC) < 1.
(A2) Gcp(1)isinvertible and 6(Gcp(1)Lp) € Co.

We introduce
V=, V5,03) € F(Ze, RPx RP x RP2)  and  vf := (D1, D, D3) € R x RPr x RP2, 4)

as the collection of forcing terms in (3) and their respective reference values (which may simply be zero). We set

3
@l := Y vl Vi€,

j=1
and define
P(s) := Ggp(1) — Gep(1)(sI + LiGep(1)) 'LiGep(1) Vs € Co, ©)

which shall play an important auxiliary and technical role in the current work. The third assumption connects the
function F : RPr — R™ and P(0):

(A3) For all 73,7, € RP1, there is a unique g € RP: such that
POF(@+z1)+22=q. (6)

Our first lemma introduces quantities which shall appear as state- and input-limits in the feedback system (3).

Lemma 1. Assume that X, Ly and L; satisfy Assumptions A1-A3, and lety > 0, r € RP2 and v' as in (4) be given.
Define oy :=r—193,0, := (I - A)"9; and

o3 1= Gop(DGep(1)'o1 + (G — Gep(1)Gep(1)™'C) 0.
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Let q € RP1 be the unique solution of P(0)F(q + V) + 63 = q. Then, (x",w") given by
w' 1= Gep() ™! (01 = Gep(DF(q + 92) = Coz = Gep(DLpb3) @
and
to_ Lpy-1 SN D < ¥
x' := (I —A)™' (BF(q + ;) + D1 + DLpD3 + Dw') , (8)

is a constant solution of (3) with (constant) v = v', and further satisfies Cx' = r — ¥s.

2.2 | An exponential disturbance-to-state/tracking-error result

The following theorem is the main result of this section and, roughly, provides an exponential disturbance-to-state and
disturbance-to-tracking-error estimate for (3) for all sufficiently small integrator gains and all nonlinear terms satisfying
a given incremental sector condition. The result is in the spirit of the familiar circle criterion, but a recent version which is
sufficient for exponential ISS. The derived estimates guarantee the complementary control objective of output-tracking,
namely ensuring that y(¢) — r,if v(t) > D=0ast - .

Theorem 1. Consider (3) and assume that X, Lp and Ly satisfy A1 and A2. Let P be asin (5). Given K;, K, € R™*P1, assume
that K is feedback admissible for P and Ggp, and further that

(i) d-KP){I-KP):Cy— C™*™ jsstrictly positive real, and,
(i) (I — K»Ggp)I — K1Ggp)™! : Eg — C™>™ g strongly positive real.

Then there exists y. > 0 such that for every y € (0, y..), there exist I' > 0 and 0 € (0, 1) such that, for every r € RP2, every
vand v asin (4), every F : RPr — R™ which satisfies A3 and

(F(z1 + 22) — F(z2) — Kiz1, F(z1 + 22) — F(z2) — Kpz1)
sup <0

2 (9)
21.2,€RP1 ||Z1 ||2

2170
and all (x°,w®) € R" x R™, the solution (x,w) of (3) satisfies, forall t € Z, and all t € N,

x(t+7)—x'

. t x(T) - xT +
wt+o)—wh]|[[<T[ 6 + [|[v =" pooteire—ry |, (10)
w(r) —w'

Cx(t+7)—rf

where r’ :=r — 3, and w', x" are given by (7) and (8), respectively.

The constant y, depends on Z, Lp, L1, K1, K,, and the left hand side of (9), but not on F, x°, w°, or r. The constants T and
0 depend on y, T, Lp, Ly, K1, K;, and the left-hand side of (9), but not on F, x°, w°, or r.

Recall from the notation section that the symbols (-, -) in (9) denote the usual inner-product on (in this case) R™. We
provide commentary on the above theorem in terms of the result’s hypotheses, conclusions and extensions.

2.3 | Hypotheses

The hypotheses of Theorem 1 are the Assumptions A1-A3, the positive real assumptions (i) and (ii), and the incremental
sector condition (9) on F. In the context of low-gain PI control of discrete-time linear systems, Assumptions Al and A2
are known together to be sufficient for low-gain output regulation; see, for example Reference 14, theorem 2.5, remark
2.7. Observe that the invertibility and spectrum requirement in Assumption A2 necessitates that m, = p, and that L; is
also invertible.

To discuss Assumption A3 requires more information on P in (5). In overview, P plays an important auxiliary and
technical role in the current work by capturing essential input-output features of the linear components in the closed-loop
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Lur’e system (3)—particularly for small y > 0. For which purpose, for y > 0 we introduce

Al» D B
A7:=< ) B:=(> and g:=<G O), (11)
—yLiIC I 0

and the associated transfer function K, (z) = (I — A,)"'B. It is straightforward to see that .4,, B and G comprise the
linear components of the closed-loop Lur’e system (3) with combined state (x, w). A calculation shows that P(0) = K, (1)
for all y > 0- the steady-state gain of K, .

Assumption A3 plays a key role in the proof of Lemma 1 which, essentially, entails that, for all reference terms r
and persistent forcing terms v, there is a unique constant solution (x,w") of the feedback system (3) (with constant
v =v") which satisfies Cx" = r — v;. Assumptions of this type appear in other nonlinear integral control works, such as
Reference 18, assumptions N.2 and N.3. That a steady-state gain P(0) = K, (1) should appear in a condition for equilibria
is natural.

Assumption A3 is always satisfied if P(0) = 0. For nonzero P(0), a sufficient condition for A3 to hold is that F is globally
Lipschitz with Lipschitz constant less than 1/||P(0)||. In this case the continuous function

RPr - RPr, ¢+ POF( +z1)+22 VEeR:,

is a contraction (for all 73,2z, € RP1), the upshot of which is that there is a unique solution of (6) by the Contraction
Mapping Principle.

The assumptions (i) and (ii) are various (strengthened) positive-real hypotheses. Note that the former is in a
“continuous-time” sense—meaning positive real on the open right-half complex plane C,, and the latter is in a
“discrete-time” sense—meaning positive real on the exterior of the closed complex unit disc E,.

That a positive-real condition on C, appears in a discrete-time result is as follows. We prove Theorem 1 by
applying a recent circle criterion for exponential ISS (Reference 31, corollary 3.7) to the closed-loop Lur’e system (3)
which, note, depends on y > 0. Thus, we seek hypotheses on the model data that are both independent of y and
guarantee that

(I-KK,)(I -KK,)™ ispositive real on [E, for all sufficiently small y > 0. (12)

Very roughly, a careful argument shows that K, (z) approaches P(s), for some s € iRU {0}, as y — 0 and z — 1. In other
words, there is no single limit of K, (z) as (z, y) — (1,0), rather the “limit” depends on the behavior of (z —1)/y asz — 1
and y — 0. The upshot is that the conjunction of the positive-real assumptions in (i) and (ii) are sufficient for (12) (The
precise result is statement (c) of Lemma 3).

The condition (9) is an incremental sector condition for F. To motivate this assumption note that, by Reference 31,
corollary 3.7, positive-realness of (I — K;Ggp)(I — K;Ggp)~! and the (usual) sector condition

(F(z) — K1z, F(2) — K>2)

«cRi llzll?
z#0

<0, (13)

are together sufficient (up to some minor technical assumptions) for exponential ISS of x given by the first equation
in (3), with forcing term Dw + v; + DLpv;. The comparable hypotheses in Theorem 1 are the (stronger) positive-realness
assumptions (i) and (ii), and the sector condition (9), the latter of which is simply an incremental version of (13). That an
incremental condition should appear as a sufficient condition in Theorem 1 is unsurprising as, roughly, output regulation
to a desired set point r introduces a new equilibrium (x*, w') into (3) when unforced, (see Lemma 1), which varies as r
varies. Roughly, the conclusions of Theorem 1 follow once the shifted state (x — x", w — w') is shown to be exponentially
ISS.

This leads to the value of (and difficulty in establishing) Theorem 1. Chiefly, the hypotheses imposed are on the
to-be-controlled Lur’e system (1) in terms of Assumptions A1-A3, which are primarily input-output/steady-state gain
conditions, the positive-real conditions, and the already-mentioned incremental sector condition (9). Indeed, the small
integrator parameter y > 0 does not appear in the hypotheses of Theorem 1. However, in the spirit of low-gain integral con-
trol, the exponential disturbance-to-state and disturbance-to-tracking-error stability conclusions obtained are valid for all
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sufficiently small y and, in the spirit of absolute stability theory, for all nonlinear terms F satisfying (9). The dependence
of the constants on the various terms is carefully stated.

Put differently, a slight strengthening of sufficient conditions for exponential ISS of the nonlinear plant become, in
conjunction with Assumptions A1-A3, sufficient conditions for the stability of the closed-loop feedback system (3), for
all sufficiently small integrator gains.

Conclusions A consequence of the estimate (10) is that, if v(t) - v/ as t = oo, then

xt) -»x", wit)->w" and Cx(t) >r—-17; ast— .

In general, the rate of the above convergence will depend on the rate of convergence of v(t) to v'. However, if v = 0 and
vl = 0, then the estimate (10) ensures that the convergence is exponentially fast. Note that Cx is the “true” output, whilst
y = Cx + v; is the measured output, which is subject to the forcing (noise, measurement error) term v;. Furthermore, we
see that constant or convergent plant state forcing terms v; and v, are rejected, and constant or convergent output forcing
terms v; lead to an asymptotic tracking-offset of D5 for the true output. These features are consistent with low-gain PI
control of linear control systems.

2.4 | Extensions

It is straightforward to show that, under the hypotheses of Theorem 1, there exist M; > 0 and 6 € (0, 1) such that, for
every r € RP2, and for all x° € R", the solution x of (1) with u = Lpy + w', with y given by (1), satisfies, for all t € N and
TE Z+,

[t + 2 = x| + |exte+ 0 - | < T (e; e = x| + v - v*llfoo(,,,ﬂ_l)) .

In other words, a P-control plus a suitable constant provides a method for the output to track any prescribed reference.
Our proof of Theorem 1 shows that, if v = 0 and v' = 0, then the incremental sector condition (9) on F in Theorem 1
can weakened to

sup (F(z+q) — F(q) — Kiz, F(z + q) — F(q) — Kz) <0

«<RPL llzll*
z#0

. (14)

for all ¢ = q(r) asin Lemma 1. However, verifying (14) requires additional knowledge of F and the linear data to determine
g, and may only be suitable if, in practice, output-tracking of only a few references r is required.
Finally, by way of extensions and variations of Theorem 1, we comment that:

« Theorem 1 extends to the situation wherein the integrator state w is subject to a forcing term vy, that is, (2) is
replaced by

wt =w+yLi(r—y) +vs, w(0) =w’,

for some v, € F(Z+,R™). Roughly, the hypotheses of of Lemma 1 and Theorem 1 do not change, and the stability
conclusions of Theorem 1 remain valid, but the additional terms v, and 9, are introduced into v and v' in (4) and then
the estimate (10), and the resulting equilibria x*, w', and r" change accordingly. For brevity, we do not give a formal
statement.

« The conclusions of Theorem 1 remain true if the control variable u is replaced by u = Lp(r — y) + w (noting sign change
on Lp here), although the resulting equilibria x", w', and r' change accordingly.

« Theorem 1 remains true if the state space for (1), which is currently R", is replaced by a (possibly infinite-dimensional)
Hilbert space X. We have presented the finite-dimensional case for simplicity, but the proof for more general X basically
remains unchanged. Indeed, the key results from the literature used in the proof are those in References 31 and 14,
which both treat the infinite-dimensional case. The various transfer functions, such as G¢g, are no longer necessarily
rational, but essentially the same positive realness arguments apply as in the rational case.
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In the single-input, single-output setting (m; = m, = p; = p, = 1), the positive real condition (i) in Theorem 1 essen-
tially follows from the positive realness condition (ii) and an additional single point condition, detailed in the next
lemma.

Lemma 2. Consider (3) with my = m, = p; = p, = L1 = 1 and assume that ¥ and Lp satisfy Assumptions A1 and A2. Let P
beasin(5). AssumethatK,,K, € R aresuchthat1 — K1Ggp # 0, and that (1 — K,Ggp) /(1 — K1Ggp) is strongly positive real
Ey - C. If

1 - K,P(0)

—=2 50,
1-K;P(0)

and 1 — K3P(0) and 1 — K1 Ggp(1) have the same sign, then (1 — K;P) /(1 — K1 P) is strictly positive real Cy — C.

2.5 | Estimating the maximal integrator gain and exponential decay rate

Theorem 1 guarantees the existence of two quantities which play an essential role—the so-called maximal integrator gain
7+ > 0 and closed-loop exponential decay rate § € (0, 1) in (10). Since the conclusions of Theorem 1 are only guaranteed to
hold for integrator gains y € (0, y.), determining suitable y, is of great practical interest. Unfortunately, to the best of our
knowledge, both y, and 8 are rather difficult to calculate exactly, and we proceed to discuss how they may be estimated,
essentially by carefully inspecting the proof of Theorem 1.

In both cases, the key objects are the discrete-time triple (A,, 3, ) in (11), and the corresponding transfer function
K, . The proof of Theorem 1 relies on the properties that

there exists yo > 0 such that p(A4,) <1 Vy € (0,y), (15)

and that (12) holds, for all y € (0, y.), for some y,. > 0. These claims are established in the technical result Lemma 3. The
term y, in (12) is that which appears in Theorem 1.

Restricting attention to the single-input single-output case in the control loop (meaning m, = p, =1 = L;), a con-
sequence of the research of Coughlan® and his PhD thesis® is that (15) holds with y, := 1/|f(Gcp)| by Reference 35,
theorem 6.2.4, where

f(Gep) 1= igg <ess1nf96(0,2,,)Re <(‘% + E) GcD(e’9)>> '

It is shown in Reference 35, proposition 12.1.3, that

—00 <f(GCD) < -

G
cp(1) <0,
2
so that 1/|f(G¢p)| € (0, ). The quantity f(G¢p) can be difficult to compute, and a more conservative option for y. is
1/1fo(Gcp)| where

Jo(Gep) = essinfyeo 2 RE < (ﬁ) GCD(ei9)> < f(Gep).

In particular, our line of argument gives that y, is bounded from above by y,. The condition (12) for y.. does not appear to
produce a constructive method for determining y.. Heuristically, the condition (12) can be tested graphically for candidate
v > 0.

We now turn attention to 6. By way of context, for usual low-gain PI control of linear systems, the exponential decay
rate equals p(A,) < 1. Presently, the key stability result invoked in the proof of Theorem 1 is Reference 31, corollary 3.7,
which itself draws upon Reference 31, theorem 3.2. An inspection of that proof (Reference 31, column 1, p. 3031) shows
that any 0 such that

p(A, + BMG) < 6 <1,
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and

llz — LK, (02)d — MK, (02)) " ||lu= < 1,

will satisfy (10). Here M := (K; + K;)/2and L := (K; — K3)/2. This latter condition does not seem to constructively deter-
mine 6, but the above H*-norm may be computed for candidate 0. In particular, our argument gives that 6 is bounded
from below by p(A, + BMG).

2.6 | Comparisons with existing literature

We provide some comparisons between our results and others available in the literature. Much attention has been devoted
to output regulation of linear control systems subject to input saturation, including specifically in the discrete-time case
the works References 36 and 37. Output regulation is a more general problem than integral control, in that the desired ref-
erence signal is typically generated by a so-called exosystem, such as periodic signals, and naturally need not be constant.
At the heart of these works are stabilisation of discrete-time linear control systems by bounded (specifically saturated)
feedback, including References 38 and 39.

The overlap between References 36,37 and the present work is minimal, however, owing essentially to the fact that the
nonlinear term irreconcilably appears in different places in the models under consideration. We consider linear PI control
applied to a nonlinear system, while References 36 and 37 consider nonlinear (saturated) controls of a linear system. Our
work is closer in spirit to Reference 18, which considers the same problem we do, but for rather general continuous-time
nonlinear control systems. The key assumptions in Reference 18 are that the nonlinear plant is globally uniformly expo-
nentially stable, for all constant input signals, and that the steady-state gain map is monotone. The conclusions pertain to
global asymptotic (exponential) stability, rather than input-to-state stability considered here. The approach taken in Ref-
erence 18 is somewhat different to that here, as there the low-gain integral parameter is viewed as “sufficiently small” so
that the closed-loop feedback system may be rewritten as a standard singular perturbation model, and singular perturba-
tion techniques applied. The recent paper?° effectively generalises and strengthens,'® by weakening various assumptions
and by including an anti-windup component in the integrator. The conclusions of Reference 20 are local, but only local
assumptions are imposed, and also does not consider ISS properties.

Finally, we comment that the paper*® considers the (exponential) synchronization problem of two continuous time
Lur’e systems using PID control, but that work does not consider output tracking and the overlap is otherwise minimal.

3 | SAMPLED-DATA LOW-GAIN INTEGRAL CONTROL OF LUR’E SYSTEMS

As an application we show that the theory developed in Section 2 facilitates the sampled-data low-gain integral control
of the following multivariate continuous-time controlled Lur’e system

X = Ax + BF(Gx) + Du+v;, x(0)=x", y=Cx (16)

Here u is a control input, and v; is an exogenous input, x is the state variable and y is the (true) output. We assume that F
is locally Lipschitz, and we let Hcp(s) := C(sI — A)~'B denote the transfer function associated with the continuous-time
triple (A, B, C), and similarly for Hep and so on. The linear data (A, B, C, D, G) in (16) is as in Section 2.

For fixed sampling-period = > 0, we define the sampling operator S by

(Sy)k) :=ykr) VkeZ,,

which is defined on all continuous functions R, — RP2 and returns a sequence in F(Z,, RP2). The zero-order hold
operator H is defined as

HwW)(@®) :=wk) YueFZs,R™), Vte kr,(k+ 1),

which maps F(Z., R™) into the set of step-functions mapping R, — R™. We assume that the (noisy) sampled output
Sy + v,, where v, € F(Z,,RPz) is another forcing term, is available for feedback purposes. We consider the feedback
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connection of (16) and the discrete-time low-gain integrator
wh = w+yLi(r = (Sy +1v2)),  w(0) = w’, 7

where, as before, r € RP: is the desired reference, L; € R™*P is a (matrix) integrator gain, y > 0 is a low-gain parameter,
and w® € R™ is the initial integrator state. If m, = p, = 1, then we simply take L; = 1, so that y is the only integrator gain
parameter.

The plant (16) and controller (17) are connected in feedback via the held integral control u = H(w), which yields the
closed-loop feedback system

X = Ax + BF(GX) + DH(W) +vi, x(0) = x°, (18a)
y=Cx, (18b)
wr=w4yLi(r = (Sy+1,)), w(0)=wn’. (18¢)

For given v; € L; (Ry,R"), v, € F(Z,RP2), and (x°,w°) € R* x R™, we say that (x,w), where x is an absolutely
continuous function R, —» R" and w € F(Z,,R™), is a solution of (18) if, for all k € Z, and all t € [0, k7],
t+kt

x(t + kz) = eAlx(kr) + / eAkT=9) (BRE(Gx(0)) + Dw(k) + v1(0)) do,
kt

and (18b) and (18c) are satisfied. Existence of a unique solution of (18) is a consequence of the above equality and (18).

Our main result of this section is the following proposition which, roughly, shows that, for sufficiently
small sampling-times and sufficiently small integrator gains, the feedback system (18) admits an exponential
disturbance-to-state and disturbance-to-output estimate. Output tracking is guaranteed in the absence of forcing. For
simplicity, we take the nominal forcing value v' as zero.

Proposition 1. Consider (18) with given X, F : RPr — R™ and K;, K, € R™*P1, and assume that

(B1) A is Hurwitz (all eigenvalues have negative real part)
(B2) Hcp(0) is invertible and o(LiHcp(0)) C C,
(B3) With Q defined by
Q(s) := Hgp(0) — Hgp(0)(sT + LiHcp(0)) ' LiHcp(0) Vs € Co, (19)
it follows that, for all z;,z, € RP, there is a unique solution q € RP: to

QOF(g+z1)+z22=q. (20)

(B4) K; is feedback admissible for Hgp and Q, and (I — K;Hgp)(I — K1Hgp) ™! and (I — K>Q)I — K1Q)~! are both strictly
positive real.

Let r € RP:. The following statements hold.
(1) Thereexistx' € R" and w' € R™: such that
0=Ax" +BF(Gx")+Dw' and Cx'=r. (21)
(2) There exist T > 0 and y, = y.(r) > 0 such that for all y € (0, y.), there exist 6, € (0,1) and I'1,I'5, 0, > 0 such that, for

every r € RP> and for all v, € LY (R, R"), v, € F(Zy,RP2), all F which satisfy (9), and all (x°,w°) € R" x R™, the

solution (x,w) of (18) satisfies
x(mrz) —x'
w(m) —w’

lwk +m) —w'|| <Ty (9'1‘ + p(m, k, O)> VkeN, VmeZ,, (22)
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and

—xF —
<x(t +(m+k)r)—x ) <T, <e‘92(’“+’) (x(mr) x__) Bk, t))
Y+ m+kyr)—r w(m) —w'
VYm,keZ,Vte|0,r1), (23)

where

ﬂ(m, k’ t) = ||V1I|L°°(mr,(m+k)r+t) + ”v2Ilf“(m,min{k+m—l,m})- (24)

The suitable sampling period T depends on the model data £, L1, K1, K, and the left hand side of (9), but not on F itself,
(%, w°) or v. The maximum integrator gain parameter y, depends additionally on t, but again not on F itself, (x°, w°)
or v.

We provide commentary on the above result. First, the Assumptions B1-B3 are continuous-time analogues of Assump-
tions A1-A3. Here we are assuming that the to-be-controlled system (16) already has stable linear part A, and so no
proportional feedback is included (i.e., there is no Lp term in u). Including a sampled-and-hold proportional feedback
term in (18) would complicate the analysis even further, and is beyond the scope of the present contribution.

Second, Assumption B2 requires that p, = m, and Ly is invertible, and reduces to the usual low-gain integral control
requirement that Hep(0) > O when k, = p, = 1.

Third, in light of combined assumptions on Hgp and Q, it follows from Reference 34, corollary 4.5, that the hypothesis
of strict positive realness of (I — K;Hgp)(I — K1Hgp) ™! and (I — K,Q)(I — K;Q)™! is equivalent to that of strong positive
realness of these functions.

Fourth, our proof shows that in fact, there is some 7, > 0, such that for each = € (0, z,), there is some y,. > 0 such that
the conclusions of the above proposition hold. In other words, all sufficiently small sampling periods z “work,” but the
permitted small integrator gains y will depend in general on the sampling period.

Unfortunately, estimating the maximal integrator gain y. in the sampled-data setting seems even more challeng-
ing than in the wholly discrete-time situation considered in Section 2. Indeed, the proof of Proposition 1 extracts a
discrete-time forced Lur’e system from (18) by considering the evolution of x at the sampling points (and the discrete
integrator state w), to which Theorem 1 applies. The key objects are now

A, D, B,
A, = , B,:= and G := (G 0), (25)
yLiC I 0

where
A, =, B, :=/ e®Bds and D, :=/ e®D ds. (26)
0 0

The guidelines in Section 2.5 after Theorem 1 now apply for determining y., replacing (11) by (25). For example, y, €
(0, yo(7)), where y, is such that p(A,) < 1.

The additional difficulty comes from the fact that = in (25) must satisfy some additional “sufficiently small” properties,
which are not constructive, although these may be artifacts of our proof.

4 | EXAMPLES

We illustrate our results through two examples.

Example 1. We consider the low-gain PI control of a scalar difference equation, a so-called Ricker model, namely

xt = e x4 axe P x(0) = x°, 27
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for the Gold-spotted grenadier anchovy (Coilia dussumieri), see Reference 41. Here the state x(t) describes the biomass of
mature individuals in a population at time-step t € Z,, and u and # are positive parameters denoting the natural mortality
and fishing mortality, respectively. The positive parameter & > 0 is the maximum per-capita reproduction rate and § > 0
affects the density-dependent mortality near equilibrium abundance (Reference 41, supporting information). Although
the model (27) is simple, its inclusion is intended to illustrate the key ideas behind our results, without being obscured
by numerous technical details.

Note that (27) is a (scalar) unforced discrete-time Lur’e system withA=a := e #*" B=G=1and F2) =f(z) :=
aze Pz, (Strictly speaking, f is only defined for nonnegative arguments and, to fit the framework of the current paper,
we define f on all of R by extending by zero. This extension, although artifactual, is not seen in physically moti-
vated examples.) We assume that y = x + v;, where v; is a measurement error term, so that C = 1. For simplicity,
we assume that the other exogenous forcing terms v; and v, in (1) are zero. The closed-loop feedback system (3)
simplifies to

xt=(a+kx+fx)+w, x0)=x°, 28)
wht=w+y@F—x—v3), w0)=uP,

where Lp := k € Risa proportional feedback parameter, r is the desired reference and y is the small integrator parameter.
We set L; = 1. We shall assume that k € (—a, 0), so thata + k € (0, 1).

The zero equilibrium of the uncontrolled model (27) is globally asymptotically stable if ¢ <1 —a, and if & > 1 —a,
then

p 1-a

is a nonzero equilibrium of the uncontrolled model (27), corresponding to a persistent population. We shall consider the
latter situation and seek to apply Theorem 1 to (28) to raise x to a limiting population r > x¥. For this purpose, we verify
the hypotheses of this result. Assumption Al is satisfied as u + # > 0, and by our choice of k. Since G = C = B = D, the
four transfer functions G¢g, G¢p etc. are all equal, and are all equal to

1 . 1
_ th GQ)=
z—(a+k) Wi ) 1

G(z) = T-@+h

= |IGllu~ > 0.

In light of the above, Assumption A2 is trivially satisfied. Note that G is a linear fractional transformation, and hence
soisJ := (1 — k,G)/(1 — k;G) for all real k; and k,, as J is the composition of linear fractional transformations. Hence,
the image of the complex unit circle under J is a circle whenever 1 — k;G(x1) # 0, which is symmetric with respect

to the real axis and crosses the real axis at J(—1) and J(1). Thus, J is strongly positive real whenever k; and k, are
such that

(29)

min{J(-1),J(1)} = min{ 1-kG(-1) 1-kG(1) } >0

1-kG(-1)"1-kGQ)
Here P in (5) is given by

G(1 _ sG(D)
s+G(1) s+G®)

P(s) = G(1) — VseCy with P(0)=0.

Therefore, Assumption A3 is also trivially satisfied, independently of f. Furthermore, (1 — k,P)/(1 — k1 P) is strictly
positive real by Lemma 2 whenever (29) holds.

Since v" = 0, for each desired reference r > 0, the terms 61, 6, and o3 in Lemma 1 simplify somewhat, and the resulting
unique g € R in Lemma 1 is simply given by g = 05 = r.

To summarise, to track a particular (single) reference r, the hypotheses of Theorem 1 reduce to finding real k; and k;
such that (29) holds and f satisfies the incremental sector condition (14) with g = r. The former condition is algebraic
and the latter may be verified graphically in this scalar case. Note that the these hypotheses are in fact independent of the
functional form of f.
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Common to all the following numerical simulations we take
xX=1, w=0, a=09, k=-08, «=0.8100, =15 r=2, (30)
which yield x¥ = 1.3946 < r. These parameter values have been chosen somewhat arbitrarily. We further take
ky :=0.0444 > 0.0403 = f(r)/r and k, := —0.125, (31)

which have been chosen so that the strong positive-real condition (29) and the sector condition (14) hold — the latter is
seen graphically in Figure 2A.

Numerical simulations of the closed-loop feedback system (28) with model data as in (30) and v; = 0 are contained in
Figure 2B. The integrator gains are varied with values contained in Table 1. In each case, convergence x(f) —» rast — o
is observed. The solution to the uncontrolled model (27) is also plotted for comparison.

We proceed to discuss various aspects of Theorem 1, starting with the choice of small integrator gain. Recall that
estimating the maximal permitted integrator gain ., the existence of which is guaranteed by Theorem 1, is difficult in
general, but becomes more tractable in this simple example. We follow the approach discussed in Section 2.5. Here

a+k 1 . )
A, = ) with det(zl - A,)=z"—(a+k+Dz+@+k+y).
i

Routine stability analysis (such as the Jury criterion) gives p(A,) < 1 whenever 0 < y < yy :=1—(a + k) (=0.9 with the
numerical values in (30)). Further straightforward calculations give

z—1

T—@rhe-D+y "<k

K,(z) =

The technical result, Lemma 3, ensures that (1 — k;K,)/(1 — k1K) is positive real as y \, 0. Global exponential stability
of the closed-loop feedback system

(o) =(2 0G0 0 (n)),

gz) :=fz+r—f(r) VzeR and w, :=0-(a+k)r—f(r),

where

is guaranteed for all y € (0, y) such that (1 — k;K,)/(1 — k;K,) is positive real. Both conditions are satisfied by the gains
used in Figure 2.

Next, regarding robustness with respect to the nonlinear term f, the maximal integrator gain y, is independent of f.
Figure 3B contains simulations of (28) with model data as in (30), y = 0.3, v3 = 0, and with nonlinear terms given by

(%X4

fik) :=min{cz,f(n}, fz) := m,

f2(@) 1= c3(1 —0.255in(3z)) In(1 + 2), (32)

for positive constants cj, c;, and c;. The constants have been chosen so that f;(r) = f(r) for each i. The above functions
have been chosen somewhat arbitrarily, and all satisfy the sector condition (14) with g = r. In each case, convergence of
Xx(t) - rast — oo is observed. The difference in transient behavior appears negligible.

Finally, Figure 4 contains simulations of (28) with model data as in (30), y = 0.3 and nonzero measurement forcing

V3(f) = € sin(27t/10) & = 0251, i€ {1,2,3,4}. (33)

As expected by the estimate (10), we see that the deviation |x(t) — r| is bounded, and grows as ||vs||s~ = &; grows.
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FIGURE 2 Simulation results from Example 1. (A) Graph of function f in blue curve. The red dashed straight lines have slopes k; and
ky, as in (31). (B) State x(¢) given by (28) plotted against ¢ with model data as in (30), varying y and v; = 0. The black dashed line is the
solution of the uncontrolled model (27) from initial condition one.

TABLE 1 Low-gain integrator parameters y; used
(1 - kZKy)/(l - ley)

i Yi p(A}) positive real
1 0.1 0.8702 v
2 0.2 0.6 v
3 0.4 0.7071 v
4 0.6 0.8367 v

In closing we comment that, for the models (27) and (28) to be biologically meaningful, x(t) > 0 for every t € Z, is
required, which is not guaranteed by Theorem 1. To ensure that x(f) > 0 is not violated, some constraint on w(¢) in the
difference equation for x in (28) is required, which is beyond the scope of the present contribution. Roughly, when trying
to make x larger than its initial value, as is the case here, our simulations show that x does indeed remain nonnegative.

Example 2. We consider low-gain sampled-data integral control of the following mass-spring-damper system with
forcing, namely

mZ+dz+kz+f@=u+v, y=z (34)

Here z(t) denotes the displacement of the mass from rest at time ¢, u is a control signal and v € L® (R,) is a forcing term.
The displacement is assumed to be measured, giving the observed variable y = z. Moreover, mg, ks, ds > 0 are constants,
and f : R — R is locally Lipschitz with f(0) = 0. The above model has linear damping, and the restoring force depends
nonlinearly on z(t).

Writing (34) in first-order form, and connecting via sample-and-hold with a low-gain integrator gives (18) with

A= & -a | B:= , D:=-B, C:=G:=<1 0) and F :=f.

m my

Furthermore, v; := Dv and, for simplicity, v, is assumed equal to zero.

We seek to apply Proposition 1. For this purpose, we proceed to verify the hypotheses. Assumption (B1) holds as
ms, ks, dg are all positive. Furthermore, Hcp(0) = 1/ky, > 0 and a straightforward calculation shows that Q(0), so that
Assumptions (B2) and (B3) are satisfied.
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FIGURE 3 Simulation results from Example 1. (A) Graphs of functions f; from (32). (B) State x(t) given by (28) plotted against ¢t with
model data as in (30), v; = 0 and functions f;.
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FIGURE 4 Simulation results from Example 1. State x(t) given by (28) plotted against ¢ with model data as in (30) and v; as in (33).

For illustrative numerical simulations of the sampled-data low-gain integral control feedback system (18), we take
mg=2, k=1, dy=05 r=2 w'=0.

With these choices, it follows that k; :=—0.2 and k, :=0.5 renders both (I — K;Hgg)(I — KiHgp)™' and (I -
K,Q)(I — K;Q)! strictly positive real. Thus, the conclusions of Proposition 1 apply for every r € R such that the function
f satisfies the incremental sector condition (14) with ¢ = r — in particular, for the present example we choose a saturated
deadzone type function

f(z) :=sign(z) min {0.75, max{0, |z]| — 0.3}} VzeR,

where sign(0) := 0 and sign(z) : = z/|z| otherwise. We explore varying z, y, x° and v. We simulated (18) numerically in
MATLAB R2020a. Specifically, the ode113 command was used to solve the differential equation (18a) over the interval
[kz, (k + 1)7], and then the difference equation (18c) was iterated once via (18a) and (18b). This provides the initial data
to solve the differential equation (18a) on the next interval [(k + 1)z, (k + 2)7], and the process repeats.

Figure 5A contains a contour plot of p(A,), where A, is as in (25), against varying sampling-period = and integrator
gain y. Choosing 7,y > 0 such that p(A,) < 1 is a requirement for the conclusions of Proposition 1 to hold, but is not
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FIGURE 5 Simulation results from Example 2. (A) Contour plot of p(A,) against varying 7 and y. The black line is contour level one.
(B) Sampled output-tracking of (18) for varying sampling time r with model data as in (35).

sufficient by itself; see the commentary after the statement of the proposition. However, we use the contour plot to provide
at least a guide for choosing 7 and y. Indeed, Figure 5B plots (Sy)(k) against k for varying r, with additional model data

y=01, v=0, x*=0, =05 ie{l,2,3]}. (35)

As expected by the estimate (23), convergence over time of the sampled-output Sy to r is observed. The convergence
appears slower as 7 increases.
Figure 6A plots (Sy)(k) against k for varying initial states x?, with additional model data

0 -1 2
=075 y=012, v=0, x¥= , X0 = , X0 = . (36)
"\o 2 1 o\

As expected by the estimate (23), convergence over time of the sampled-output Sy to r is observed. Finally, we illus-
trate the exponential disturbance-to-tracking error estimate by varying the forcing term v = V. Figure 6B contains three
simulations with additional model data

=15 y=025 x"=0, V() =2jcos2r x0.75t) je {1,2,3}. (37)

Again, as expected by the estimate (23), we see that the deviation |y(kr) — r| is bounded, and grows as ||V/||z« = 2j grows.

5 | SUMMARY

Low-gain PI control for a class of multivariate discrete-time Lur’e systems has been considered. Specifically, exponential
disturbance-to-state and disturbance-to-tracking-error stability properties of the feedback connection of a Lur’e system
and the usual linear low-gain integral controller have been investigated. Our main result is Theorem 1, which provides
a sufficient condition in the spirit of an incremental circle criterion for these stability properties to hold for all suffi-
ciently small integrator gains and, in particular, ensures that the usual control objective y(t) — r as t — oo is achieved
in the absence of persistent forcing or measurement error. The other key hypotheses for Theorem 1 are properties of
the linear system, namely a stabilizability condition Assumption A1, a familiar sign condition on the steady-state gain
Assumption A2, and a condition ensuring suitable state limits exist in closed loop Assumption A3.

The rationale for our choice of controller is that the nonlinear term F in the to-be-controlled system (1) is not
known and cannot be used in the design of the integrator. As such, we have sought to understand the performance
(at least theoretically and qualitatively) of this controller when connected to Lur’e systems. A moral of our work is
that, broadly, under certain assumptions, a linear PI controller qualitatively performs as expected when connected in
feedback to a Lur’e system. As an application, in Section 3 we considered sampled-data low-gain integral control of
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FIGURE 6 Simulation results from Example 2. (A) Sampled output-tracking of (18) for varying x? with model data as in (36). (B)
Forcing-to-tracking-error stability of (18) for varying v with model data as in (37).

continuous-time controlled Lur’e systems, wherein a continuous-time Lur’e system is connected in feedback via sample-
and hold-operations to the discrete-time low-gain integrator considered in Section 3. Proposition 1 is the main result of
this section.

On the one hand, our results are in the spirit of low-gain integral control in that we conclude closed-loop stability for
all sufficiently small integrator gains, based on assumptions which are independent of the integrator gain. On the other
hand, our result is in the spirit of the circle criterion—a classical absolute stability result—both in terms of assumptions
(briefly, positive realness on the linear data and an incremental sector condition on the nonlinear term) and conclusions
which ensure stability for all such nonlinear terms.

In closing, we comment that the previous works**#3 by the current authors have considered the utility of low-gain
integral control for population management of linear models arising in theoretical ecology, as a potential tool for popu-
lation conservation. However, linear models allow for unbounded, exponential growth which is not ecologically realistic
and, in fact, nonlinear systems of Lur’e type are known to arise naturally in this setting; see, for example Reference 44.
Therefore, the current paper in part paves the way for low-gain integral control in much more realistic ecological settings.
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APPENDIX A. PRELIMINARIES
The Appendix is divided into three sections. The second and third contain the proofs of results in Sections 2 and 3,
respectively. The first gathers some common preliminaries.
For K1, K; as in the statements of Theorem 1 or Proposition 1, define
L:=K—-K))/2 and M :=(K;+K)/2. (A1)

Routine calculations give that the sector condition (9) can be rewritten as

IF(z1 + 22) — F(z2) = Mzi||* — || Lz1 ||
= (F(z1 + 22) — F(z2) — K121, F(z1 + 22) — F(22) — Kx21)
S _6”Z1”2 thzZ S Rpl’ (Az)

for some £ > 0 (independent of z;, 25).

In particular, the above inequality gives that F is globally Lipschitz. Moreover, the inequality (A2) entails that L
is bounded from below, and so L*L is invertible. Therefore, L# = (L*L)"'L* is a left inverse for L. Further calculations
from (A2)yield that

(FoL¥)(z1 +22) = (FoLH)(@2) — MLz I < (1 = &)llzll® V21,20 € RP, (A3)
for some 6 € (0, 1) (e.g. Reference 31, proof of Corollary 3.7).

APPENDIX B. PROOFS FOR SECTION 2

Recall the notation Al» := A + DLpC, which satisfies p(A%») < 1if 1 holds, and that P is defined in (5).

Proof. (Proof of Lemma 1) Let r, y and v’ be as described. We claim that
Gxf = qg and Cxf =r—1s, (B1)

where q is as the statement of the result. The existence of such a q is guaranteed by hypothesis 3. Indeed, we compute Gx*
using the definitions (7) and (8) to yield that

Gx' = Ggp(1)F(q + ;) + Goz + Ggp(1)Lpbs + Gap(Lw?
= Ggp(1)F(q + 12) + Go, + Ggp(1)Lpbs
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+ Gop(1)(LiGep(1)) Ly (61 — Gep(1)F(q + D) — Coy — Gep(1)Lphs)
= P(0)F(q + 2) + Gop(D)(LiGcp(1)) ' Lioy + (G — Gop(1)(LiGep(1)) ' LiC) o
=PO)F(@+9) +03=4¢,

where the final equality follows from (6). From the assumed invertibility of G¢cp(1) (and consequently of Ly), it follows
that

I = Gep(D(LiGep(1) 'Ly = 0.
Therefore, again using (7) and (8), we compute that

Cx* = Gep(1)F(q + 92) + Coy + Gep(1)Lpds + Gep(Dw'
= Gep(DF(q + ¥2) + Coz + Gep(1)Lpbs
+ Gep(L)(LiGep(1)) 'Lt (01 — Gep(V)F(q + 92) — Coz — Gep(1)Lphs)

=O'1=V—1,>3,

establishing the second equality in (B1).
Next, rearranging (8) and invoking (B1) gives

x* = Al'x* + BF(GX* + D) + DW* + D1 + DLpDs,

and, evidently, (B1) also yields that

w =wﬁ+yLI (r—(Cxﬁ+f)3)) Vy>0,
completing the proof. [

Proof. (Proof of Lemma 2) For notational convenience, define M := (1 — K,P)/(1 — K;P). With a slight abuse of notation,
we view P as a map from the extended complex plane to itself. Note that trivially every complex s belongs to a set of the
form p + iR with real p — these are lines parallel to the imaginary axis.

If Gcg(1)Ggp(1) = 0, then P is obviously constant, and hence so is M. Thus,

1-K>Ggp(1)

———— >0 Vse (C,
1-K;1Ggp(1)

M(s) = lim M() =
by the strong positive realness hypothesis on Ggg.

If Gcp(1)Ggp(1) # 0, then P is a linear fractional transformation. By the assumption of same signs of 1 — K;Ggp(1)
and 1 — K;P(0), it follows by continuity that there exists sufficiently small p,. € (—G¢p(1), 0) such that 1 — K;P(p.) and
1 — K;Ggp(1) have the same sign. Recall that G¢p(1) > 0 by 2. Let p > p,.. By construction of p,, it follows that P(p + iR)
is bounded, and hence P(p + iR) is a circle. Moreover, P(p + iR) is symmetric with respect to the real axis as

P(r+&)=P(p+é) VEER.

The circle P(p + iR) crosses the real axis at P(c0) = Ggg(1) and P(p). The assumption on the signs of being equal implies
that 1 — K;P(p) # 0, as ¢t — P(t) is monotone. In particular, M has no poles with real part greater than or equal to p..

Now M is the composition of linear fractional transformations, and so is itself a linear fractional transformation. In
particular, M(p + iR) is a circle (as M(p + iR) is bounded), which is also symmetric with respect to the real axis as P is.
Therefore, M(p + iR) crosses the real axis at M(p) and M(co). Since t — M(t) is a real-valued, continuous function, which
is positive at zero and infinity by hypothesis, it follows that

ReM(p+&) 2 e :=minM(® >0 VEER.
>p,

We conclude that M is strictly positive real, as required. m
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The next lemma collects properties of the linear components of the feedback Lur’e system (3), and is an essential
ingredient in the proof of Theorem 1.

Lemma 3. Assume that Z, Lp and Ly satisfy Assumptions (A1) and (A2) and let y > 0. Define A,, Band Gasin (11). The
following statements hold.

(a) There exists yo > 0 such that p(A,) < 1 forally € (0, ).
(b) Forally € (0, ), the transfer function of the triple (A,, B, G) is given by

K, (@) = Ggp(@) — Gop(@)(z — VI + yLiGcp(R) ' vLiGep(z) Vz €E.

(¢) If the positive real conditions (i) and (ii) from Theorem 1 hold, then there exists y. € (0,y,) such that (I —
KK, — K1K,)7 L is positive real for all y € (0, y..).

Proof. (a) The claim is well-known and is a key ingredient for low-gain integral control of linear systems; see, for example,
Reference 14, theorem 2.5, remark 2.7.
(b) A straightforward calculation using blockwise inversion gives, for y € (0, y,) and z € E,

-1

7l — Ale -D B

Ky(z)=<G o)< > ()
yLiC  (z-DI 0

= Ggp(2) — Gep(@)((z — DI + yLiGcp() ™ v LiGep(2),

as required.

(c) The proof is essentially a careful continuity argument. For symmetric matrices Q; and Q,, the notation
Q2 <X Qg or Qp = Q, means that Q; — Q; is positive semi-definite. We shall frequently use the routinely-established
claim that

Q1 — Q2= QI < Q2 <X Q1 +|Q2— QulL,

and, as a corollary, if Q, is positive definite, and ||Q; — Q|| is sufficiently small, then Q, is positive definite as well.
For notational convenience, define M by

I's MDD :=(-KDJ-KD™, (B2)

which is a continuous function of a matrix variable I" (wWhenever K; is feedback admissible).

Observe that K; is feedback admissible for K,, as K, is strictly proper for all y > 0. In particular, M(K,) is well defined
for all y > 0. Moreover, M(K,) is rational, and so holomorphic on E with the possible exception of (necessarily isolated)
poles. For y > 0,let A, C [E denote the (possibly empty) set of poles of M (K, ). We shall prove that there exists y, > 0 such
that, for all y € (0, y.),

Re M(K,(2)) >0 VzeE\A, (B3)
from which the claimed positive-realness follows Reference 31, lemma 3.5.
For this purpose, observe that M(P) is rational and strictly positive real by hypothesis, with P € H*(C,, CP**™) by 2.
Hence, M(P) does not have any poles in some open right-half complex plane containing C,. Since

M(P(s)) = M(Ggp(1)) as [s| — oo,

with positive-definite real part by hypothesis, the hypotheses of Reference 34, theorem 4.4, are satisfied and, by that result,
there exist £;, A > 0 such that

Re M(P(s)) = 2¢e1I Vse C suchthat Re(s) > —A. (B4)
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By continuity of M, there exist §;, £; > 0 such that, for y > 0,
. -1
if zeE\A,, Re <ZT> >—-4 and |K,(z)—P(z—-1/pIl <61,
then Re M(K,(z)) = Re M(P((z—1)/y)) — &1l = &1, (B5)
where the final inequality above follows from the inequality (B4).
Similarly, there exist 6,, £, > 0 such that,
if zeE and |K,()—Gg®@I|l <6,
then Re M(K,(z)) = Re M(Ggp(2)) — €21 =0, (B6)
where the final inequality follows from the strong positive-realness of Ggz.
Observe further that, for y > 0, we may express K, (z) as
K, (z) = Ggp(2) — Gep(@)(((z — 1)/7)I + LiGcp(2)) ' LiGep(2). (B7)
Since G¢g, Gep, Gop € H®, we may choose R > 0 sufficiently large so that, fory > 0andz € E,
. -1
if ]ZT‘ >R then IIK,(d) - Gas@ll < b2, (B8)
Combining (B6) and (B8) yields that, for y > 0,
if z € E\ A, issuch that z—_l‘ >R, then Re M(K,(2)) > e,l. (B9)
Y

Moreover, in light of the expression (B7) for K, and the definition of P, and since the functions G¢g, Gep, Ggg, and Ggp

are all analytic on a neighborhood of one, it follows that there exists 6; > 0 such that

if zeEand|z—-1|<d; then |K,(z)—P{z—1)/p)l <é:.

(B10)

A careful estimation of the difference K, (z) — P((z — 1)/y) shows that the above bound holds independently of y > 0.

Simple geometric arguments show that there exists sufficiently small y; > 0 so that, for all y € (0, 1)

ifzeEand |z—1|/y <R, then —A<Re <Z_—1>
14

Set ¥, := min { %, Y0, Y1 } > 0. Therefore, for y € (0,7,) and z € E such that

‘z—l)gyR<63 and —/1<Re<z_—1> <O0.
Y

The conjunction of (B5) and (B10) yields that

z—1

if z € E\ A, issuch that —‘ <R, then Re M(K,(2) > &1l
14

Finally, combining (B9) and (B11) yields (B3), as required.

We are now in position to prove Theorem 1.

Z_Tl’ < R, we have that

(B11)

Proof. (Proof of Theorem 1) Fixvand D as in (4), (x°, w®) € R* x R™, and let y, > 0 and y,. € (0, y) be as in statements (a)

and (c) of Lemma 3, respectively.
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Fix y € (0, 7.) and let (x,w) denote the solution of (3). Letting ¢, w' and x be as in (6), (7), and (8), respectively, we
introduce the shifted variables X := x —x, W := w—w' and ¥ := v —v'. It is routine to verify that

%t = Alvk + BE(GX) + D+ &, X(0) =x° —xT, (B12)
where F : R — R™ is given by
F(@) :=F(+q+1,)—F(@+1,) V¢eRP, (B13)
and
£ := ¥y + DLpV3 + B(F(GX + q + v;) — F(GX + q + D)).
Similarly, since Cx" = r — 13, we see that
W =W —yLiCx+ &, wWO)=w’—w',

where &, := —y¥;. Combining the equalities from (B12) to the definition of &, gives

x* Al» D\ [x B\ . x &
~+=LCI~+0F(GO)~+§’
W - W w
a 2 (B14)
X0)\ [ X=X
W(0) wl —wt )’
Clearly, (B14) is a forced Lur’e system with nonlinear term F and transfer function K,. Since F is globally Lipschitz (see
Appendix A), estimating ||& || and ||&;|| yields a positive constant ¢; such that

max {[|&: DI, 1011} < culPOIl Vi € Zy. (B15)

The incremental sector condition (9) entails that

(F(z) — K12, F(z) — K»2) < —€llz||> Vz € RP,

for some € > 0. In light of the above inequality, the positive-realness of K, from statement (c) of Lemma 3, and the
bounds (B15), an application of Circle Criterion for exponential ISS (Reference 31, corollary 3.7) to (B14) gives an estimate
of the form (10) for the variables X and . The result of Reference 31, corollary 3.7 invokes theorem 3.2 of Reference 31.
For ease of verification, Table B1 relates the relevant notation of these results to the notation used here.

We note that Reference,®' corollary 3.7, requires that T (notation there) is (exponentially) stabilizable and
detectable—which is trivially satisfied in the present setting as p(A,) < 1 by statement (a) of Lemma 3. Furthermore, K;

TABLE Bl Relationship between notation used in the derivation of (10)

Notation in Reference 31 Notation here

X =(A,B,B.,C,D,D,) (A,,B,1,G,0,0) —see (11)
f F

K 0

r 1/1IK, [l

(Y,S) (RP1,0)

V1, Wi, 1, 1) (&, 0, (X, W), G(X, W))

V2, W2, 2, ¥2) 0
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is required to be an admissible feedback operator, meaning K; € A(D) in notation of Reference 31. However, this holds
since D = 0 and so trivially I — DK; = I is invertible.
The estimate for Cx — r' follows from the estimate (10) and the fact that

=

=

Cx_,«T:CX—(V—\/)3)=C(X—XT)= (C 0)(

APPENDIX C. PROOFS FOR SECTION 3

The proof of Proposition 1 draws upon the material in Section 2. It is reasonably lengthy, but none of the steps are too
involved. Some notation and routine consequences are needed. The outline is as follows:

« By considering the evolution of x at the sampling points kz for k € Z,, we extract a discrete-time Lur’e system with
states (x(kr), w(k)), to which Theorem 1 applies.

« However, to apply Theorem 1 at the sampling points, an error term is introduced.

« A small-gain feedback connection argument then enables us to eliminate this error term and obtain an exponential
ISS estimate for x at the sampling points.

« Asisstandard for sampled-data arguments, it then remains to estimate x(t) for t between the sampling points.
Proof. (Proof of Proposition 1) The proof is divided into steps. (]

Step 1: Gathering notation and consequences

For = > 0, we define A,, B;, and D, as in (26). Since A is assumed Hurwitz, it is clear that p(A,) < 1 for all = > 0. We
let G, denote the transfer function of the discrete-time triple (A, B;, G), and analogously for G, Gz, and Gg,. It is
straightforward to show that

GLy(1) = G — A,) "B, = G(~A)"'B = He(0), (c1)

and similarly for the other transfer functions. Note that —A is invertible, as A is assumed Hurwitz.

Lemma 4. Given the notation and assumptions in Appendix C so far, it follows that there exists Ty > 0 such that, for all
7 € (0, 70), the function (I — K2Gp)I — KngB)‘1 is strongly positive real.

Proof. The proof is essentially another careful continuity argument, and is somewhat similar to the proof of state-
ment (c) of Lemma 3, mutatis mutandis, with the role of small y > 0 there played by small r > 0 here. We give a brief
outline.

The function M(Hgg) satisfies the hypotheses of Reference 34, theorem 4.4 and, by that result, there exist £1,4 > 0
such that

Re M(Hgp(s)) =2e1I Vse C suchthat Re (s) > -4, (c2)

where, recall, M is defined in (B2).
Note, from their respective definitions in (26), that

B, D, —I

— 5B, —<= 5D and Ac —-A as 7t\/0, (C3)
T T T
and, trivially, for z > 0 that G(,;(z) may be expressed as
-1\, A, -I\"'B
GE;B(Z):G((Z )I— - ) —. (C4)
T T T
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In light of (C4), for fixed 7; > 0, we can fix sufficiently large R > 0 such that, for all = € (0, 7;)

if zeE and ’Z ’>R, then ||GL@| < &2,

T

for some small £, > 0, and so, for these z and
Re M(G3y(@) > I — eal = (1 — 3)1,

for some ¢; € (0,1). Here we have used that M(0) = I is trivially symmetric positive definite. By choosing 7, € (0, 7)
sufficiently small, it follows that

ifzeEand |z—1|/r <R, then —/1<Re<z_1)_
T

In light of (C3) and (C4), we can choose 7y < min{zi, 7} such that, for all = € (0, 7p),
ifzeEand |z-1|/r <R, then |Gg,(2)—Hep((z—1)/7)| < e,

for some small £, > 0 which is independent of = € (0, 7p). By the continuity of M and (C2), provided that ¢, is sufficiently
small, the above estimate entails

ifzeEand [z-1|/7 <R, then Re M(G,() > eil,

completing the proof. [

The conjunction of the hypotheses (B1)-(B3) and the equalities (C1) yields that the discrete-time model data
(A;,B.,C,D,, G) satisfies Assumptions A1-A3 (there with Lp = 0), for all = > 0.

An application of Lemma 1, gives w' and x" as in (7) and (8), respectively, with the terms G¢p(1) replaced by G (D),
and likewise for the other steady-state gains. In light of (C1), it is clear that w' and x" are in fact independent of = > 0,
and that Cx" = r, since all the ; terms are here equal to zero.

By construction, it follows that

x*:tx+[ x') + Dw t>0.
Ax" + BF(Gx"+Dw' Vt>0 (C5)

By rewriting the above as

_A-D

B D
0 —x +7’F(Gx*)+7fwT Vit>0,

taking the limit as ¢ \, 0, and invoking (C3), we conclude that (21) holds. This proves statement (1).

Step 2: Extracting a discrete-time Lur’e system at the sampling points

In what follows, to make the exposition clearer, and unless stated otherwise, k € N and m € Z, are arbitrary. For
7,y > 0, let (x, w) denote the solution of (18). We define

zZ(m) 1= x(mr) —x", E@m) :=w(m) —wi,
vi(m) 1= [eMvi((m+ Dz —s) ds,
va(m) 1= ["VTAB(F(Gx(s)) — F(Gx(mr)) ds

v3(m) 1= —yv(m).

(Co)

Routine calculations give that

x((m + 1)7) = A.x(mrt) + B, F(Gx(mrt)) + D,w(m) + vi(m) + v,(m),
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and so, in light of the definitions in (C5) and (C6), we have

zt A, D, Z B\ . Z 1% \%

(£)-Cie 1)) 9()-(2)-()

4 -rL ) 4 4 V3 )

Z0)) [ x° =X

£(0) w® —wt )’
where F : RP1 — R™ is defined as in (B13) with 9, = 0. We observe that (C7) is a special case of (B14), although the term
v, depends on x, and so is not an exogenous forcing term.

Step 3: Applying Theorem 1 to (C7)

The remaining hypotheses of Theorem 1 are the positive real hypotheses, which we proceed to verify. In light of the
equalities (C1), it follows that (I — K, P)(I — K, P)~! is strongly positive real, since (I — K,Q)(I — K;Q)~! is (see commentary
after statement of the proposition). Recall that P is as in (5), but with linear data (A, B;,C, D,, G). An application of
Lemma 4 yields the existence of 7o > 0 such that (I — K;G(,)I — KngB)‘1 is strongly positive real for all = € (0, 7).

All the hypotheses of Theorem 1 are satisfied for each = € (0, 7p), and an application of that result yields the existence
of yo = yo(z) > 0 such that, for all y € (0, o), there exist ¢;,c, > 0 and y; € (0, 1) such that

z( )
5( )
Here, and in what follows, ¢; > 0 will be multiplicative constants which appear in estimates, y; € (0,1) shall be
discrete-time exponential decay rates, and A; > 0 are continuous-time exponential decay rates, that is, they shall appear

in terms of the form e=%!.
It is clear that there exist c3, ¢4 > 0 such that

+ [|(v1, V3)”foo(m.m+k1)> + Cz”Vz”fw(m’m*_k_l). (C8)

(k+m)
(k+m)

lvim)|| < csllvillzogmeminey  and  |lvs(m)|| < callv2(m)ll,

so that
”(V19 V3)“f°°(m,m+k—1) S max {C3, C4} ﬁ(m’ kv 0)5 (C9)

where, recall, f is as in (24).

The conjunction of (C8) and (C9) nearly yields the estimate (22) for |w — w|| — but there is still an additive term v,
involving the approximation error. We investigate this term next.

Step 4: A small-gain feedback connection argument

We consider the term v,. The positive-real condition on (I — K;Hgp)(I — KyHgp)™! entails that

_ b
ILHGp(I = MHgp) lu=c,) = ILHep)™ |l=«c, < 1, (C10)
(see, e.g., Reference 31, equations (32) to (34), for a discrete-time argument—the continuous-time case is the same). Recall

that L and M are defined in (A1), and L* is a particular left inverse of L.
Next, observe that x in (18a) may be expressed as

% = (A + B(MLY)LG)x + B (F(LﬁLGx) _ (MLﬂ)LGx) + DHW) + 1,

= AMx 4 BFy(LGx) + DH(W) + vy,

where AMY and F; are defined accordingly. The matrix AML* is Hurwitz by the condition (C10), and as the pairs (4, B)
and (LG, A) are stabilizable and detectable—trivially, as A is Hurwitz). Note further that

0= AMYx" + BEy(LGxY) + Dw'  and  x" = AMY)x' + BFy(LGxT) + Dw' V> o0.
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Routine calculations gives that

mr+t
x(mz + 1) — x(mr) = / (AMLYY, (BF4(LGx(s)) + v1(s)) ds + Dw(m)

+ (@AM, - 1) x(mo),

so that

t
x(mz + t) — x(mr) = / (AMLY, B (Fy(LGx(mt +5)) — Fy(LGx(mt))) ds + Dy&(m)
0

+ ((AML”)t - 1) 2(m) + Bu(Fy(LGx(m1)) — Fy(LGx)).

t
+ / (AML) v (s + m7) ds. (C11)
0
Applying LG to both sides of the above, usual estimates now give (with a slight abuse of notation)

”LGx(mr + 1) — LGx(mx)

Y < ||Fy(LGx(mt + t)) — Fy(LGx(m7))||120,7)
z(m)
cm)

for some positive constants cs and c;. Here we have used (C10) to majorise ||(LHgg)Y|| He(C,)» Which appears as a multi-

plicative constant of the first term on the right-hand side of the above, by one. Setting cs :=1 — 6 < 1, and invoking the
Lipschitz condition (A3), we rearrange the above to give

L0,

Cs + c7llvillLeome,im+1)e)»

c z(m) c
|EGxOme + 1) - Loxmo)|| , < = T [Vl s e (C12)
207 1 —cs E(m) 1-—cs
Again multiplying (C11) by LG, now taking L* norms and invoking (C12), gives
z(m)
”Gx(t +mr) — Gx(mr)” <c + collvillzegme ime1y) | » (C13)
109 &m)
for some cg, cg > 0, where we have also used that L is bounded from below.
Estimating v, in (C6) by Holder’s inequality and invoking (C13), it follows that
z(m)
[lvam)|l < |ABllL10.0) | €8 £m) + collvillzegmr (meyo) | » (C14)
m

We view the conjunction of (C8) and (C14) as bounds for the output-feedback connection of two forced discrete-time
systems. The first has state (g, &), which is equal to its output, input v,, and external input (vy, v3). The second has zero
state, output v,, input (z, £), and external input in terms of v;.

We note that the constant cg = cg(r) is independent of y > 0, and can be made arbitrarily small by choosing = suffi-
ciently small. A careful inspection of the proof of Reference 31, corollary 3.7, invoked in proving Theorem 1, shows that
¢ ||A¢Bl|110.r) can be bounded independently of = € (0, 7p) and y € (0, yo).

Therefore, there exist 7, € (0, 7p) and y.. = 7.(7) € (0, yo) such that

C2”AtB”L1(0,T*)C8 <1l Vrte (0, T*)’ v Y € (07 Y*)
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We now fix = € (0, 7,) and y € (0, y.). The small-gain theorem for exponential ISS/IOS feedback connections yields that

z( )
é(M)
for some c19 > 0, u, € (0,1), both of which may depend on z and y. The small-gain theorem for ISS of discrete-time
feedback connections can be found in Reference 45. It can be shown that if both systems are exponentially ISS and expo-
nentially input-to-output stable (I0S), then so is the feedback connection. This is shown in the continuous-time case in
the upcoming work.*®

The estimate (22) now follows from (C15).

Step 6: Estimating x between sampling times
We now estimate ||x(kt + t) — x'|| for t € [0, kz]. It follows from (18a) and (21) that

+ f(m, k,0) |, (C15)

z(k + m)
f(k + m)

(x=x" = A(x — x") + BF(G(x — x")) + D(H(w) — w’) + 1.

An application of the circle criterion for exponential incremental ISS (Reference 47, corollary 4.5, special case 1) yields
that there exist ¢;1, 4, > 0 such that

llx(s + ) = x"|| < e11 (e ||x(s) — XTI + [|HW) = W' lrssst) + Vi llosen) Vi s> 0.
Taking s = kz gives

llx(kz + 1) = xT|| < ex (e |xtkr) = xX7|| + lw(k) = w'|| + Vil gekesn)  VEE[0,7]. (C16)
Substituting (C15) with m = 0 into (C16), we have that, for k € Z, and t € [0, 7],

llx(kz + ) —x'|| < c1p (€72 4k ]1x(0) — xT|| + p¥]lw(0) — w'|| + B0, k, 1))
x(0) — x*
w(0) — w'

ciopi(e ' +1) < e VT < e E ) v e o, 7).

< ez | ek + 0, k0], (C17)

for some ¢y, ¢;3 > 0 and A3 > 0 such that

Inlightof (C17),and asy — r = C(x — x"), a shift-invariance argument gives (23). Specifically, if (v1, v,, x, w, y) satisfies (18),
then

(Amevi, Apva, ApeX, AW, Apizy),

also satisfies (18), starting from (v, (mr), v,(m), x(mt), w(m), y(mr)), where Ay is the left-shift operator (Ax)(t) : = x(t + s),
interpreted appropriately for both sequences and functions.
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