Soiling mapping through optical losses for Nigeria

Yusuf N. Chanchangi, Aritra Ghosh, Leonardo Micheli, Eduardo F. Fernández, Senthilarasu Sundaram, Tapas K. Mallick

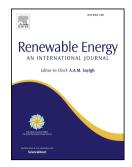
PII: S0960-1481(22)01015-1

DOI: https://doi.org/10.1016/j.renene.2022.07.019

Reference: RENE 17376

To appear in: Renewable Energy

Received Date: 25 November 2021


Revised Date: 4 June 2022

Accepted Date: 4 July 2022

Please cite this article as: Chanchangi YN, Ghosh A, Micheli L, Fernández EF, Sundaram S, Mallick TK, Soiling mapping through optical losses for Nigeria, *Renewable Energy* (2022), doi: https://doi.org/10.1016/j.renene.2022.07.019.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

1	Soiling mapping through optical losses for Nigeria
2	Yusuf N. Chanchangi ^{1*} . Aritra Ghosh ¹ , Leonardo Micheli ² , Eduardo F. Fernández ³ ,
3	Senthilarasu Sundaram ⁴ , Tapas K. Mallick ¹
4	¹ Environment and Sustainability Institute (ESI), University of Exeter, Penryn Campus TR10 9FE,
5	United Kingdom; ² Department of Astronautics, Electrical and Energetics Engineering (DIAEE),
6	Sapienza University of Rome, Rome Italy; ³ Advances in Photovoltaic Technology (AdPVTech),
7	CEACTEMA, University of Jaén, 23071 Jaén, Spain; ⁴ School of Engineering and The Built
8	Environment, Edinburgh Napier University, Edinburgh, Scotland.
9 10	*Corresponding author: <u>Yc486@exeter.ac.uk</u>
10	Corresponding author. <u>10480@exeter.ac.uk</u>
12	Title: Dr
13	Name: Yusuf N. Chanchangi,
14	Affiliation: ¹ Environment and Sustainability Institute (ESI), University of Exeter, Penryn Campus
15	TR10 9FE, United Kingdom
16	Email: yc486@exeter.ac.uk
17	
18	All Authors:
19	Title: Dr
20	Name: Yusuf N. Chanchangi,
21	Affiliation: ¹ Environment and Sustainability Institute (ESI), University of Exeter, Penryn Campus
22	TR10 9FE, United Kingdom:
23	Email: yc486@exeter.ac.uk
24	
25	
26	Title: Dr
27	Name: Aritra Ghosh,
28	Affiliation: ¹ Environment and Sustainability Institute (ESI), University of Exeter, Penryn Campus
29	TR10 9FE, United Kingdom
30	Email: A.Ghosh@exeter.ac.uk
31	
32	Title: Assistant Professor
33	Name: Leonardo Micheli,
34 25	Affiliation: Department of Astronautical, Electrical and Energy Engineering (DIAEE), Sapienza University of Rome, Rome 00184, Italy.
35 36	Email: leonardo.micheli@uniroma1.it
37	Email. Iconardo.michen@umoma1.it
38	Title: Associate Professor
39	Affiliation: Associate Professor
40	Name: Eduardo F. Fernández
41	Affiliation: eduardo.fernandez@ujaen.es
42	
43	Title: Associate Professor
44	Name: Senthilarasu Sundaram
45	Affiliation: School of Engineering and The Built Environment, Edinburgh Napier University,
46	Edinburgh, Scotland.
47	Email: S.Sundaram@napier.ac.uk
48	
49	
50	Title: Professor
51	Name: Tapas K. Mallick
52	Affiliation: ¹ Environment and Sustainability Institute (ESI), University of Exeter, Penryn Campus
53	TR10 9FE, United Kingdom
54	Email: T.K.Mallick@exeter.ac.uk

Soiling mapping through optical losses for Nigeria Yusuf N. Chanchangi*, Aritra Ghosh, Leonardo Micheli, Eduardo F. Fernández, Senthilarasu Sundaram, and Tapas K. Mallick

3 Senthilarasu Sundaram, and Tapas K. Mallick
 4 ¹Environment and Sustainability Institute (ESI), University of Exeter, Penryn Campus TR10 9FE,

5 United Kingdom. ²Advances in Photovoltaic Technology (AdPVTech), CEACTEMA, University of
 6 Jaén, 23071 Jaén, Spain.

7 *Corresponding author: <u>yc486@exeter.ac.uk</u>

89 Abstract

1

2

10 Soiling consists of the accumulation of dust on the solar panel's surface and has a deleterious effect on solar photovoltaic devices' performance, which varies with location. However, soiling losses and rates 11 are significantly under-reported or underestimated since regional differences and seasonal variations 12 13 are overlooked. Accurate prediction of PV soiling losses for a particular location can save revenue 14 losses associated with a solar PV system. This research investigated the effect of soiling on PV 15 performance through optical losses by employing a low-cost soiling station. Low iron glass coupons (5 mm x 5 mm) were exposed on three angles (vertical, tilt-45°, and horizontal) in seven sites across 16 Nigeria to collect annual, seasonal and monthly soiling data. Each coupon was then subjected to optical 17 18 characterisation using a spectrometer and imaging analysis using the SEM/EDX. The finding shows significant optical losses across the country, with all the highest rates recorded on coupons exposed on 19 20 the horizontal plane, where the maximum loss of 88% was recorded on the Abuja, North Central (ABV) 21 coupon. SEM/EDX finding illustrated minerals with the potential to affect light transmittance, and the 22 pollutant data confirmed the particles. The optical results were further employed to map the soiling 23 distribution across the country. A wide deviation was observed from the data on the Global Solar Atlas, 24 as it disproportionately underestimated the soiling losses across the world.

25 26

Keywords:	Optical losses: 1	PV soiling.	Manning. D	ust Particles; Nigeria
ixcyworus.	optical losses, i	i v sonnig,	mapping, D	ust I articles, Migeria

Nomenclatu	re
S(λ)	Relative spectral distribution of solar radiation
Τ (λ)	Spectral transmittance
Δλ	Change in wavelength
Pout	Power output
τ_{clean}	Transmittance data of clean coupon
$ au_{\chi}$	Transmittance data of an exposed coupon on an unknown angle
$\Delta \tau_x$	Change of transmittance data of an exposed coupon on an unknown angle
$\Delta_{\tau_{(Optimum)}}$	Calculated change of transmittance of a coupon at an optimum angle
$\beta_{(x)}$	The optimum tilt angle of a particular station
$\beta_{(0)}$	Horizontal plane (angle 0°)
$\beta_{(45)}$	The tilt angle of 45°
$\Delta_{ au_{(0)}}$	Soiling losses recorded on a coupon positioned on a horizontal plane
$\Delta_{ au_{(45)}}$	Soiling losses recorded on a coupon positioned at angle 45°
Z_K^*	The smooth estimate produced by Kriging interpolation
λ_i	Weight for Zi
Zi,	Variable
Z_V	Actual value
$\overline{C}(V, V)$	Covariance between the variables of the samples
μ	Lagrange parameter
$\bar{C}(v_i, V)$	Covariance between the estimations and the variables of the samples
СО	Carbon Monoxide
O ₃	Ozone

NO ₂	Nitrogen oxide	28
SO ₂	Sulphuric oxide	29 30
PM ₁₀	Particulate Matter 10 micrometres and smaller	30
PM _{2.5}	Particulate Matter 2.5 micrometres and smaller	32
		33

Units		35
µg/m ³	Microgram/meter cube	36 37
kWp	kiloWatt peak	38
MW	MegaWatt	39
mm	millimetre	<u>40</u> 41
nm	nanometer	42
	·	43

Abbreviati	on
3D	3 Dimension
ABS	Acrylonitrile Butadiene Styrene
ABV	Abuja
AQI	Air Quality Index
BSE	Back Scattered Electron
EDX	Energy Dispersive X-ray
ENU	Enugu
ESMAP	Energy Sector Management Assistance Program
GIS	Geographical Information System
GSA	Global Solar Atlas
GW	Giga Watt
IEA	International Energy Agency
KAD	Kaduna
LOS	Lagos
MENA	The Middle East and North Africa
MIU	Maiduguri
NIR	Near Infra-Red
PHC	Port Harcourt
PV	Photovoltaic
RE	Renewable Energy
SE	Secondary Electron
SEM	Scanning Electron Microscope
SMS	Small-Medium Scale
SOK	Sokoto
UV	Ultra-Violent
VIS	Visual
WHO	World Health Organization

1 Introduction

Solar photovoltaic (PV) is rapidly penetrating the global energy market, having an annual additional capacity of about 115 GW and a total capacity of 627 GW in 2019 [1]. However, the technology faces environmental challenges such as soiling, which has a detrimental effect on its performance, as reported in a number of publications [2-5]. Soiling is a factor that can degrade the performance of PV by reducing the amount of incident transmitted light upon solar cells. The losses due to soiling vary with location, human activities in the region, PV systems' design, angular position, mounting orientation, surface covering material, and climate [6, 7]. The reported soiling loss rates range from as low as 0.5% reduction of PV output in a day [8], 63% in a month [9], to about 50% reduction of PV yield in 6 months[10]

without cleaning. A clean low iron glass has 91% transparency [11], reducing the amount of irradiance reaching the solar cells and preventing them from generating optimum yield. Since the most commonly used and one of the best PV covering materials available in the market already possesses some transmittance limitations, there is a need to prevent or reduce any further optical losses to ensure that maximum irradiance reaches the solar cell to harvest higher yield. As stated earlier, the soiling loss rates cannot be constant for different regions since they vary with the location, depending on the human activities and the climate. Some research works reporting loss variation in various regions are provided in the supplementary material.

62 63

64 Employing a constant value as a soiling loss cannot be accepted as it would illustrate an unrealistic PV potential of a region. Standards assume fixed soiling loss values, such as $\pm 5\%$ in the AS4509.2 (3.4.3.6) 65 66 [12], 2% and 3% in SAND2014-19199 [13], and 3% in Enphase Energy [14], which might be grossly inappropriate for some regions. Tanesab et al. [15] recommended reviewing soiling rates and 67 68 considering regions with high solar energy potential and extreme weather conditions. In addition, the 69 Global Solar Atlas (GSA) [16] used constant soiling loss values for categories of installation, such as; 70 3.5% for 1kWp, 4.5% for small residential, 4% for medium commercial, 3.5% for large scale, and 6% 71 of floating large scale. However, GSA [16] clearly stated that the PV yield they provide is an estimation 72 value as some important factors (such as soiling) are not adequately calculated. The Global solar atlas 73 (GSA) is a platform that provides solar energy resources across the globe; which SolarGIS and finance 74 were developed by the Energy Sector Management Assistance Program (ESMAP) through the World 75 Bank fund. The GSA provided solar information like no other; it is the best platform available so far 76 that provided introductory-level data that could help researchers, policymakers, and PV companies 77 decide. These values grossly underestimate the magnitude of PV yield degradation that soiling losses 78 could cause in some regions across the world, especially the Middle East and North Africa (MENA), 79 Saharan, sub-Saharan Africa, and regions with high dust atmospheric dust.

80

81 Li et al. [17] investigated the soiling on fixed, one-axis tracking (OAT) and two-axis tracking (TAT) 82 modules employing modelling techniques to develop a map using 12 years of particulate matter, global 83 solar irradiance, and precipitation data. The study reported a more than 50% PV yield reduction for 84 heavily polluted areas such as the Middle East, Africa, and China. However, this study ignored a crucial 85 factor (such as wind) that can significantly influence deposition when its velocity is low and acts as 86 natural cleaning when its speed is high, thereby overestimating deposition rate/accumulation and 87 underestimating natural removal rate [18-21]. The study does not provide details on the soiling losses 88 in Western, Central, and Eastern Africa, subject to substantial dust generation levels due to their 89 geographical terrain, human activities and proximity to the largest global dust generation region, the 90 Sahara desert.

91

92 Mithhu et al. [22] developed a soiling map to illustrate the global PV soiling and predict revenue loss 93 considering regional optimal cleaning frequency using reported experimental data of 132 sites from 94 literature. Their finding shows that Asia has the highest soiling rate of 1%–2%/day, followed by the 95 Middle East with 0.7%–1.5%/day, mid-Africa (between 0 and 15°N latitudes) with 0.5%–1%/day and 96 the rest of the world mostly below 0.5%/day. They predicted a global revenue loss for the optimal 97 cleaning cycle to be around 1%-5.5%. Modelling global data using 132 sites from reported 98 experimental results that might have become obsolete to develop a global map could vastly 99 underestimate and underreport the value of some regions, such as West Africa and Central Africa, where 100 only two reported values were used for the entire map.

101

Micheli et al. [23] developed a regional soiling map by employing five spatial-interpolation approaches 102 103 extracted from PV performance and soiling station data to estimate nearby sites in the United States of 104 America (USA). Their findings show that an average soiling ratio could be estimated with a root-mean-105 square error (RMSE) of 1.4% and coefficients of determination of about 74%. Their analysis shows that 106 the error could be reduced to 1.1% when soiling sensors are deployed to determine the soiling rate compared to estimation, with about 78% determination coefficient variation between determined and 107 108 estimation values. Their findings show that deploying sensors will reduce errors, especially when the 109 distance between sites is reduced to below 50 km. Although the study used soiling station and PV

study ignored weather parameters related to soiling and other influences such as temperature and cabling losses, shading losses and other parameters.

113

114 Cordero et al. [24] reported the effect of soiling on PV performance, where findings were illustrated in 115 a map. The study was conducted in five sites around the Atacama desert, which transect approximately 1300 km from latitude18° S to latitude 30° S. Four PV modules were deployed where to are cleaned. 116 and the others were left to accumulate dust. The finding shows a 39% (in Arica, a city around the 117 118 Atacama desert) annual PV yield reduction in the northern region and 3% or less in the southern part 119 (Copiapo, La Serena, and Calama). Although a good study was provided, the following flaw has cast 120 doubt on the findings: the study ignored the effect of temperature when calculating soiling losses based on the disparity of PV yield. There are so many irregularities in cleaning approaches as high personnel 121 122 rotation was involved, where each cleaner uses a different cleaning pattern. The research highlighted 123 significant uncertainty due to a weaker correlation between AOD and the soiling rate. The experiment 124 ignored the influence of tilt angle and exposed module on a fixed angle based on a site's latitude, and 125 previous studies [25, 26] reported a 10% variation caused by the influence of angular positioning. The 126 soiling rate data presented was not spatially distributed; instead, a distinct value was illustrated for the 127 region, with no interpolation estimates for various sites. The monthly soiling losses variation was 128 calculated using the same results, which could lead to estimation errors of PV yield in the findings [25, 129 26] published.

130

Tanaka and Chiba [27] reported that Northern and West Africa are the regions with the most significant 131 132 atmospheric dust loading rate across the globe, and Nigeria happens to be one of the regions. As previously mentioned, an enormous amount of work has been carried out in the field of soiling on PV, 133 134 but this region (Nigeria) has received significantly less attention in recent years. However, some areas 135 with high solar energy potential, low PV penetration and high energy deficiency (a wide gap between demand and supply), such as Nigeria, are still far behind in meeting up the sustainable development 136 goal 7 (affordable, reliable and clean energy for all). The World Bank [28] highlighted a massive energy 137 deficit where it was showing that Nigeria will have a population of 206 million in 2020, with only about 138 139 60% having access to energy that is unreliable and unsteady. The International Energy Agency (IEA) [29] stated that Nigeria's Renewable Energy (RE) target is 30 GW with 5.3 GW solar mini-grid and 2.8 140 GW small, medium scale (SMS) by 2030, but less than 10 MW PV installation was recorded in 2020. 141

142

143 Despite the reports presented above, it is notable that only a few studies [23, 30] considered multiple 144 sites for data collection in their research. The literature showed results variation from studies conducted 145 in the same region, which supports the claim that dust accumulation is location-dependent and the 146 soiling rate of each region varies and should therefore be determined. In addition, when conducting an 147 extensive literature review, it was observed that most soiling losses were recorded in a single location, during a particular season or few weeks-months, while ignoring seasonality and more extended 148 149 exposure duration variation makes it extremely difficult to know the soiling rate of a country or region. It was also observed that some of these studies position coupons or PV modules on a single angle, 150 151 limiting their analysis and prediction level. Similarly, it was observed that disregarding influencing factors could lead to inaccuracy of estimations. There has been an increased recognition that more 152 153 attention is needed to be put on PV soiling in various regions with high solar energy potential and less 154 PV penetration to scale up the application of renewable energy (RE) technology and reduce the gas 155 emission that promotes climate change. Therefore, deploying multiple sensors or installing soiling stations over a more extended period could acquire temporal soiling variations and spatial data to 156 157 provide more accurate estimations.

158

159 Nigeria is a strategic region with a high energy deficit and substantial solar energy potential, but its proximity to the source of Saharan dust is a concern to the performance of PV technology when 160 deployed [2]. This study investigated the effect of soiling on PV performance, focusing on 161 environmental variability as an influencing factor through developing a very simple, low-cost soiling 162 station that collects optical losses data to generate a PV soiling losses map without installing a 163 164 photovoltaic system. The concept provided is not only limited to the region of study; it could be 165 replicated elsewhere and could also be used for large scale PV soiling predictions in the region, 166 elsewhere, or in global scenarios. Different locations and their relative angular soiling losses are

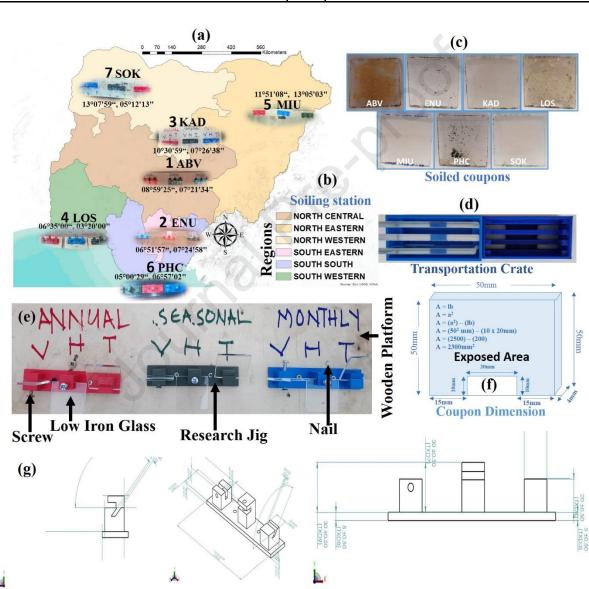
investigated to accommodate other PV installation applications such as BIPV (Building Integrated PV), 167 168 VIPV (Vehicle Integrated PV), and exterior/interior decorations operating on varying angular axes. The data provided could be used as a tool to help mitigate soiling effects on new PV installations in Nigeria. 169 170 Indeed, it can be used to estimate the impact of soiling and optimise the operations and maintenance cycles even before PV plants are operational. The information provided in this report is not only limited 171 172 to the solar energy industry but could entice potential readers and citations from the glass, financial, chemical, mechanical and mining industries. The soiling map is compared with a map published on the 173 174 GSA website for validation, presenting variations. The study's secondary objectives are to examine the 175 accumulated dust samples through elementology and mineralogy studies to identify their minerals, 176 including each diaphaneity. The morphological characterisation was also conducted to categorise the 177 regional depositions on the coupons, which was correlated with the air quality index (AQI). Optical 178 losses and weather parameters were correlated for analysis purposes to determine the cause of 179 accumulation on coupons and seasonality with significant concerns.

181 **2 Method**

182 Soiling in Nigeria was investigated using low iron glass coupons across geopolitical zones in the 183 country. A simple in-house low-cost research jig was designed using solid works and fabricated with a 3D printer (Stratasys uPrint SE 3D printer) using an ABS (Acrylonitrile Butadiene Styrene) P430XL 184 185 material. This research jig was selected after an initial comparative durability test using ABS, polylactic acid (PLA), wooden, and metallic material since it was intended to be exposed under harsh 186 187 environmental conditions. Results show a high chance of particles moving onto the surfaces of coupons 188 from wood and rusted metal during extreme weather conditions, while the PLA failed and bent when 189 left in hot water (60°) over the period of two days. The ABS material has excellent thermal 190 characteristics and remains stable at temperatures between -20° to 80° C. The same material was used 191 to produce the transportation crates that reduce the shaking of coupons that could cause the removal of 192 accumulated dust from coupons' surfaces and prevent sample breakage. Each crate was examined after transport to check if the particles were removed from the coupon during transport, but surprisingly the 193 194 majority of the crates were found to be clean, and the unclean ones could not substantiate any findings.

195

180


196 About 315 pieces of 50 mm x 50 mm x 4 mm coupons of low iron glasses were distributed in the six geopolitical zones (North-Central, North East, Northwest, South East, South-south (Niger-Delta), and 197 198 South-West) and the main base of data collection (Kaduna). A more detailed description and 199 illustrations of the sites, set-up, transportation crates, installation, and sketches are presented in Fig. 1. 200 Each station has three holders (one for monthly, one for seasonal and one for annual coupons), and each 201 holder has three slots (one for vertical, one for tilt and one for horizontal) for exposing coupons to 202 outdoor weather conditions. Angular optical soiling was investigated in this study to provide losses data 203 consideration positioning variation that could be used for correction when PV technologies are deployed for various applications such as BIPV (Building Integrated PV), BAPV (Building attached/applied PV), 204 205 VIPV (Vehicle integrated PV), solar farms (large grid), isolated solar micro, and mini-grid, car parking 206 roofing and interior decoration. Some of these applications allow the positioning of PV absorbing 207 surfaces at a location-specific optimum angle, while others do not allow it due to their kind of 208 application. In addition, some PV assets are sometimes deployed with solar single/dual-axis tracking 209 technology that makes it follow the sun throughout the day, making the technology encounter dust 210 accumulation at varying angular positions. The angular optical losses data could provide estimations 211 that could be used for maintenance planning.

212

213 The distribution of coupons in various locations across the country is shown in Fig. 1Table 2. Soiling 214 stations with coordinates, fixed optimum angular PV positioning with the recorded Mineral and their 215 transparency characteristics, and the AQI/PM data obtained from Air Plum Lab. Monthly coupons are 216 exposed on the first day of the month, and then the coupon will be removed and replaced with a new 217 clean coupon on the first day of the following month. Seasonal coupons were installed at the beginning 218 of September when the research started to assume the wet season was coming to an end and marked the dry season's outset. Seasonal coupons were removed and replaced according to specific locations' 219 220 seasons. Annual coupons were exposed at the end of the year and allowed to last for 12 calendar months 221 before they were removed. All exposed coupons were sealed in special crates fabricated using the

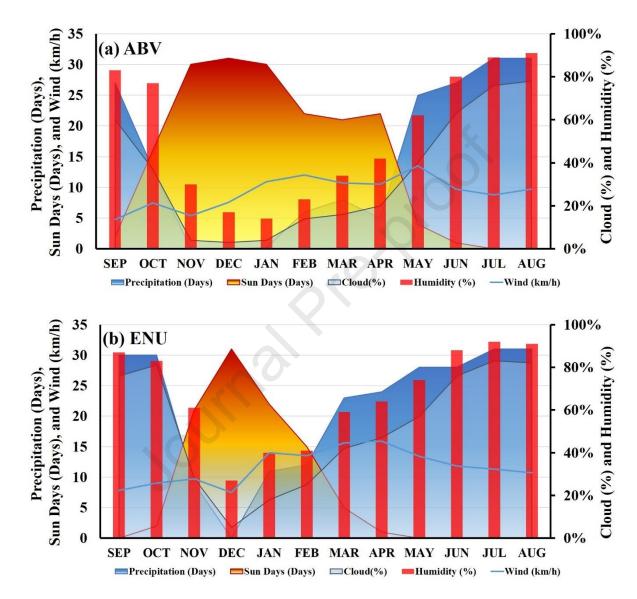
- above-mentioned 3D printer and transported back to the solar laboratory at the University of Exeter for
- 223 detailed characterisation.
- 224 225
 - Table 1: Coupons dimension and distribution across all stations

10010 11 000	pons annension and a		55 u	
	Coupons (Low Iron	n Glass)		
Length				
Height		50 mm		Coupons: 3 (Vertical, Horizontal and Tilt)
Thickness	Thickness 4 mm			Seasons: 2 (Dry and Raining)
Monthly	3 coupons x 7 sites	x 12 months	252	Sites: 6 Geopolitical Zones and main base
Seasonal	3 coupons x 7 sites x 2 seasons			(see Fig. 1)
Annual 3 coupons x 7 sites x 1 year			21	
		TOTAL	315	

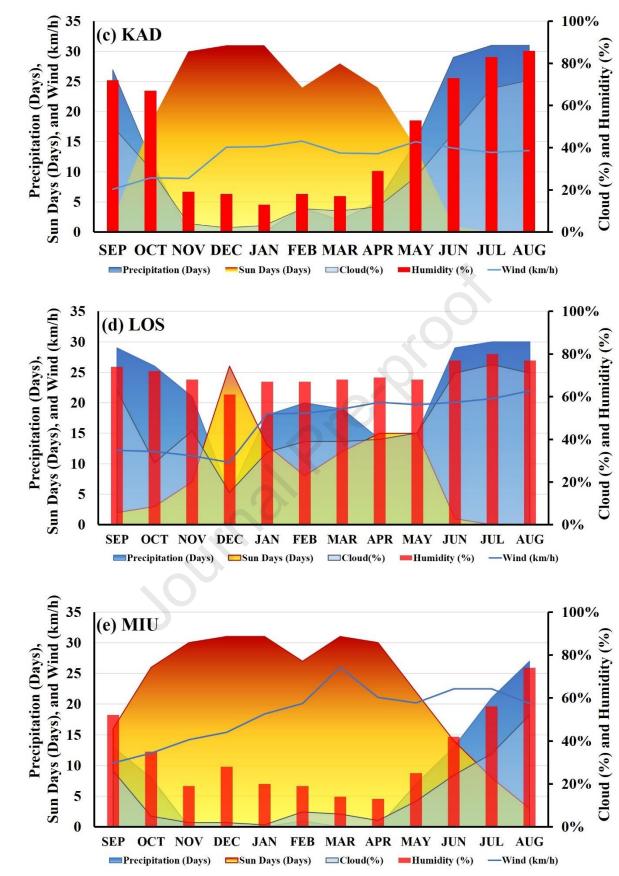
227 228

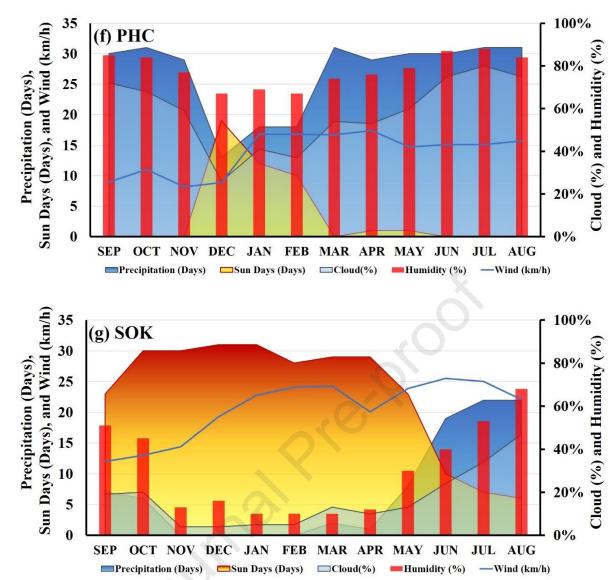
Fig. 1. Soiling station set-up and parameters, illustration (a) Map of Nigeria showing various soiling stations and their coordinates, (b) regions of soiling station as illustrated on the map, (c) soiled coupons samples, (d) transportation crate accommodating three samples with its cover, (e) typical soiling station set-up, (f) coupon dimension, and (g) sketch of deployed research jig.

232


Javed et al. [31] reported that wind speed and humidity are the two most interactive variables that determine the rate at which airborne dust particles settle on a platform. The soiling stations ' sites provide monthly average weather data (precipitation, sunny days, cloud, humidity, wind, and visibility)

of the soiling stations sites are also provided in Fig. 2, used for analysis purposes in this report. The weather data showed periods when the dry, dusty weather condition occurred and periods when precipitation (mainly rainfall) happened, which can sometimes assist in removing or reducing the accumulated dust.


240


The influence of wind was minimised by installing all soiling stations in a pattern where coupons are forward-facing to each region's dominant incoming wind direction. This allows similarity of data collection across sites.

244

Journal Pre-proof

257 258 Fig. 2: Monthly weather information variation for soiling stations illustrating precipitation, wind speed, 259 sun days/month, relative humidity, and cloud (weather data obtained from World Weather Online[32]) for (a) – Abuja, (b) – Enugu, (c) – Kaduna, (d) – Lagos, (e) – Maiduguri, (f) – Portharcourt, and (g) -260 261 Sokoto.

255 256

Optical characterisation procedure 263 2.1

264 The spectral characterisation was conducted to define the transparency level of the accumulated dust 265 particles on the various coupons. This experiment was conducted when samples were brought back to 266 the University of Exeter laboratory. Perkin Elmer Lambda 1050 UV/VIS/NIR spectrophotometer 267 examined each exposed coupon. A clean coupon was usually examined at the beginning of every test 268 to benchmark the optimum transmittance level that could be achieved. Afterwards, each sample was then subjected to a transmittance measurement. NIR (Near Infra-Red), VIS (Visual) and UV 269 270 (Ultraviolet) transmittance levels of each coupon are examined, ranging from 300 nm to 1100 nm 271 wavelength. This range of wavelength is considered to be accommodating all the different PV 272 technologies (solar cells) available in the market as they respond only within this spectrum. Results 273 obtained in this experiment were validated using Equation (1) below, where S (λ) is the relative solar 274 radiation wavelength distribution, $\Delta\lambda$ is the change in wavelength, and T (λ) is the spectral 275 transmittance. 276

$$\tau_{solar} = \frac{\sum_{\lambda=300nm}^{1100nm} S(\lambda)T(\lambda)\Delta\lambda}{\sum_{\lambda=300nm}^{1100nm} S(\lambda)\Delta\lambda}$$
(1)

Transmittance losses were calculated using Equation (2) below, and the extreme optical loss results were used instead of average to accommodate a possible worst-case scenario. The results are presented in percentage reduction, where τ_{clean} is the transmittance data of clean coupons and τ_x is the transmittance data of an exposed coupon on a certain angle.

282

$$\Delta \tau_{\chi} = \frac{(\tau_{clean} - \tau_{\chi})}{\tau_{clean}} (\%).$$
⁽²⁾

283

289

This Equation (2) provided data employed in obtaining the power reduction of a kWp installation due to soiling. A simple approach to determining soiling losses, where reduction is determined by multiplying PV yield of kWp by the factor of (1-loss), where the loss refers to the percentage change in optical transmission obtained by employing Equation (2). This approach with simplicity would allow repeatability in other regions to determine soiling loss value.

290 2.2 Particle characterisation

291 The sample particle characterisation was conducted to determine the chemical composition of dust 292 particles in various soiling stations. One coupon with a high accumulation from the various soiling 293 stations was carefully selected and exposed to imaging characterisation. Each sample was initially 294 prepared with carbon coating using an Emi-Tech K950 device before being subjected to microscopic 295 scanning. The SEM (S) Quanta FEG 650 was employed to generate the secondary electron (SE) image 296 and backscattered electrons (BSE) image that was used for further mineral data acquisition using the 297 EDX (Energy Dispersive X-ray). The EDX generated graphs highlighting mineral element's samples 298 and their content level, which helped identify the various minerals' chemical composition. Minerals and 299 their morphological characteristics such as diaphaneity were identified using online minerals databases 300 such as minerals.net, mindat.org and webminerals.com.

301

302 Additional information regarding the air quality of various regions in Nigeria was obtained from the 303 Air Plume lab. The data were required for in-depth analysis of suspended particles in the atmosphere 304 across the various regions. Air quality data highlights the aerosol particles' categories used to analyse 305 and validate the minerals recorded from the SEM/EDX imaging and analysis. Annual average AQI 306 highlights the severity of the harmfulness of atmospheric particles to humans using an innovative 307 standard developed by Air Plume Lab [33] with seven different levels to eliminate the variability of different standards and also align with the World Health Organisation (WHO) recommended threshold 308 309 is presented in a map format in Supplementary Fig. 17. The number of days considering the severity of 310 harmfulness of air quality in the various regions is illustrated in Supplementary Fig. 18.

311

312 **2.3** Soiling mapping procedure

313 This is an approach for presenting PV soiling data. The coupon's transmittance data was collected from 314 optical characterisation through spectral measurement using a spectrometer, as mentioned in section 2.1 315 of this paper. PV output and direct normal irradiance data were collected from Global Solar Atlas, considering the small residential capacity of 1kWp. These data were used in calculating soiling losses, 316 317 and the results were presented innovatively for easy understanding and further application. Linear 318 interpolation was employed to determine the optical transmittance degradation of each soiling site's 319 optimum PV tilt angle since coupons were not positioned at that angle. This interpolation technique 320 was considered since it could establish a data point whenever established discrete data points, where $\Delta_{\tau_{(Optimum)}}$ is the calculated change of transmittance of a coupon at an optimum angle, $\beta_{(x)}$ is the optimum tilt angle of a particular station, $\beta_{(45)}$ is the tilt angle described as tilt angle in this research 321 322 where coupons are positioned as tilt which is 45°, $\beta_{(0)}$ is the horizontal angle at which a coupon is 323 positioned on the research jig in soiling stations, $\Delta_{\tau_{(0)}}$ is the optical loss recorded on a coupon 324 positioned on a horizontal plane, and $\Delta_{\tau_{(45)}}$ is the optical loss recorded on the coupon positioned on the 325 326 tilt angle plane (45°).

$$\Delta_{\tau_{(Optimum)}} = \frac{(\beta_{(x)} - \beta_{(45)}) (\Delta_{\tau_{(0)}} - \Delta_{\tau_{(45)}})}{(\beta_{(0)} - \beta_{(45)})} + \Delta_{\tau_{(45)}}$$
(3)

329 ArcMap 10.6.1 from ArcGIS was employed to design the soiling map using the PV output and soiling 330 losses data. An interpolation method called Kriging interpolation was employed, based on Equation (4) below Venkatramanan et al. [34] provided. The Kriging interpolation is a geostatistical method that 331 332 provides smooth estimates to determine an unknown spatial value of a location. Venkatramanan et al. 333 [34] defined Kriging interpolation as the best technique for unbiased linear estimation of unknown 334 spatial values and temporal variables, where Z_K^* is the smooth estimate produced by Kriging 335 interpolation, λ_i is the weight for Zi, which is to ensure unbiasedness of the estimation, and Zi is the 336 variable.

$$Z_K^* = \sum_{i=1}^n \lambda_i \ Zi \tag{4}$$

338

337

Equation (5), provided by Venkatramanan et al. [34], represents the unbiased condition of kriging interpolation, where Z_V is the actual value and the Z_K^* is the calculated estimated value, which is:

$$E\{Z_V - Z_K^*\} = 0 (5)$$

342

Equation (6), provided by Venkatramanan et al. [34], shows the summation of the weight (λ_i) which is:

345

$$\sum_{i=1}^{n} \lambda_i = 1.0 \tag{6}$$

346

Equation (7), provided by Venkatramanan et al. [34], shows the estimation variance of Kriging interpolation, where $\bar{C}(V, V)$ is the covariance between the variables of the samples, μ is the Lagrange parameter, $\bar{C}(v_i, V)$ is the covariance between the estimations and the variables of the samples, which is:

$$\sigma_K^2 = E\left\{ \left[Z_V - Z_K^* \right]^2 \right\} = \bar{C}(V, V) + \mu - \sum_{i=1}^n \lambda_i \bar{C}(v_i, V)^{(4.4)}$$
⁽⁷⁾

Equation (7) is provided to explain how the errors are reduced when estimating the values of Equation (5), which is a further description of the Kriging interpolation equation provided above in Equation (4).

The calculated soiling losses variation presented in Fig. 6 provided the disparity between the result obtained from this study and the GSA PV yield using a constant value of 4.5% data. The difference between the two values is that higher disparities were observed with increased soiling losses value. It also increases with time since more irradiance is available to generate PV yield, and the 4.5% soiling losses constant would not change with time. Therefore, it will create a broader gap of soiling losses as the duration increases, and soiling losses increase due to a significant amount of irradiance that was not converted to useful energy.

362

ArcMap from ArcGIS is a software that provides the platform to present geographic information in layers and could be used to perform a wide range of GIS-related tasks, including compilation, organisation, and modification of GIS datasets, use of geoprocessing for analytical and visual purposes [18]. The application is mainly used by government administrative established compared with MapBox, leaflet, and Google and has the highest market share in the mapping application industry [19]. This application was employed in this study because it provides flexibility to create and edit datasets. The application is secured and requires a license for online access that allows users to load required real-

370 world geographical information data [20]. Three software (ArcGIS, MapBox, and Tableau) were

employed to develop the mapping, but the result was better achieved using ArcGIS because of the 371 372 advanced inbuild tools that support the modification of datasets.

373

374 The Kriging interpolation technique is an advanced geostatistical approach that generates an estimated surface from a given scattered set of points with z-values [21]. This technique uses an interactive 375 376 investigation of the spatial behaviour of the inputted data to select an excellent estimation for output 377 generation. Desktop.ArcGIS [21] provided a multistep process for Kriging interpolation, including 378 exploratory statistical data analysis, variogram spatial structural modelling, creating the surface, and 379 exploring surface variation. The main dissimilarity with other spatial interpolation techniques in 380 ArcGIS, such as the inverse distance weighted (IDW) and Spline interpolation, is that it is not a 381 deterministic approach based on surrounding values but a geostatistical approach that is based on a 382 statistical model which includes autocorrelation, where it could produce a significant measure of 383 accuracy during predictions [21]. Krishnan and Ganguli [22] reported that the Kriging interpolation 384 model could provide higher accuracy and lower computational cost for predicting distribution spatial 385 frequencies compared to other deterministic techniques. Zhang et al. [23] reported that kriging model 386 fitting accuracy could reach up to 0.980. Fischer et al. [24] supported this claim by examining three 387 interpolation techniques (inverse distance weighted, ordinary Kriging, and Empirical Bayesian 388 Kriging), and the ordinary Kriging consistently yielded more accurate results than others. The technique 389 assumes the distance of sample points reflects spatial correlation to explain surface variance. It uses all 390 points provided to generate output in a specified radius using a mathematical function of unbiasedness 391 [18]. Based on this literature and a comparative assessment using the GSA map and its data (direct 392 normal irradiance and PV performance with 4.5% soiling rate), the accuracy of IDW and Kriging were 393 investigated, and our finding shows that Kriging interpolation provides better map output than is more 394 similar to the GSA map. As such, the technique was employed for generating soiling maps.

395

396 This novel approach is motivated by recent progress made by GSA in providing solar energy 397 information, which could be improved by adopting the method used in this study since it offered a low-398 cost soiling station that could be used to determine the actual regional soiling loss. The approach could 399 stimulate further soiling research across the globe and reduce the inaccuracy reported. The paper 400 contributes to the body of knowledge with the unique, low-cost approach used to determine the soiling 401 rate, which policymakers can use, PV companies, researchers, and potential PV investors. The findings 402 from this study may lead to a better understanding of soiling problems since the work highlights the 403 significance of the effect of soiling, considering environmental differences as an influencing factor. The 404 findings provided more accurate and realistic soiling information for better PV installation and 405 maintenance planning to achieve higher yields. 406

407 3 **Results**

408 The spectrophotometer was employed to measure the transmittance losses on coupons, scanning electronic microscope/ energy dispersive X-ray (SEM/EDX) was used to determine the soiled particles' 409 410 chemical composition ArcGis (ArcMap 10.6.1) was employed to develop a soiling losses map. All the results are illustrated in this section. 411

412

413 3.1 **Optical transmittance losses**

414 The optical losses results are grouped by exposure period, and each group is further divided into subgroups based on their positioning angles. This illustrates transmittance losses of various locations at 415 416 a glance for better understanding. Graph plots illustrating relative optical losses variation relative to wavelengths of all exposed coupons are provided in the supplementary figures section from 417 418 Supplementary Fig. 1 to Supplementary Fig 15. Below charts were provided to highlight relative 419 changes.

420

421 Fig. 3 (a) illustrates the annual transmittance loss results. The most significant loss of about 59% was recorded on the Abuja (ABV - 08°59'25", 07°21'34") coupon that was positioned on a horizontal plane, 422 423 while the lowest loss was about 3% and was recorded on the Maiduguri (MIU - 11°51'08", 13°05'03")

424 coupon that was positioned at a vertical angle. Fig. 3 (b) illustrates the dry season transmittance loss

- 425 results where the 88% loss was recorded for the horizontally placed ABV coupon, while the lowest loss
- is about 4% from the vertically placed Enugu (ENU 06°51'57", 07°24'58") coupon. On the other hand, 426

Fig. 3 (b) illustrated wet season transmittance losses, and the most significant losses were recorded from
Lagos (LOS - 06°35'00", 03°20'00") and Port Harcourt (PHC - 05°00'29", 06°57'02") coupons
positioned on horizontal planes, with the first having about 55% reduction and the latter having about
45%. The lowest transmittance losses for the wet season were recorded from Kaduna (KAD - 10°30'59",
07°26'38") and MIU coupons, with both having about a 3% reduction when coupons were positioned
vertically. Sokoto (SOK - 13°07'59", 05°12'13") coupons appear average in all positions.

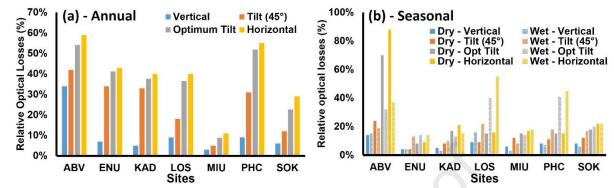
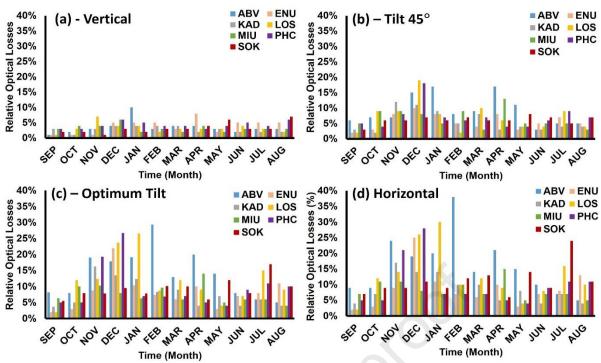



Fig. 3. (a) Annual optical transmittance losses variation for vertical, 45° tilt, and horizontal orientation.
At the same time, (b) illustrates seasonal optical transmittance losses variation for vertical, 45° tilt, and
horizontal orientation, with Dry highlighting dry seasonal variations and Wet showing wet seasonal
variations for the seven regions.

439

434

440 Fig. 4 (a) illustrates monthly results from coupons that are vertically positioned, with the lowest optical 441 losses of about 1% in September (for ABV, ENU, and LOS), October (for ENU and KAD), and 442 November (SOK). Fig. 4 (a) further illustrates the optical loss recorded for the vertically positioned 443 coupons, with a maximum of 10% in January (for ABV). Fig. 4 (b) illustrates results from coupons that 444 are positioned at 45° tilt, with the lowest optical losses of about 2% in September (ENU and LOS), 445 October (for KAD), and February (LOS). Fig. 4 (b) further illustrates the maximum loss for the 45° tilt 446 position, with about 19% in December (for LOS). Fig. 4 (c) illustrates optical loss results of each site's optimum tilt calculated from the interpolation between horizontal and 45° tilt relative transmittance 447 448 reductions, with the lowest optical loss of about 2% in September (for ENU and LOS). Fig. 4 (c) further 449 illustrates the maximum loss for the optimum tilt angle position, with about 29% in February (for ABV). 450 Fig. 4 (d) illustrates results from horizontally positioned coupons, with the lowest optical losses of about 451 2% in September (ENU and LOS). Fig. 4 (d) further illustrates the maximum loss for the horizontal 452 position, with about 38% in January (for ABV). 453

454 455 Fig. 4. Variation of monthly optical transmittance losses in relation to the angular position of coupon 456 with respect to the terrain as the reference point (=0); where (a) Vertical (90°) , (b) Tilt (45°) , (c) optimum tilt angle for the exposure site, and (d) horizontal (0°) . (a) illustrates higher accumulation was 457 458 recorded in January (on the ABV coupon), and most minor were recorded in September (on ABV, ENU, 459 and LOS coupon), October (ENU and KAD coupon) and November (SOK and ENU coupon) for the 460 vertically positioned coupons. (b) shows the most increase was recorded in December (on the LOS coupon), and the most minor were recorded in September (on ENU and LOS coupon), October (on 461 KAD coupon) and February (LOS) for 45° positioned coupons. (c) depicts the calculated optical losses 462 463 value with the most significant accumulation recorded in February (on the ABV coupon), and the most 464 minor were recorded in September (on KAD and LOS coupons) for coupons positioned at a site-specific 465 optimal angle. (d) demonstrates that the most significant accumulation was recorded in February (on the ABV coupon), and the most minor were recorded in September (on ABV) for horizontally 466 467 positioned coupons.

468

469 3.2 Particle characterisation

This section presents the results of the SEM/EDX scannings. SEM images of particle samples with their various locations, highlighting the sizes and spaces they occupied on the coupons, are provided in Supplementary Fig. 16. However, the backscattered electron images (BSE) were employed for in-depth analysis to determine the mineral composition using EDX. Data obtained from the EDX analysis were employed to identify the essential mineral and their characteristics using the online mineral data databases such as minerals.net, mindat.org and webminerals.com.

476

477 A critical property (diaphaneity) of each identified mineral was investigated, and some of the minerals 478 possess a characteristic that would negatively affect light transmittance. Table 2 highlights some 479 minerals that were repeatedly identified during the particle characterisation. The results from the 480 Northern region show the diaphaneity property of some of the minerals where the coupons from North-481 East appear to be translucent and opaque, and coupons from North-Central possess minerals found to 482 have translucent and opaque properties. In contrast, the coupons from North-West appears to have 483 minerals with both transparent and translucent property. In the Southern region, Table 2 shows that the 484 coupon from the South-East possesses minerals that appear to be transparent, translucent, and some are 485 opaque. The particles on the South-South coupon have minerals with opaque properties, while the 486 minerals identified on the South-West coupon possess translucent and opaque transparency properties. 487 Table 2. illustrates the Air Quality Index (AQI) of various regions and the main pollutants. 488

489 Table 2. Soiling stations with coordinates, fixed optimum angular PV positioning with the recorded

490 Mineral and their transparency characteristics, and the AQI/PM data obtained from Air Plum Lab.

491

S/N	Location	Minerals	Diaphaneity	Annual Average	Main	Pollutant
	Region Latitude Longitude Optimum PV Tilt Angle (OPTA)			Best day Worst day	AQI	μg/m ³
1.	ABV (Abuja) North	Chlorite (Chamosite)	Translucent to sub- translucent		$PM_{10} - 343.7$ $PM_{2.5} - 399.8$	
	Central	Montmorillonite	Translucent to Opaque	75 AQI Best – 17 AQI		$SO_2^{2.5}$ - 6.6
	08°59'25'' 07°21'34'' OPTA - 13°	Pyroxene (Spodumene)	Transparent to Translucent	Worst – 330 AQI	CO - 9.98 $O_3 - 111.6$ $NO_2 - 19.3$	CO - 1997.8 $O_3 - 178.5$ $NO_2 - 38.6$
2.	ENU (Enugu)	Tourmaline (Dravite)	Translucent to opaque		$PM_{10} - 450.7$ $PM_{2.5} - 524.9$	PM ₁₀ -641.1 PM -474.9
	South East	Analcite	Translucent	75 AQI		$SO_{2}^{2.5} - 24.0$
	06°51'57'' 07°24'58'' OPTA - 10°	Pectolite	Transparent to Translucent	Best – 16 AQI Worst – 399 AQI	$CO^{2} - 22.2$ $O_{3} - 111.6$ $NO_{2} - 46.7$	CO - 4398.1 $O_3 - 178.5$ $NO_2 - 75.5$
3.	KAD (Kaduna)	Tourmaline	Translucent to opaque		2	$PM_{10}^2 - 585.3$
	North West Main Base	Chlorite (chamosite)	Translucent to sub- translucent	96 AQI	PM _{2.5} - 394.7 SO - 32.1	
	10°30'59'' 07°26'38'' OPTA - 15°	Garnet (almandine)	Transparent to Translucent	Best – 22 AQI Worst – 388 AQI	CO - 15.9 $O_3 - 94.6$ $NO_2 - 26.9$	CO - 3181.8 $O_3 - 153.5$ $NO_2 - 49.2$
4.		Stilpnomelane	Subtranslucent to opaque		$PM_{10} - 322.3$	$PM_{10} - 435.7$
	LOS (Lagos) South West	Beryl	Transparent to	65 AQI	PM _{2.5} - 336.4	
	06°35'00'' 03°20'00'' OPTA - 7°	Amphibole	subtranslucent Translucent to Subopaque	Best – 14 AQI Worst – 392 AQI	CO – 72.1	$SO_2 - 133.9$ CO - 8278.8 $O_3 - 273.5$ $NO_2 - 136.9$
5.	MIU (Maiduguri)	Zeolite (Clinoptilolite)	Transparent		PM ₁₀ - 362.9 PM ₂₅ - 455.6	PM ₁₀ - 500.5801 PM _{2.5} - 405.5584
	North East	Ilmenite	Opaque	117 AQI Best – 21 AQI		$SO_{2}^{2.5}$ - 12.57944
	11°51'08'' 13°05'03'' OPTA - 17°	Illite	Translucent	Worst – 562 AQI	CO - 8.9 $O_{3} - 90.8$	CO - 1783.942 $O_3 - 148.9783$ $NO_2 - 38.81303$
6.	PHC (Port	Felspar (albite)	Transparent, Translucent		$PM_{10} - 322.2$	$PM_{10}^2 - 435.555$
	Harcourt)	Schorlomite	Opaque		$PM_{2.5}^{10} - 367.1$	$PM_{2.5}^{10} - 316.4977$
	South-South 05°00'29'' 06°57'02'' OPTA - 6°	Scapolite	Translucent to Opaque	62 AQI Best – 13 AQI Worst – 321 AQI		$SO_2 - 63.86763$ CO - 3546.805 $O_3 - 196.5006$ $NO_2 - 68.52894$
7.	SOK (Sekete)	Chlorite (Chamosite)	Translucent to subtranslucent		$PM_{10} - 557.2$ $PM_{2.5} - 369.7$	PM ₁₀ – 811.6 PM – 319.7
	(Sokoto) North West	Montmorillonite	Translucent to Opaque	95 AQI	$SO_2 - 14.1$	$SO_2 - 14.1$
	13°07'59'' 05°12'13'' орта - 17°	Feldspar (labradorite)	Translucent to transparent	Best – 20 AQI Worst – 418 AQI	CO - 12.3 $O_3 - 128.1$ $NO_2 - 42.1$	CO - 2453.1 $O_3 - 205.1$ $NO_2 - 68.3$

492

493**3.3**Soiling mapping

In combination with PV Output data obtained from the Global Solar Atlas, the transmittance losses were used to develop a new soiling losses map for Nigeria. Since the PV output collected from Global solar was based on the optimum angle of each location, a linear interpolation was employed to obtain optimum angle optical transmittance losses data, which is comprehensively explained in the methodology section of this paper. PV output data with and soiling losses are provided according to the timestamp for annual in Table 3, for the two seasons (dry and wet) in Table 4, and for various 12 calendar months in Table 5

- 501
- 502 The soiling maps are grouped based on the period of exposure, and each group includes a direct normal
- 503 irradiance [16], PV output without soiling, and PV output at a fixed position based on the site's optimum
- 504 PV tilt angle (provided in Table 1) with soiling based on the transmittance losses data presented above,
- and the PV output with a constant 4.5% soiling loss map [16]. This is employed to illustrate solar energy
- 506 potential and the variation between the result of this study and the information provided on the Global
- 507 Solar Atlas website.
- 508
- 509

⁹ <u>Table 3. Estimated annual PV output with and without soiling losses for seven sites.</u>

Annual PV output (kWh/kWp)							
STATE	Without Soiling	With Soiling					
ABV	1506	691					
ENU	1399	823					
KAD	1623	1012					
LOS	1299	824					
MIU	1706	1555					
РНС	1304	628					
SOK	1695	1313					

510

511 Fig. 5 (c) shows that the most significant soiling loss was recorded in North-Central, where the PV

512 output degraded from about 1505.76 kWh/kWp to 691.3 kWh/kWp (54% loss), and the lowest loss was 513 recorded in the North-East region where PV output decreased from 1705.76 kWh/kWp to about 1554.52

514 kWh/kWp (9% loss). In comparison, the maps presented in Fig 5 distinguish the variation between a

515 constant soiling value (of 4.5 %) and actual soiling losses values for a wider region. The reader could 516

easily observe a wider variation when comparing the values from the maps in Fig. 5 (b) and Fig. 5 (d), where an additional 50% loss was recorded for the North-Central region. Fig. 5 (d) illustrates that the

greatest loss was recorded in the North-East region, where PV yield degraded from 1705.76 kWh/kWp

to about 1629 kWh/kWp (4.5% loss), and the lowest reduction was in the South-West where the

520 reduction was from 1299.48 kWh/kWp to about 1241 kWh/kWp (4.5% loss). Although the loss

521 percentage is constant, it is observed that losses are greater in regions with higher potential. In

522 comparison, the reader could easily observe a wider variation when comparing the values from the maps 523 in Fig. 5 (b) and Fig. 5 (d), where an additional 25% loss was recorded for the North-Central region.

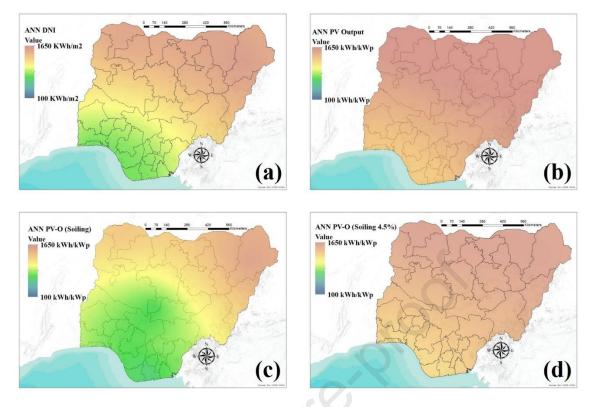
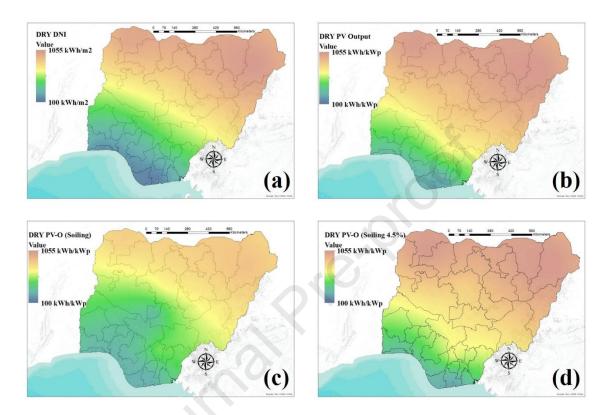


Fig. 5. Mapping annual regional variation of DNI (Direct Normal Irradiance) potential and PV output of Nigerian highlighting soiling losses disparity and showing significant soiling losses in the South-East, South-West, South-South, and North-Central with; (a) highlighting the annual solar energy potential of all the region in the country, (b) demonstrating the annual PV output potential with no soiling, (c) illustrating the annual soiling losses determined through optical losses, and (d) showing the annual PV output reduction due to constant soiling losses rate (4.5%).

531 532

Table 4. Estimated seasonal (dry and wet) PV output with and without soiling losses for seven sites.

Seasonal PV output (kWh/kWp)							
STATE	DR	Y	WET				
STATE	No Soiling	Soiling	No Soiling	Soiling			
ABV	819	246	687	467			
ENU	646	594	753	648			
KAD	884	733	740	644			
LOS	336	286	964	578			
MIU	1064	904	641	551			
PHC	241	205	1063	627			
SOK	1041	853	655	524			


533

534 The results of the seasonal soiling mapping show a significant variation in soiling losses during the two 535 seasons across regions. Fig. 6 (c) illustrates the soiling losses in the dry season. It shows that in North-536 Central, the PV output decreased from about 818.53 kWh/kWp to 573.0 kWh/kWp (30% loss) and in the South-South from 240.6 kWh/kWp to about 204.5 kWh/kWp (14% loss). Fig. 6 (d) shows PV output 537 538 reduction due to soiling losses where the most significant decrease was observed in the North-East 539 region from 1064.1 kWh/kWp to about 1016.2 kWh/kWp (4.5% loss), and the lowest reduction was 540 from South-South where the drop was from 240.6 kWh/kWp to about 229.8 kWh/kWp (4.5% loss). The 541 approach used in the study presented a greater soiling value as shown in Fig. 6 (c), where about 245.53 542 kWh/kWp reduction is obtained in North-Central compared to reduction illustrated in Fig. 6 (d) which

543 shows 36.8 kWh/kWp using 4.5% constant soiling value.

545 On the other hand, Fig. 7 (c) shows that the most significant soiling loss in the wet season was recorded 546 in South-South, where the PV output decreased from about 1063.4 kWh/kWp to about 627.4 kWh/kWp 547 (41% loss) and the lowest loss was recorded in the North-East region where PV output reduces from 548 641.3 kWh/kWp to about 551.5 kWh/kWp (14 % loss). Fig. 7 (d) shows the most significant reduction 549 was recorded in the South-South region from 1063.4 kWh/kWp to about 1015.5 kWh/kWp (4.5% loss), 550 and the lowest drop was from the North-East where the decrease was from 641.3 kWh/kWp to about 551 612.4 kWh/kWp (4.5% loss).

552

553

Fig. 6. Mapping dry season regional variation of DNI (Direct Normal Irradiance) and PV output potential of Nigeria, highlighting soiling losses disparity during the season; (a) illustrates solar energy potential for the dry season in the country, (b) shows PV output potential for the dry season without soiling, (c) illustrates the PV yield with soiling losses for the dry season, and (d) shows the dry season PV output with constant soiling losses rate (4.5%).

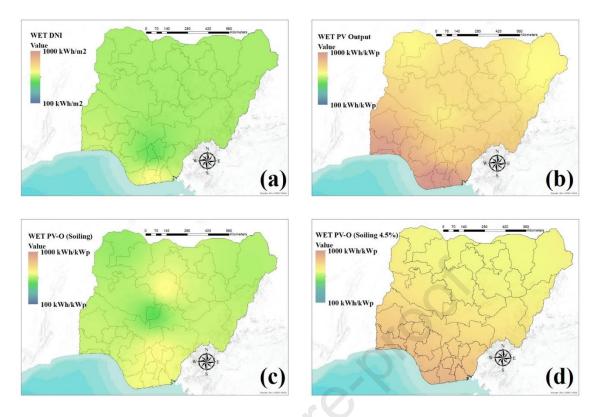


Fig. 7. Mapping wet season regional variation of DNI and PV output potential of Nigeria, highlighting soiling losses disparity with (a) highlighting solar energy potential for the wet season in the country, (b) demonstrating PV output potential for the wet season without soiling, (c) illustrating the PV yield with soiling losses for the wet season, and (d) showing the wet season PV output with constant soiling losses rate (4.5%).

567 The monthly result shows different values of soiling losses for each month. Consequently, the results 568 are shown in monthly-based maps. All monthly maps are illustrated in Supplementary Fig. 19 to 569 Supplementary Fig. 30. Table 5 provides the PV yield with and without soiling losses for the sites based 570 on kWp installation.

571

572 Table 5. Estimated monthly PV output with and without soiling losses for seven sites.

		PV output without soiling losses (kWh/kWp)										
STATE	SEP	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG
ABV	115	136	150	147	140	125	133	123	123	110	105	100
ENU	105	118	135	141	132	117	121	116	116	104	100	95
KAD	126	146	157	158	154	137	144	134	134	117	112	107
LOS	100	110	112	119	112	105	117	117	117	97	96	97
MIU	139	155	155	160	161	143	150	135	135	121	125	124
PHC	103	114	116	124	116	105	109	114	114	98	94	99
SOK	141	151	151	156	155	140	146	137	137	127	130	126
				PV o	output w	v ith soil i	ing losses	s(kWh/ł	(Wp)			
STATE	SEP+S	OCT+S	NOV+S	DEC+S	JAN+S	FEB+S	MAR+S	APR+S	MAY+S	JUN+S	JUL+S	AUG+S
ABV	106	125	121	121	113	88	116	99	105	101	98	95
ENU	103	115	123	110	118	109	114	104	112	97	92	84
KAD	121	139	131	137	135	126	131	129	122	113	105	103
LOS	98	97	98	91	82	95	103	107	112	90	82	88
MIU	130	139	139	147	150	130	141	116	126	114	117	119
PHC	98	109	93	91	108	97	101	108	109	89	84	89
SOK	134	139	139	142	143	126	132	129	119	117	108	114

573 **4 Discussion**

574 The optical loss results presented in the previous section are percentage reductions from a cleaned, low 575 iron glass coupon. This section summarises and discusses the key findings based on critical observation 576 and evaluation of results considering additional parameters such as weather, atmospheric particle, and 577 AQI presented in the methods section.

578

579 The transmittance losses values obtained from the results shown in the previous section highlighted a 580 significant variation between a cleaned coupon and coupons exposed to outdoor weather conditions. 581 The most intriguing finding considering the optical transmittance results in high losses identified in 582 coupons position on the horizontal plane across all the soiling stations. The greatest soiling among the 583 annual coupon was recorded in ABV, the weather condition throughout the year as shown in Fig. 2 (a), 584 where the dry season is longer than the wet season, and the AOI appears to be very high shown in Table 2 and Supplementary Fig. 17. However, it has been observed that the main pollutants are not extremely 585 586 dangerous based on the information provided in Supplementary Fig. 18, but most of them have a very 587 devastating effect on light transmittance based on the mineralogy analysis.

588

589 Climatic conditions such as humidity, wind speed/ direction, temperature and precipitation play a vital 590 role in influencing soiling, but it could sometimes tranquillise the accumulation. Correlating findings 591 of the optical losses in Fig 4 (a) - (d) with Fig. 2 (a) – (g) shows that weather parameters significantly 592 influence accumulation. Considering monthly variation for North-Central (ABV), it was observed that 593 the greatest optical losses were recorded from the January coupon, where soiling is assumed to be 594 influenced by the increase in humidity and low precipitation, as shown in Fig. 2 (a). In the South-East 595 region (ENU), the highest accumulation was recorded when the precipitation (rain) was lowest and 596 wind and humidity were low, as presented in Fig. 2 (b). The greatest optical loss recorded in North-597 West (KAD and SOK) and North-East (MIU) occurred when precipitation was zero or low, the humidity 598 was low, and wind speed was averagely high, as shown in Fig. 2 (c) and (g). Most significant 599 accumulation transpired in South-West (LOS) and South-South (PHC) when precipitation was lowest, the wind was low, and humidity was high, as shown in Fig. 2 (d) and (f). Conversely, the lowest 600 601 accumulation that translated to low optical losses was recorded when precipitation turned to be the 602 highest across all the regions, as shown in Fig. 2(a) - (g).

603

604 The seasonal optical transmittance losses results are additional information necessary to understand 605 better the consequences of soiling on PV. The result shows wide variation between the dry and wet seasons, with the dry season showing the most significant losses in the Northern region due to Saharan 606 dust (during Harmattan season) and while the wet season presents more losses in the Southern part. A 607 608 most significant optical loss was recorded during the dry season in ABV, which is related to massive 609 ongoing construction activities in the federal capital territory (including road, rail, and building construction) [35]. On the other hand, the most significant optical loss recorded during the wet season 610 was in PHC, which is related to the region's massive oil exploration activities. The high optical losses 611 612 rate in the South part of the country during the wet season is due to the longer duration of the wet season, which comes with light rain that lasts for about nine months, as shown in Fig. 2 (f), because of its 613 proximity to the Atlantic Ocean. Fig. 2 (a) shows that the wind speed in ABV is the lowest. The 614 615 humidity is highest considering the Northern region and similarly for PHC in the Southern region, 616 highlighting why more accumulation was recorded in ABV during the dry season and PHC during the 617 wet season. More detailed information on the seasonal variation in the region causing soiling is 618 presented in Chanchangi et al. [2].

619

620 Considering the monthly timestamp as an exposure period, the Optical losses result provides vital 621 information that breaks down the soiling formation data into a period that can be employed in many 622 applications such as research, installation planning, and maintenance planning. The results illustrated 623 different optical losses each month, and the greatest was recorded on the ABV coupon installed on a 624 horizontal plane in February. Other months such as November, December, January, and April also 625 presented significant losses. According to weather data provided in Fig. 2 (a), (b), (c), (d), (e), (f), and 626 (g); all the above months tend to fall within the dry season with an influx of the Saharan desert that sweep the country. The atmospheric particles are blown away by the low-level jet (North-easterly) 627

winds from the far North (Northeast and Northwest) to the Northcentral and then the Southern part of the country, causing high formation on surfaces in the Northcentral since the wind speed tends to drop around the region. AQI tends to be very high during these dry months across the country, but the cumulative annual average would end up very low. The AQI and the main pollutant AQI might be very high in some regions, and the soiling level would be shallow; the high wind does not allow settlement

- 633 on platforms.
- 634

635 The angular variation of optical losses might be assumed to be always in the same pattern, where the 636 most significant losses should always be recorded on the horizontal plane, and the losses reduce as the 637 angle changes towards the vertical plane. However, it has been reported by Gholami et al.[36] that 638 dominating incoming wind could significantly influence the adhesion and accumulation of particles in 639 various angles, resulting in a disparity to the above assumption and a variation in the optical losses result obtained from this study. The greatest optical loss is not continually expected to be obtained at 640 641 the horizontal plane all the time and in the entire region since the dominant wind direction could play a 642 significant role in the resuspension of deposited particles from a coupon. In addition, the optical losses 643 in correlation with angular variation presented in this study provide data that could be used for loss 644 correction of various angles when installations are to be made on angles other than the ones provided. 645 It is also to accommodate other PV applications, as earlier presented.

646

647 SEM/EDX analysis assisted in validating the optical losses by highlighting minerals that can absorb, attenuate, or scatter light to penetrate them. Table 2 presents SEM/EDX results showing that some of 648 649 the particles on ABV's coupon are translucent and opaque, which could reduce light penetration. A significant amount of dust accumulated on the coupon because the wet weather condition (light rain in 650 651 February) created cementation and lower wind velocity. A mineral particle such as Montmorillonite was found on the coupon, opaque and came from clay, and is predominantly used as a building material 652 653 in the region. Chamosite transparency is translucent to sub-translucent and is a mineral found in the 654 environment with low iron deposition. Chanchangi et al. [11] reported that this mineral could be found 655 in laterite and sometimes loamy soil, and these are also used as building materials in the region. Spodumene is obtained when minerals are ignited, and this could be due removal or breaking of rocks 656 for road construction, quarry activity or mining. These minerals identified from the ABV coupon show 657 658 that the region's high soiling rate is directly related to construction activity and weather activity. To further validate the minerals recorded, the main pollutant and AQI from Table 2 were analysed, which 659 660 shows that PM_{10} and $PM_{2.5}$ are very high values; this supports the claim that particles recorded on the coupons are from construction sites, landfills, and windblown dust. 661

662

Findings show optical losses on all coupons, even though few are minor. However, accumulation causes required additional information, as included in some paragraphs above. The analysis shows that particles in the atmosphere or the AQI cannot be used as the only source for determining the accumulation rate as wind speed, humidity, and precipitation could play a vital role in allowing particles settlement on surfaces.

668

The soiling mapping result presented in the previous section highlighted a significant variation between the result from this study and information presented by the GSA, with higher soiling rates determined during this study. The variation observed from the annual mapping is significantly wide. The maximum variation was observed from ABV, where a 746.69 kWh/kWp difference was recorded between the PV output using soiling data from this study and the PV yield based on 4.5% soiling. All the annual soiling data from the other sites in this study presented higher soiling losses than the GSA constant value, shown in Fig. 5.

676

677 Each season presented a massive variation between the PV yield (with soiling data obtained from this study) and GSA PV yield (a constant soiling rate of 4.5%). The maps show that the most significant 678 679 disparity recorded in the Northern region during the dry season was from ABV with about 536.14 kWh/kWp difference, while the most significant disparity recorded during the wet season was from 680 681 PHC with about 388.12 kWh/kWp. This regional soiling disparity that is directly related to seasons is due to the intertropical displacement caused by the Coriolis force. During the dry season, the PV yield 682 683 is higher in the Northern region, and the most significant soiling loss was recorded in the North-central. 684 While during the wet season, the Southern part tends to have a high PV yield due to the more extended

duration of the season in the region and the most significant soiling loss was recorded in the South-685 686 south region. As earlier mentioned, the dust movement is influenced by north-easterly low-level jets wind from the Saharan desert during the dry season. During the wet season, the dust movement is 687 688 influenced by south-westerly winds from the Gulf of Guineas and the Niger-Delta region, where oil 689 exploration activities are ongoing. By observing the pattern of the weather information provided in Fig. 690 2 (a) to (g), it is easy to know that the Northern and the Southern region have a climatic pattern that 691 substantially influences dust settlement and accumulation on an exposed surface. The maps in Fig. 6 692 and Fig. 7 illustrated higher PV yield degradation due to soiling rates in both seasons compared to GSA 693 values, and these seasonal variation data can be found in Fig. 8.

694

695 It is necessary to understand the monthly PV yield, considering the effect of soiling. There are individual 696 monthly differences between PV yield employing soiling data from this study and PV yield with a 4.5% constant soiling rate. A closer examination of results reveals that some months (mainly during the dry 697 698 season), such as November, December, January, February, March and April, have a higher PV yield 699 degradation rate variation. The most significant variation was observed in February, where about 31.05 700 kWh/kWp disparity was recorded in ABV, followed by December with 27.53 kWh/kWp in PHC, 701 January with 24.81 kWh/kWp in LOS, November with 21.85 kWh/kWp in ABV. The few negative 702 figures shown in Fig. 8 are when GSA soiling rates in percentage become higher than the optical losses 703 recorded from this study. Variations are minor during the months that fall within the wet season. Some 704 months have PV yield with soiling values that turns out to be lower than GSA values because the soiling 705 loss is lower than 4.5% (GSA soiling loss). The map for the month of May illustrated that PV yield 706 (with soiling determined from this study) in three regions (ENU, LOS, and PHC), all from the Southern 707 part of the country are less than 4.5% (GSA soiling loss value); the June map shows only one region 708 (KAD); the August map shows two areas (KAD and MIU); the September map shows three regions 709 (ENU, KAD, and LOS); while the October map shows only one region (ENU). Variation data for each 710 month is shown in Fig. 8.

711

712 As earlier stated, the PV yield presented in the Global solar atlas was clearly emphasised that it does 713 not adequately account for a number of important factors that potentially impact the PV output. 714 However, soiling data cannot be constant, and caution should be taken when generalising such 715 information since it can significantly impact the PV yield and mislead the potential users of the information. The findings demonstrated more realistic and accurate soiling losses, as shown in Fig. 8, 716 717 where the disparity values of the soiling site were illustrated, comparing PV yield with soiling data from 718 this study and GSA PV yield with constant 4.5% soiling considering the exposure period. 719

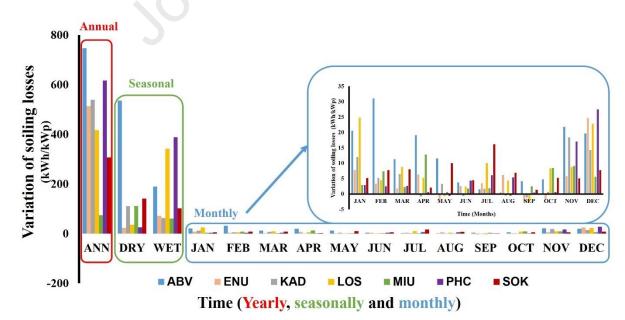


Fig. 8. Variation of soiling losses between GSA and results from this study. The ANN highlights the 722 annual variation, Dry and Wet show the seasonal variation, highlighting dry seasonal variations and the

123 latter shows wet seasonal variations for the seven regions. The Monthly illustrates the variation of each region in every calendar month. Soiling stations are highlighted using various colours in the chart.

725

726 The low-cost novel approach employed in this study has potential advantages; it could guide research 727 to know the appropriate mitigating techniques required for a particular region in the country and prompt 728 a significant step toward finding a lasting solution to the PV soiling problem. The presented research 729 concept could be replicated elsewhere, from regional to global scale. Furthermore, it could be used for 730 other applications in the glass (to determine the period cleaning cycle for cleaning exposed glass to 731 reduce cost); financial (to calculate more accurate funding to invest in developing large scale solar 732 energy assets); chemical (provide information on the appropriate chemical material to use for 733 developing self-cleaning coating); mechanical (to types of machinery that could be used for optimum 734 maintenance design at lower cost); and mining industries (to highlight potential mineral deposition across the region of study). It is clear that there are significant benefits from the output of this study 735 736 since the previous information is somehow misleading due to less accuracy of the soiling information, 737 which might be causing wrong installation and maintenance planning that could lead to less yield or 738 system failure at the extremity. The findings provided benefits such as more accurate and realistic 739 information for better PV installation and maintenance planning to achieve more yield. The result could 740 assist in optimising the maintenance procedure to generate more output at less maintenance cost.

741 742 **5 Conclusion**

Soiling has a detrimental effect on PV performance, and this problem is unacceptably underestimated 743 744 and understudied in some regions, such as Nigeria, with massive solar energy potential, low PV 745 penetration and high energy deficit. This study demonstrated high optical losses in a region with enormous solar energy potential but shallow PV penetration. The results show that coupons positioned 746 747 on horizontal planes accumulate more dust than the tilt angle (45°) and vertical plane, providing a 748 positive advantage of less soiling losses to integrated RE due to varying angular position. The work 749 reveals ABV as the region with the most significant soiling loss in the country and February as the month when the most considerable soiling loss occurs. The outcome shows that the Northern region has 750 751 a higher soiling loss during the dry season, with ABV having the most significant loss, while during the wet season, the Southern region shows a higher accumulation, with LOS and PHC being on top of the 752 753 list. SEM/EDX analysis confirmed that minerals collected on coupon surfaces negatively affect light 754 transmittance, causing the optical losses to be recorded. The AQI and pollutant data validate the type 755 of particles recorded. The weather condition shows why high accumulation values are recorded from each region and during a specific season, impacting seasonality variation. The significant disparity has 756 been illustrated when results from this study are correlated with already published work. 757

758

759 The study demonstrated a unique technique that investigated optical losses by employing a radical 760 approach and showing a wide variation of soiling losses which has been under-reported by previous 761 studies and also grossly underestimated, which might be due to overlooking regional variability and the 762 seasonal difference that plays a vital role in increasing or decreasing the losses rate. In conclusion, this 763 work offers a successful low-cost approach that could be employed to determine soiling induced losses 764 on PV worldwide. However, the method could be further refined by increasing the number of soiling 765 stations and narrowing the distance. It is recommended that a similar soiling station should be installed 766 in some regions to acquire *in-situ* soiling data that would reduce the variation gap discovered in this study and provide researchers, policymakers, potential PV investors, and commercial PV companies 767 768 with more realistic PV yield potential. Finally, the information presented in this study should use to 769 determine the appropriate cleaning procedure and optimising it to improve the penetration and scale-up 770 of the solar energy technologies in regions with high energy demand and low penetration to achieve the 771 sustainable development target goal 7 [37] ("Ensure access to affordable, reliable, sustainable and 772 modern energy for all").

773

774 Acknowledgement

This study is funded through a PhD research grant to Yusuf N. Chanchangi from the Petroleum Technology Development Fund, with additional support from the 'Joint UK Indian Clean Energy Center (JUICE)' and the RCUK's Energy Program (Contract No: EP/P003605/1). The EPSRC IAA grant (Contract No-EP/R511699/1) obtained from Dr Aritra Ghosh also supported this work. The authors

- gratefully acknowledge all the funding. All the original materials and data can be accessed upon request
- via email to the corresponding authors in support of open access research. The study was conducted in collaboration with the Nigerian Civil Aviation Authority, Solar Energy Research Centre Usman Dan Fodio University, Sokoto, National Centre for Energy Research and Development, University of Nigeria Nsukka, and Dornier Aviation Nigeria. The authors gratefully acknowledge the assistance and expertise of all the people involved in this research. This paper's content is solely the authors' responsibility and may not necessarily represent the views of funders and collaborators as both were not directly involved in writing the article.
- 787

788 Author information

789 Affiliations

- Solar Energy Laboratory, Environment and Sustainability Institute (ESI), University of Exeter,
 Cornwall Campus Penryn, TR10 9FE, United Kingdom
- 792 Yusuf N. Chanchangi
- 793

794 College of Engineering, Mathematics and Physical Sciences, Environment and Sustainability 795 Institute (ESI), University of Exeter, Cornwall Campus Penryn, TR10 9FE, United Kingdom

- Aritra Ghosh, Sentilarasu Sundaram, and Tapas, K. Mallick
- 797
- Advances in Photovoltaic Technology (AdPVTech), CEACTEMA, University of Jaén, 23071
 Jaén, Spain
- 800 Leonardo Micheli and Eduardo F. Fernández

801

802 Author contributions

- 803 Yusuf N. Chanchangi, Aritra Ghosh, Sentilarasu Sundaram, and Tapas K. Mallick designed the study.
- 804 Yusuf N. Chanchangi and Aritra Ghosh conducted the analysis.
- 805 Yusuf Chanchangi wrote the initial draft.
- Tapas K. Mallick, Aritra Ghosh, Leonardo Micheli, and Eduardo F. Fernández contributed to
 methodological refinements and conceptual considerations.
- All authors contributed to the manuscript's completion through comments and edits of the text andfigures.

810

811 **Competing interests**

- 812 The authors declare no competing interests.
- 813

814 Additional information

- 815 Supplementary Material.
- 816

817 Correspondence

818 Correspondence and requests for materials should be addressed to Yusuf Nadabo Chanchangi.

820	Refer	
821	[1].	REN21, Renewables 2020: Global Status Report. 2020: Paris: REN21 Secretariat.
822	[2].	Chanchangi, Y.N., Ghosh, A., Sundaram, S., and Mallick, T. K., Dust and PV Performance in
823		Nigeria: A review. Renewable and Sustainable Energy Reviews 2020. 121(2020): p. 1.
824	[3].	Gupta, V., Sharma, M., Pachauri, R. K., and Babu, K. N. D., Comprehensive review on effect
825	C- J.	of dust on solar photovoltaic system and mitigation techniques. Solar Energy, 2019. 191 (2019):
826		p. 596-622.
827	[4].	Costa, S.C.S., Sonia, A., Diniz, A. C. and Kazmerski, L. L., Solar energy dust and soiling R&D
828	ודן	progress: Literature review update for 2016. Renewable and Sustainable Energy Reviews
829		2018. 82 (2018): p. 2504-2536.
830	[5].	Zaihidee, F.M., Mekhilef, S., Seyed, M., and Horan, B., <i>Dust as an unalterable deteriorative</i>
830	[5].	factor affecting PV panel's efficiency: Why and how. Renewable and Sustainable Energy
832		
	[6]	Review, 2016. 65 (2016): p. 1267-1278.
833	[6].	Cano, J., John, J. J., Tatapudil, S. and TamizhManil, G., Effect of Tilt Angle on Soiling of
834		Photovoltaic Modules, in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). 2014,
835		IEEE: Denver, CO USA. p. 3174-3176.
836	[7].	Ghazi, S., and Ip, K., The effect of weather conditions on the efficiency of PV panels in the
837		southeast of UK. Renewable Energy, 2014. 69 (2014): p. 50-59.
838	[8].	Sulaiman, S.A., Guangul, F. M., Hidayat-Mat., M. N., and Mohammed Bou-Rabee, A., Real-
839		Time Study on the Effect of Dust Accumulation on Performance of Solar PV Panels in Malaysia
840		in 1 st International Conference on Electrical and Information Technologies ICEIT'2015. 2015,
841		IEEE: March 25-27, 2015 Marrakech, Morocco.
842	[9].	Alnaser, N.W., Al Othman, M. J., Dakhel, A. A., Batarseh, I., Lee, J.K., Najmaii, S.,
843		Alothman, A., Al Shawaikh, H. and Alnaser, W.E., Comparison between performance of man-
844		made and naturally cleaned PV panels in a middle of a desert. Renewable and Sustainable
845		Energy Reviews, 2018. 82 (2018): p. 1048-1055.
846	[10].	Adinoyi, M.J., and Said, S. A. M., Effect of dust accumulation on the power outputs of solar
847		photovoltaic modules. Renewable Energy 2013. 60 (2013): p. 633-636.
848	[11].	Chanchangi, Y.N., Ghosh, A., Sundaram, S. and Mallick, T. K., An analytical indoor
849		experimental study on the effect of soiling on PV, focusing on dust properties and PV surface
850		material. Solar Energy, 2020. 203 (2020): p. 46–68.
851	[12].	Australian-Standard, AS 4509.2-2002 Stand-alone power systems - System design guidelines,
852		in 3.4.3.6 Derating Factor. 2002, Standards Australia International Ltd: Sydney, Australia.
853	[13].	Patrick, D.B., and Bruce, H. K., A Handbook on Artificial Soils for Indoor Photovoltaic Soiling
854	r - 1.	Tests, in SAND2014-19199. 2014, Sandia National Laboratories, Sandia Corporation:
855		Albuquerque.
856	[14].	Enphase-Energy, Guide to PVWatts Derate Factors for Enphase Systems When Using PV
857	[1,1].	System Design Tools. 2014, Enphase Energy: Online.
858	[15].	Tanesab, J., Parlevliet, D., Whale, J. and Urmee, T., <i>Energy and economic losses caused by</i>
859	[10].	dust on residential photovoltaic (PV) systems deployed in different climate areas. Renewable
860		Energy 2018. 120 (2018): p. 401-412.
861	[16].	GSA. Site. 2021 [cited 2021 $01/02/2021$]; Available from:
862	[10].	https://globalsolaratlas.info/map?c=11.894839,8.536414,11&s=11.894839,8.536414&m=site
863	[17].	Li, X., Mauzerall, D. L., and Bergin, M. H., <i>Global reduction of solar power generation</i>
803 864	[1/].	
	F101	efficiency due to aerosols and panel soiling. Nature Sustainability, 2020. 3 (2020): p. 720–727.
865	[18].	Mekhilef, S., Saidur, R. and Kamalisarvestani, M., <i>Effect of dust, humidity and air velocity on</i>
866		<i>efficiency of photovoltaic cells.</i> Renewable and Sustainable Energy Reviews 2012. 16 (2012):
867	[10]	p. 2920- 2925.
868	[19].	Saidan, M., et al., Experimental study on the effect of dust deposition on solar photovoltaic
869		panels in desert environment. Renewable Energy, 2016. 92: p. 499-505.
870	[20].	Chanchangi, Y.N., et al., Soiling on PV performance influenced by weather parameters in
871		Northern Nigeria. Renewable Energy, 2021.
872	[21].	Chanchangi, Y.N., et al., In-situ assessment of photovoltaic soiling mitigation techniques in
873		northern Nigeria. Energy Conversion and Management, 2021. 244: p. 114442.
874	[22].	Mithhu, M.H., Rima, T. A., and Khan, M. R., Global analysis of optimal cleaning cycle and
875		profit of soiling affected solar panels. Applied Energy, 2021. 285(2021): p. 1-10.

- [23]. Micheli, L., Deceglie, M. G., and Muller, M., *Mapping Photovoltaic Soiling Using Spatial Interpolation Techniques*. IEEE Journal of photovoltaics, 2019. 9(1): p. 272-277.
- [24]. Cordero, R.R., Damiani, A., Laroze, D., MacDonell, S., Jorquera, J., Sepúlveda, E., Feron, S.,
 Llanillo, P., Labbe, F., Carrasco, J., Ferrer, J., and Torres, G., *Efects of soiling on photovoltaic*(*PV*) modules in the Atacama Desert. Scientific Reports, 2018. 8(13943): p. 1-14.
- [25]. Said, S.A.M., and Walwil, H. M., *Fundamental studies on dust fouling effects on PV module performance*. Solar Energy, 2014. **107**(2014): p. 328-337.
- 883 [26]. Mani, M., and Pillai, R., Impact of dust on solar photovoltaic (PV) performance: Research status, challenges and recommendations. Renewable and Sustainable Energy Reviews 2010.
 885 14 (2010): p. 3124-3131.
- Tanaka, T.Y., and Chiba, C., *A numerical study of the contributions of dust source regions to the global dust budget.* Global and Planetary Change 2006. **52** (2006): p. 88-104.
- 888 [28]. World-Bank. *Indicator*. 2021 2021 [cited 2021 24/02/2021]; Available from: https://data.worldbank.org/indicator/SP.POP.TOTL?locations=NG.
- IEA. Nigeria_Energy_Outlook: Analysis from Africa Energy Outlook 2019. 2021 8 November
 [29]. IEA. Nigeria_Energy_Outlook: Analysis from Africa Energy Outlook 2019. 2021 8 November
 [2019 [cited 2021 20/02/2021]; Available from: https://www.iea.org/articles/nigeria-energy outlook
- [30]. Coello, M. and L. Boyle, Simple Model for Predicting Time Series Soiling of Photovoltaic
 Panels. IEEE Journal of Photovoltaics, 2019. 9(5): p. 1382-1387.
- [31]. Javed, W., Guo, B. and Figgis, B., *Modeling of photovoltaic soiling loss as a function of environmental variables*. Solar Energy, 2017. **157** (2017): p. 397-407.
- 897 [32]. World-Weather-Online. *Weather*. 2019 [cited 2019 14/11/2019]; Available from: https://www.worldweatheronline.com/.
- 899 [33]. Air-Plume-Labs. Air Quality Index. 2020 [cited 2020 14/11/2020]; Available from: https://air.plumelabs.com/en/.
- [34]. Venkatramanan, S., Chung, S. Y., and Prasanna, M. V., *GIS and Geostatistical Techniques for Groundwater Science*. 2019, Amsterdam, Netherlands: Elsevier.
- 903[35].CCE-NEWS-TEAM. 5 largest construction companies in Abuja, Nigeria.[Online]202090412/July/2020[cited202025/11/2020];Availablefrom:905https://cceonlinenews.com/2020/07/12/5-largest-construction-companies-in-abuja-nigeria/.
- [36] [36]. Gholami, A., Saboonchi, A. and Alemrajabi, A. A., *Experimental study of factors affecting dust accumulation and their effects on the transmission coefficient of glass for solar applications.* [908] Renewable Energy 2017. **112** (2017): p. 466-473.
- 909
 [37].
 SDGs-UN.
 Goal
 7.
 2021
 [cited
 2021
 09/05/2021];
 Available
 from:

 910
 https://sdgs.un.org/goals/goal7.
 100/05/2021];
 Available
 100/05/2021];
 Available
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/2021];
 100/05/

Author contributions

Yusuf N. Chanchangi, Aritra Ghosh, Sentilarasu Sundaram, and Tapas K. Mallick designed the study.

Yusuf N. Chanchangi and Aritra Ghosh conducted the analysis.

Yusuf Chanchangi wrote the initial draft.

Tapas K. Mallick, Aritra Ghosh, Leonardo Micheli, and Eduardo F. Fernández contributed to methodological refinements and conceptual considerations.

All authors contributed to the completion of the manuscript through comments and edits of the text and figures.

Journal Pre-proof

Competing interests

The authors declare no competing interests.

ournal Proproo