
Using a Conceptual Data Language to

Describe a Database and its Interface

Kenneth J. Mitchell, Jessie B. Kennedy and Peter J. Barclay

Computer Studies Department, Napier University
Canal Court, 42 Craiglockhart Avenue, Edinburgh EH14 1LT, Scotland, UK

e-mail: <kenny,jessie,pete>@dcs.napier.ac.uk

Abstract. We propose a conceptual approach to defining interfaces to
databases which uses the features of a fully object oriented data language to
specify interface objects combined with database objects. This achieves a
uniform, natural way of describing databases and their interfaces. It is shown
how this language can be used in the role of data definition and, when
combined with interface classes, in the definition of database interfaces. A
prototype developed to test this approach is presented.

1 Introduction

The presentation and manipulation of information are central to interacting with
database systems. The efficacy of this interaction is determined by the interface to the
database and therefore the design and usability of such interfaces requires
investigation to ensure optimal facilitation.

The traditional approach to providing interfaces to databases is through a variety of
textual language interfaces, such as SQL [17] and DAPLEX [43]. However, as these
interfaces rely heavily on the user to retain knowledge of the structure of the database
together with the syntax of commands, they are difficult to use without being
accomplished in this style of interaction.

In an attempt to improve the interaction with databases, forms based interfaces were
developed. A few notable results have been found on providing graphical interfaces
to relational databases, covering specific applications, HIBROWSE [20], Office-By-
Example [49][56], FORMANAGER [53] and general applications, Query-By-
Example [55], TIMBER [46], GUIDE [52], Santucci and Palmisano’s Visualiser
[42].

Graphical interfaces that support complex models of information have flourished in
recent years, with the application visualisation system (AVS) [48], and application
visualisation environment (AVE) [19], for dataflow visualisation. Surveys on

complex graphical interfaces provided by Pickover [37], and Wolfe et al [51] provide
insights into their potential.

With the development of object oriented databases systems, the variety and
complexity of information modelled has increased. Two dimensional graphical
interfaces to object oriented databases have been developed for specific applications,
e.g. in EcoSystem [5] and the Banksia geographical information system [54], as well
as general applications, such as schema designers and browsers, e.g. Almarode’s
Schema Designer [1], the O2 browser [18], the CLOSQL interface [32], and Kirby
and Dearle’s Napier88 browser [28].

Recently, software and hardware technology has improved to the point where the
practical use of applications with interactive three dimensional graphics is a viable
prospect [41]. With this enabling technology and the promise of improved
interaction, 3D interfaces to databases are beginning to emerge, e.g. WINONA
[38][39], AMAZE [12][13], PIT [9], Bead [14], GRADE-3D [45], and LyberWorld
[24].

Many languages exist for the specification of graphical interfaces, from interface
programming languages, OWL [35], OSF/Motif [34], and graphics languages GKS
[2], PHIGS [3], to state-transition notations, such as the Storrs-Windsor notation
[50], which are surveyed by Green [22]. Higher level abstractions are found in
languages for user-interface management systems (UIMS), such as, COUSIN [23]
and MIKE [33] based on interaction sequence specification, and HIGGINS [25] and
the UIDE [21], which are based on data models. However these languages are
designed purely for interface design independent of database interface requirements.

An interface is a rather elusive entity. One interface style may be preferable to
another rather different one depending on the particular user’s requirements.
Considerable effort has been directed towards the customisation of interfaces to
databases, eg. EVE [36], CDMS [15], Dbface [26][27], and NIOME [30]. Attention
to this concern has been realised in the method of integration between data and
interface languages, i.e. by the close coupling, but ultimate separation of data and
interface objects. This permits the replacement of one set of interface objects for
another to support alternative interfaces to the same data.

Given this accumulation of many diverse interfaces to databases there is an
identifiable need for a concise language for database interface description. The
language would expect to achieve the same degree of specification which exists for
the description of data, in that interface objects may be defined with various
properties and behaviour. For this reason the authors believe that an interface to a
database should be specified in part of the database’s schema definition and must be
able to specify any level of interface or data visualisation sophistication.

This broadly applicable approach enables the definition of database interfaces from
simple command line textual interfaces to 3D interfaces. However, our work is
currently focusing on investigating the potential of 3D interfaces to databases [39].
The work presented in this paper describes a prototype 3D interface to an object
oriented database in which both the interface and the database is described using
NOODL [7], a simple data language intended to allow object oriented modelling of
data at a conceptual level.

The following section introduces NOODL by showing an example schema definition.
Section 3 continues this example with the introduction of interface classes for the
combined definition of a database and its interface. Section 4 presents the prototype
interface and how the language description may be mapped to an implementation.
Finally, conclusions and further work are discussed.

2 NOODL as a Data Language

The Napier Object Oriented Data Language (NOODL) is a simple language which
allows object oriented modelling of data at a conceptual level; it is introduced in [4],
described fully in [7] and most recently in [8] in its role as a query language. A
NOODL schema contains a list of class definitions, which show the name and
ancestors of each class. A class definition also includes a set of properties,
operations, constraints and triggers. Some of the details of this language are
exemplified in a NOODL schema describing a company database which holds
information about the departments in which employees are located (figure 1).

Departments and people have names and each employee has a job title; all of these
are represented by text strings. A person’s age is represented by a number. Every
department has a set of employees and every employee is associated with a
department. This is represented by the pair of obverted properties, employees and
department. A department can perform a query through its list_mature_employees
operation to return the set of all employees associated with that department, who are
older than 25. An employee may be transferred to any department, achieved by
simply changing the value of their department property through its transfer
operation. The fact that this is an obverted property implies this change will also
result in removing the employee from the current department’s employee set and
adding them to the new department’s employee set. The person’s age constraint
(PAC) defines the permitted limits for a valid age. This constraint is overridden in
the employee class, in order to disallow employees with an age of less than 18. An
employee may retire through object migration to person status. This happens
automatically once they reach the age of 65, through the use of the retiral trigger.
Employees may be promoted to managers and managers may be demoted to
employees through their promote and demote operations, respectively. Triggers and
constraints are detailed in [6].

schema Company

class Department
properties

name : Text ;;
employees : # Employee \ department

operation
list_mature_employees : # Employee is

Employee where self.employees.age>25

class Person
properties

name : Text ;;
age : Number

constraint
PAC is 0<self.age and self.age<120

class Employee
ISA Person
properties

job_title : Text ;;
department : Department \ employees

operation
transfer Department d is self.department(d) ;;
retire is self.goto(Person) ;;
promote is self.goto(Manager)

constraint
override PAC is 18<self.age

trigger
retiral is self.age>65 :: self.retire

class Manager
ISA Employee
operation

demote is self.goto(Employee)

end_schema { Company }

Fig. 1. A company schema definition

3 NOODL as a Database Interface Language

In order to provide an interface for the data described in figure 1 it is necessary to
describe how the data should be visually represented in the interface. The authors
believe that a set of objects in an interface should be described conceptually in a
similar manner to the objects contained in a database, therefore NOODL has been
adopted as a possible language with which to describe the database interface.

An interface object contains only those features pertaining to the behaviour and
visual representation of the database object in the interface. Using NOODL, an
interface object can be represented by a set of properties describing its visual

appearance, a set of operations describing its interaction with the user and other
objects, a set of constraints describing how an object’s behaviour or properties may
be constrained in the visualisation and a set of triggers which respond to ‘events’ in
the interface. Therefore, any interface should be able to be described by a NOODL
schema thereby allowing the interface objects to be stored in the database along with
the database objects. This provides a unified model of the data and interface (figure
2). This model states that each database object with a set of data related features has
an associated interface object with a set of interface related features.

Fig. 2. Unifying Model of Data/Interface Objects

In using NOODL to describe data objects the properties and operations of the object
are entirely free and dependent only on the semantics of the equivalent real world
object being modelled. However, when defining interface objects there exists a ‘well
defined set’ of interface properties and operations which may be used to describe
interface objects, the subset used determining the sophistication of the visualisation.
The values for these properties define the representation of the objects in the
interface. The properties used in the prototype described here include:

• The shape of an object as it appears in the interface. This may be a 2/3D object, a
dialog form, or simply refer to a textual description.

• The position of the object in 2/3D space (which may be translated).

• The size of the object (which may be scaled).

• The orientation of the object relative to interface space (which may be rotated).

• The colour of the object.

• The extent of the object which defines the bounding volume of the object in the
interface.

This by no means defines the full range of interface properties which may be of use
in a conceptual description, e.g. ambient, diffuse and specular coefficients, texture
and properties of animated objects, such as, path, spin speed and velocity.

The properties of interface objects may be defined as part of the schema (see
Appendix for example definition of position, shape, size, orientation and colour
used in the prototype) or may be pre-defined in the language.

Interface object operations are those which either manipulate the interface object in
some way or describe interface actions performed by the user to which the object will
respond. Interface object manipulation operations are defined in the same way as
data object operations, except that they manipulate some aspect of the interface. An
interface action is described as a sequence of primitive interface actions. The actions
in this example are move and select (see Appendix for definitions of these). To
describe that a promotion operation requires the user to select an object (a mouse-
click in a WIMP interface) the following might be written,

promote is self.select

An initial set of primitive actions identified are select, pick_up, drop, move, turn,
time_click. With drop, move, turn, and time_click interface actions a value is
associated. For example, if an object is moved to a position this may be described by,

self.move.position

Constraints on interface objects are merely the same as constraints on data objects,
but are particular to interface object properties as opposed to data object properties.
Examples of these have been shown in the definition of Colour and Position
(Appendix).

In common with interface object operations and constraints, triggers may pertain to
the values of interface object properties. In addition, triggers are used to respond to
interface actions described in the operations section. For example, if the user
performs a promote action on an employee, i.e. selecting it, the corresponding data
operation may be triggered with the following,

PET is self.promote :: self.data.promote

This method of representing interface actions is similar to the approach used in
many user interface programming languages [35], i.e. the event is declared for the
operating system’s event handler as an undefined operation which is defined in an
event response operation. The code which states how an event will be recognised is
hidden. This allows the designer to specify exactly what sequence of interface actions
are required to perform an operation at an abstract level. This exemplifies the
integration of data language and interface language. Once the concept of a trigger is

understood the modeller has knowledge to apply this to both responding to integrity
violations in the data as well as responding to interface actions.

An Example Company Database Interface

This example (figure 3) defines a 3D interface with direct representations of
departments and employees.

The data classes have been omitted for brevity, but are identical to those in figure 1
with the exception that each data class has an obverted property, interface, which
couples a data object to its interface object. The obverted pair of interface and data is
the first property in each interface class.

When referencing a data object’s properties from its interface object via the data
property, this data property may be omitted, i.e.

self.data.department.interface.extent

can be expressed in short-hand as,

self.department.extent

As every interface object has a data object and vice-versa, their associated properties
may be referenced directly.

Departments are represented by a department shape positioned on the ‘ground’ in the
interface and is constant for all departments. The colour and size are not specified
thereby allowing different departments to take on different appearances in the
interface. The move department trigger (MDT) states that when a department object
is moved then the employees belonging to that department are triggered to move to a
new relative position inside the extent of the department’s new position.

Persons do not have a representation in the interface as we are only interested in
employees. Employees are represented by blue human shapes with a vertical
orientation. Therefore all employees look the same in this interface only their
position may vary. The in department constraint (IDC) specifies the position of the
employee inside the spatial extent of a department. The promote employee trigger
(PET) states that on execution of the promote operation in the interface object the
promote operation of the data object is triggered. Similarly the transfer employee
trigger (TET) triggers the equivalent data operation, passing a parameter defining
the new department to which the employee has been transferred. Manager objects are
specialised kinds of employees shown by the ISA reserved word. This demonstrates
that interface objects may be inherited and that their properties, operations, etc. may
be overridden. For example, the manager’s inherited colour property is overridden
from blue to white.

schema Company

{ Data Classes }
...
{ Interface Classes }

class Department_Interface
properties

data : Department \ interface ;;
shape : Shape is “department” ;; { constant }
position : Position is “on ground” ;; { constant }
size : Size ;;
colour : Colour

trigger
MDT is not self.extent.holds(self.employees.position)::

self.employees.position.put_inside(self.extent)

class Person_Interface
property

data : Person \ interface

class Employee_Interface
ISA Person_Interface
properties

data : Employee \ interface ;;
shape : Shape is “human” ;; { constant }
position : Position ;;
orientation : Orientation is “vertical” ;; { constant }
colour : Colour is “blue” { constant }

operations
promote is self.select ;;
transfer is not self.move.position.is_inside

(self.department.extent)
constraint

IDC is
self.position.is_inside(Department_Interface.extent)

trigger
PET is self.promote :: self.data.promote ;;
TET is self.transfer :: self.data.transfer

(Department where its.extent.holds(self.position))

class Manager_Interface
ISA Employee_Interface
properties

data : Manager \ interface ;;
override colour : Colour is “white” { constant }

operation
demote is self.select

trigger
DMT is self.demote :: self.data.demote

end_schema { Company }

Fig. 3. A combined company database interface definition

 Fig. 4. Prototype company database interface

4 Prototype Interface

A prototype has been developed to test and evaluate the use of NOODL as a database
interface language. It has been implemented on a PC-platform under Microsoft
Windows in C++ [47], using the Borland’s ObjectWindows Library [11] [35] and the
RenderWare [40] graphics dynamic link library for the 3D representation of interface
objects. A NOODL data model layer (similar to ObjectStore’s Meta Object Protocol
[29]) implemented with the POET [10] persistent C++ extension provides a means of
dynamically creating persistent database interface schemata together with their data.

The prototype system allows the user to specify NOODL schemata for database
interfaces interactively and automatically generates the resulting 3D representation
from instances created by the user. Currently, this implementation supports only the
structural aspects of NOODL. Therefore, for both data and interface schemata only
the properties and inheritance semantics can be realised in the prototype without
behavioural aspects, such as operations, constraints and triggers. There are two
modes of operation in the system, designer mode which allows the user to

manipulate the database interface schema and instances and interface mode which
simulates the specified database interface.

Figure 4 shows a display from the prototype for the schema described. The display
shows several windows each depicting a different viewpoint of the interface. The
main window shows all the departments in the database with their associated
employees, the medium sized window shows a close up of one department while the
smallest windows show close-ups of some employees. Any number of windows of
different database interfaces are permitted and the user is free to navigate anywhere
in the 3D space. The representation for the employees and departments in figure 4
are purposely simple; however a more sophisticated visualisation of the interface to
the Company database is possible.

Figure 5 displays an interface where the employees and departments can be
represented by more sophisticated shapes. Selecting an object in designer mode
shows its instance details. The dialog box in the top right of the display shows an
Employee data instance and provides access to its properties and associated interface
instance through the middle-right dialog box. The dialog box on the bottom right of
the display shows a preview facility in which the shapes available for assigning to
objects may be viewed.

Fig. 5. Alternative company database interface

The performance of this software for interacting with large scale complex collections
of data is determined by the efficiency of both hardware and software architectures
supporting graphical and database system components. With a high-specification
system sophisticated interfaces (such as figure 5) may be used whilst maintaining a
practical level of interactivity.

5 Conclusion

We have presented a unified model for the conceptual design of databases and their
interfaces. In considering a language suitable for the description of interfaces to
databases, we chose to investigate the use of NOODL. The authors believe that the
following benefits have been gained from such an approach:-

• An integrated data and interface language provides a much tighter coupling
between the data and interface components of a database system. This facilitates
the construction of direct manipulation interfaces [44] as shown in the prototype
presented.

• Cooper [16], states that the provision of interfaces requires considerable ‘intricate
low-level programming’ e.g. event handling, drawing graphical primitives,
managing interface component identifiers, etc.. We have presented a language
which allows the conceptual design of interfaces in abstract terms.

• NOODL provides a fully object oriented data model. Features such as,
polymorphism, extensibility, complex objects and behaviour which have been
used to great effect in existing interface programming languages [35], have been
shown to be equally effective in a conceptual interface language.

• The provision of a unified model and language results in the necessity to learn
only one language for both database and interface description.

• The impedance mismatch existing between data languages and interface
languages observed by Paton [36] has been eliminated through the use of a
common language for both.

• Given any particular graphical interface to a database, a database system must be
able to regenerate the visual layout of the interface. As NOODL is a language for
describing database contents, this implies that if it is used to describe an
interface, then this interface information may be stored in the database. Storage
of the interface’s description in the database facilitates this regeneration.

6 Further Work

Further work to be undertaken includes the development of both NOODL as a
language for the specification of database interface descriptions and further

experimentation of the interface styles for databases using the prototype software
already developed. In addition the prototype will be enhanced to support the
behaviour of operations, constraints and triggers on the data. The architecture which
fully supports the genericity and configurability of this prototype requires further
development for these enhancements.

The presentation of NOODL as an interface description language shows how we
suggest the language be used. It does not show exactly how certain conceptual
interface features map to their implementation. There are several ways in which this
may be done and although we have mapped our example to an implementation we
intend to investigate alternative mechanisms before committing to a particular
specification.

As NOODL is a general purpose conceptual modelling language we feel that there is
enormous potential for the variety of features that may be described in an interface
using this language. We plan to investigate the full power of NOODL is this way and
evaluate NOODL as an interface description language in comparison to existing
purpose-built user interface languages.

In providing an interface to a database it is possible to view the database in many
different ways. Possible interfaces to databases include ones based on a schema
visualisation, a schema visualisation combined with some instance representation or
a representation of all the instances in the databases. In addition to this, different
users of the same database may have differing preferences for how they wish to
visualise and interact with the data. Therefore, besides developing a more
sophisticated or realistic example interface using the prototype, it is planned to
experiment with interfaces based on these different views of a database and the
ability to switch between them.

It is important that in providing an interface to a database for end-users that the
layout of the objects in the interface be ‘meaningful’. We plan to investigate the
possibility of defining layouts of interfaces and the automatic generation of the
layouts from its definition. This investigation includes the generation of
visualisations for the results and construction of database queries.

Addressing these issues requires an inter-disciplinary approach. The results of
research on both databases and human-computer interaction require integration in a
framework to promote organised mutual exploitation. In satisfying this need a
conceptual framework for user-interfaces to databases has been developed [31].

References

1. J. Almarode (1991) Issues in the Design and Implementation of a Schema
Designer for an OODBMS, ECOOP’91.

2. A.N.S.I. (1985) American National Standard for Factors Engineering of
Visual Display Terminal Workstations - Graphics Kernal System (GKS). American
National Standards Institute.

3. A.N.S.I. (1988) American National Standard for Information Processing
Systems - Programmer’s Hierarchical Interactive Grahpics System (PHIGS).
American National Standards Institute.

4. P.J. Barclay & J. Kennedy (1991) Regaining the conceptual level in object
oriented data modelling. BNCOD, 9, 269-305.

5. P.J. Barclay & J.B. Kennedy (1992) Using a Persistent System to Construct a
Customised Interface to an Ecological Database, 1st International Workshop on
Interfaces to Database Systems, 1:14.

6. P.J. Barclay & J.B. Kennedy (1992) Semantic Integrity for Persistent Objects,
Information and Software Technology, 34:8, 533-541.

7. P.J. Barclay (1993) Object oriented modelling of complex data with
automatic generation of a persistent representation. Phd Thesis. Edinburgh: Napier
University.

8. P.J. Barclay & J.B. Kennedy (1994) A conceptual language for querying
object-oriented data, Proceedings of BNCOD, 12:13, 187-204.

9. S. Benford & J. Mariani (1994) Populated Information Terrains, 2nd
International Workshop on Interfaces to Databases, 2:9, 159-169.

10. B.K.S. Software (1994) POET (Version 2.1) - Programmer’s & Reference
Guide. B.K.S. Software.

11. Borland (1995) Borland C++ compiler (version 4.0) - user manual. Borland
International Inc.

12. J. Boyle, J.E. Fothergill & P.M.D. Gray (1993) Design of a 3D user interface
to a database, Database Issues for Data Visualisation Workshop.

13. J. Boyle, J.E. Fothergill & P.M.D. Gray (1994) Amaze: a three dimensional
graphical user interface for an object oriented database, 2nd International Workshop
on Interfaces to Databases, 2:7,117-131.

14. M. Chalmers (1994) Design Perspectives in Visualising Complex
Information, FADIVA Workshop, 1:4.

15. R. Cooper (1991) Configurable data modelling systems, Entity-Relationship
Conference, 9,35-52.

16. R. Cooper (1994) Configuring Database Query Languages, 2nd International
Workshop on Interfaces to Databases, 2:1, 1-17.

17. C.J. Date (1987) A Guide to the SQL Standard, Addison-Wesley.

18. O. Deux, et al (1991) The O2 System, Communications of the ACM, 34:10,
34-48.

19. D.S. Dyer (1990) A Dataflow Tookit for Visualisation, IEEE Computer
Graphics and Applications, 10:4, 60-69.

20. G.P. Ellis, J.E. Finlay, A.S.Pollitt (1994) HIBROWSE, 2nd International
Workshop on Interfaces to Databases, 2:3,45-58.

21. J. Foley, W. Kim, S. Kovacevic, & K. Murray (1989) Defining Interfaces at a
High Level of Abstraction, IEEE Software, 6:1, 25-32.

22. M. Green (1987) A Survey of Three Dialog Models, ACM Transactions on
Computer Graphics, 5:3, 244-275.

23. P. Hayes & P. Szekely (1983) Graceful Interaction Through the COUSIN
Command Interface, International Journal of Man-Machine Studies, 19:3, 285-305.

24. M. Hemmje (1994) LyberWorld - A 3D Graphical User Interface for Fulltext
Retrieval, FADIVA Workshop, 1:5.

25. S. Hudson & R. King (1988) Semantic Feedback in the Higgens UIMS, IEEE
Transactions on Software Engineering, 14:8, 1188-1206.

26. R. King & M. Novak (1993) Designing Database Interfaces with Dbface,
ACM Transactions on Information Systems, 11, 105-132.

27. R. King & M. Novak (1989) FaceKit: A Database Interface Design Toolkit,
Proceedings of VLDB, 15.

28. G.N.C. Kirby, & A. Dearle (1990) An Adaptive Graphical Browser for
Napier88, Technical Report, University of St.Andrews.

29. M.O.P. (1994) ObjectStore - Language Interface Users Guide (Release 3.0),
Object Design Ltd, 249-326.

30. K.J. Mitchell (1994) Schema visualisation. MSc Thesis. Edinburgh: Napier
University.

31. K.J. Mitchell, J.B. Kennedy, & P.J. Barclay (1995) A Framework for
Interfaces to Databases, Technical Report, Napier University (submitted to
VLDB’95).

32. S. Monk (1994) A Graphical User Interface for Schema Evolution in an
Object Oriented Database, 2nd International Workshop on Interfaces to Databases,
2:9, 171-184.

33. D. Olsen (1989) MIKE: The Menu Interaction Kontrol Environment, ACM
Transactions on Graphics, 5:4, 318-344.

34. O.S.F. (1989) OSF/MOTIF - Manual, Open Software Foundation.

35. O.W.L. (1994) ObjectWindows (Version 2.0) for C++ - Programmer’s Guide.
Borland International Inc.

36. N. Paton, G. al-Qaimari & K. Doan (1994) On Interface Objects In Object-
Oriented Databases, BNCOD, 12:11, 153-169.

37. C.A. Pickover (1991) Visualisation, Computers and the Imagination, Alan
Sutton Publishing.

38. M.H. Rapley (1994) Three dimensional interface for an object oriented
database. MSc Thesis. Edinburgh: Napier University.

39. M.H. Rapley (1994) Three dimensional interface for an object oriented
database, 2nd International Workshop on Interfaces to Databases, 2:8, 133-158.

40. RenderWare (1994) The RenderWare API Reference (Version 1.4), Criterion
Software Ltd.

41. G. Robertson, S. Card & J.Mackinlay (1993) Information Visualisation Using
3D Interactive Animation, Communications of the ACM 36, 57-71.

42. G. Santucci & F. Palmisano (1994) A Dynamic Form Based Visualiser for
Semantic Query Languages, 2nd International Workshop on Interfaces to Databases,
2:14, 235-250.

43. D.W. Shipman (1980) The Functional Data Model and the Data Language
DAPLEX, ACM Transactions on Database Systems, 6:1.

44. B. Shneiderman (1983) Direct Manipulation: a Step Beyond Programming
Languages, IEEE Computer, 16, 57-69.

45. F. Steinfath, K. Bohm & B. Lange (1994) Evaluation of Complex Information
Processing Systems in 3D-Space, FADIVA Workshop, 1:2.

46. M. Stonebraker & J. Kalash (1982) TIMBER: A Sophisticated Relational
Browser, Proceedings of VLDB, 8.

47. B. Stroustrup (1982) The C++ programming language. Addison-Wesley.

48. C. Upson, T. Faulhaber, D. Kamlins, D. Laidlaw, D. Schlegel, J. Vroom, R.
Gurwitz & A. van Dam (1989) The Application Visualisation System: A
Computational Environment for Scientific Visualisation, IEEE Computer Graphics
and Applications, 9:4, 30-42.

49. K.Y. Whang et al (1987) Office-by-Example: An Intergrated Office System
and Database Manager, ACM Transactions on Office Information Systems, 5:4, 393-
427.

50. P. Windsor & G. Storrs (1993) Practical User Interface Design Notation,
Interacting with Computers, 5:4, 423-438.

51. R.H. Wolfe, M. Needels, T. Arias & J.D. Joannopoulos (1992) Visual
revelations from Silicon Ab Initio Calculations, IEEE Computer Graphics and
Applications, 12:4.

52. H.K.T Wong & I. Kuo (1982) GUIDE: Graphical User Interface for Database
Exploration. Proceedings of VLDB, 8, 22-32.

53. S.B. Yao, A.R. Hevner, Z. Shi, & D. Luo (1984) FORMANAGER : An office
forms management system, ACM Transactions on Office Information Systems, 2:3,
235-262.

54. K.Yap & G.Walker (1992) The Object User Interface to the Banksia
Geographical Information System, 1st International Workshop on Interfaces to
Databases, 1:13.

55. M.M. Zloof (1975) Query by Example, Proceedings of the National Computer
Conference, 431-437.

56. M.M Zloof (1982) Office-by-example: A business language that unifies data
and word processing and electronic mail. IBM Systems Journal, 21:3, 272-304.

Appendix

Interface Class Definition

class Interface_Class
properties

shape : Shape ;;
position : Position ;;
size : Size ;;
orientation : Orientation ;;
colour : Colour ;;
extent : Extent

operations
move : Move ;;
select : Select

The above class definition shows the initial set of interface properties and operations
considered. These are available to all interface classes in a NOODL database
interface description. A brief description of each is given below.

Interface Class Properties and Operations

•• Shape - class Shape
property

name : Text ;;

The shape of an object as it appears in the interface. A simple text string is used to
refer to a shape. Alternatives include 2/3D objects, dialog forms, or simple textual
descriptions. In the case of a dialog forms interface the Shape representation may
include properties itself referring to fields in the form, e.g. shape.field.name=“Fred”.

• Position - class Vector_3d
properties

x : Real ;; y : Real ;; z : Real

class Position
ISA Vector_3d
operations

translate Real x, Real y, Real z ;;
is_inside Extent e : Boolean ;;
put_inside Extent e

constraint
PLC is -1.0 >= self.x >= 1.0 and

 -1.0 >= self.y >= 1.0 and
 -1.0 >= self.z >= 1.0

This represents the position of the object relative to the interface space. This
definition is for a position in a 3D Cartesian coordinate interface space with real
numbers holding the x, y and z coordinates. Positions in other interface spaces follow

a similar definition. The position limit constraint (PLC) defines the bounds of
coordinate values permitted. Is_inside tests whether or not the position is within the
bounds of an extent and Put_inside sets the position to a point within an extent.

• Size - class Size
properties

width : Real ;; height : Real ;; depth : Real
operation

scale Real w, Real h, Real d

The size of the object relative to interface space. Again for the purposes of our
example, this is particular to a 3D interface space. The size of the object made be
scaled through its scale operation.

• Orientation -class Orientation
ISA Vector_3d
operations

rotate Real d ;;
rotate Real x, Real y, Real z, Real d

The orientation of the object relative to interface space. The object may be rotated
through d degrees, about either its own orientation or a specified axis of rotation.

• Colour - class Colour
properties

name : Text ;;
red : Real ;; green : Real ;; blue : Real

constraint
CLC is 0.0 >= self.red >= 1.0 and

 0.0 >= self.green >= 1.0 and
 0.0 >= self.blue >= 1.0

The colour of the object specified by red, green, blue intensity components. As with
position vectors, a set of constraints defines the limits for these values. This may be
specified by for example red, green, blue intensity components. or a textual colour
name, e.g. “dark blue”, or through an alternative colour model, e.g. the hue,
saturation, value (HSV) model. The choice of colour representation is entirely
dependent on the modeller’s preferred colour model.

• Extent - class Extent
properties

lower_back_left : Position ;;
upper_front_right : Position

operation
holds Position p : Boolean

The bounding box which completely encloses the object, consisting of properties to
define the lower back left and upper front right limits of the extent. Holds returns a
boolean value depending on whether or not a given position lies within the extent.

• Move - move : Move
class Move
properties

event : Boolean ;;
position : Position

This operation describes a response to the user moving the object in the interface.
The position property represents the point to which the interface object has been
moved. It is intended that a system interpreting this language is able to handle the
operating system’s events in order to recognise that the user has moved the object.

• Select - select : Select
class Select
property

event : Boolean

Select describes a response to the user selecting the object in the interface.

