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Pushing the limits of remote RF sensing by
reading lips under the face mask

Hira Hameed1, Muhammad Usman1,2, Ahsen Tahir 1,3, Amir Hussain4,
HasanAbbas1, Tie JunCui 5,MuhammadAli Imran 1 &QammerH.Abbasi 1

The problem of Lip-reading has become an important research challenge in
recent years. The goal is to recognise speech from lip movements. Most of the
Lip-reading technologies developed so far are camera-based, which require
video recording of the target. However, these technologies have well-known
limitations of occlusion and ambient lighting with serious privacy concerns.
Furthermore, vision-based technologies are not useful formulti-modal hearing
aids in the coronavirus (COVID-19) environment, where face masks have
become a norm. This paper aims to solve the fundamental limitations of
camera-based systems by proposing a radio frequency (RF) based Lip-reading
framework, having an ability to read lips under face masks. The framework
employs Wi-Fi and radar technologies as enablers of RF sensing based Lip-
reading. A dataset comprising of vowels A, E, I, O, U and empty (static/closed
lips) is collected using both technologies, with a facemask. The collected data
is used to train machine learning (ML) and deep learning (DL) models. A high
classification accuracy of 95% is achieved on the Wi-Fi data utilising neural
network (NN) models. Moreover, similar accuracy is achieved by VGG16 deep
learning model on the collected radar-based dataset.

Normal hearing is defined as the ability to hear a sound of 20 dB level
and above. Inability to understand sounds of 20 dB and above can be
recognised as hearing loss1. Hearing loss can bemild or severe and the
subjects are referred to as ‘hard of hearing’. Hearing loss and deafness
are a major impediment to normal communication and learning.
Overall, 5% of the world’s population, around 430 Million people,
suffer from hearing impairments. The number is expected to increase
to 700 million people by 20501. In the United Kingdom (UK) alone,
around 11 million individuals live with hearing impairments and age-
related hearing loss has become a serious concern2.

Next-generation hearing aids by 2050 require transformative
multi-modal processing, uninhibited by limitations of speech or sound
enhancement. We humans use also visual information for the cogni-
tion of spoken words and not just limited to sound alone. Visual
information, such as Lip reading is an important aspect of speech

recognition. Unfortunately, visual information obtained for hearing
aids through cameras suffer from privacy issues. The legal ramifica-
tions of such aids alonemay inhibit their widespread use in public and
private spaces, e.g. video in hearing aids may be considered as filming
someone without consent, which is illegal in many parts of the world.
These days, hearing aids assisted by visual information have suffered
from restrictions chief among them is the facemask in the coronavirus
(COVID-19) era. The demand for next-generation hearing aids can be
fulfilled by radio frequency (RF) sensing of lip andmouth movements.
Lip reading throughRF sensing canprovide highly accurate cues to the
hearing aids by identifying spoken sounds and detecting speech pat-
terns through machine learning (ML) and deep learning (DL) techni-
ques. Furthermore, unlike vision-based systems, RF-sensing-based Lip
reading does not suffer from limitations due to face masks. RF signals
can penetrate the mask to capture visual cues including lip andmouth
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movements, which will otherwise be obscured from visual hearing
aids. This provides an exciting opportunity to transform next-
generation multi-modal hearing aids through RF sensing. The system
may just require the addition of a single antenna on the hearing aid. In
this work, we have designed, developed and demonstrated a working
RF sensing-based solution for detecting spoken sounds through face
masks. The proposed RF sensing system can either work as a standa-
lone system or assist in sensing for hearing aids through reading of lip
and mouth movements in the presence of face masks, which normally
obstruct visual cues for hearing aids in vision-based systems. A con-
ceptual illustration of the proposed Lip-reading framework is pre-
sented in Fig. 1.

The lip and mouth movements result in variations in the wireless
channel state information (CSI) amplitudes, which are picked up by
ML/DL algorithms as patterns belonging to spoken sounds and clas-
sified into their respective speech, words, phonemes or spoken letters.
For completeness, both RF-based sensing systems, i.e., Wi-Fi and radar
have been demonstrated. The radar-based system utilises Doppler
shift spectrograms, which are identified by a DL model to classify dif-
ferent lip movements. The proposed lip-reading framework has a
potential value in many applications, including hearing aid devices,
biometric security, and voice-enabled control systems in smart homes
and cars infotainment.

Evidently, Lip reading has gained notable research attention in
recent years due to its significance in many applications, such as
communicatingwithdeaf community andbiometric authentication3 to
identifying individuals based on the visual information obtained from
lipmovements. In this regard, a Lip-reading-based surveillance system

has been proposed in4. Moreover, Lip reading has been studied in the
area of audio-video speech enhancement (AVSE) to enhance speech
with the aid of visual information collected from the camera5. Similarly,
visual speech recognition is another area wherein only visual features
are used to perform Lip reading without the aid of any audio data6. A
Lip-reading framework to predict Greek phrases using a mobile
phone’s frontal camera with convolutional neural networks (CNN) and
temporal neural networks (TCN) architecture is proposed in ref. 7.

However, all camera-based systems have certain fundamental
flaws, such as the obligation to record the target, which limits the real-
world applications due to privacy concerns. Moreover, poor lighting
also has an impact on the quality of recorded images/videos. Lip
reading in the presence of facemasks with camera-based technologies
has become potentially impossible in the COVID-19 era. Camera-based
Lip-reading systems also fail in complete darkness when lip move-
ments cannot be visually observed. This paper aims at resolving the
aforementioned limitations via RF sensing which revives the above-
mentioned applications in COVID-19 era, where face covering has
become a norm.

Recently, RF sensing has been considered in the context of
assisted living, and contactless monitoring of activities (i.e., end-users
do not need to wear or carry devices, or change their daily routine)
alongwith the possibility of leveraging existing communication signals
and infrastructure, such as commonWi-Fi routers. RF signals are being
used to monitor both macro and micro movements8–11. Witrack12

developed a 10cm granularity frequency-modulated continuous wave
(FMCW) 3D motion tracking system. Similarly, WISee13 used Doppler
shifts to detect gestures. Moreover, Allsee14 utilised custom RFID tags
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Fig. 1 | Conceptual illustration of the proposed Lip-reading framework. The
framework employs Wi-Fi and radar technologies as enablers of RF sensing based
Lip-reading. A dataset comprising of vowels A, E, I, O, U and empty (static/closed

lips) is collected using both technologies, with a face mask. The collected data is
used to train ML and DL models.
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to achieve low-power gesture recognition. Device-free RF-based
human localisation systems have been used to determine a person’s
position by measuring one’s impact on wireless signal variations,
received by pre-deployedmonitors15. The authors in ref. 16 produced a
FMCW radar system to determine the Doppler, temporal changes, and
radar cross sections of falling and other fall-related activities. The
authors demonstrated that wireless waves through the use of radar
systems can be used to classify human motion. The work in ref. 17
utilised CSI of Wi-Fi orthogonal frequency-division multiplexing
(OFDM) signals for the classification of five different armmovements.
The subjects made different arm gestures, while standing between a
Wi-Fi router and a laptop that were both transmitting wireless signals.
The CSI was recorded, and the gestures were classified using ML
algorithms. In ref. 18, the authors detected multiple user activities
based on variations in CSI of wireless signals using deep learning
networks. The work in ref. 19 collected a dataset for sitting and
standing movements, utilising RF signals obtained from software
defined radios (SDR). Patterns in the wireless signals capture different
body motions, as each movement induces a unique change in the
wireless medium. In ref. 20, human movements are detected in real
time via universal software radio peripheral (USRP) devices to form a
wireless communication link where signal propagation data is recor-
ded when a usermoves or remainsmotionless andmachine learning is
used. The work in ref. 21 provided a speech recovery technique
based on a 24-GHz portable auditory radar and a webcam for
speech recognition. Different subjects only speak a single English
letter “A”.

Wang et al.22 developed a CSI-based recognition system that can
identify what people are saying. The presented system functions
similar to Lip reading and utilised CSI signals to detect mouth move-
ments during speech. By employing beam forming, the signal was
directed towards the user’s mouth. The mouth motions were then
decoded in two stages. The initial step was to filter out interference
before using discrete wavelet packet decomposition to create mouth
movement profiles. The profiles were then classified with ML techni-
ques to determine pronunciations. This research shows howWi-Fimay

be used to detect lip movements. However, COVID-19 pandemic has
introduced many limitations, such as face masks and RF sensing sys-
tems have not been demonstrated.

A related work is presented in ref. 23, where authors use the
structural principle and electrical properties of the flexible tribo-
electric sensors to decode the lip movements. The sensors are placed
inside a pseudo mask where the lips remained exposed to make them
clearly visible. Although the authors achieve promising results in
identifying lip movements, their solution cannot be generalised to
realistic situations and suffers from limitations of wearing sensors and
exposing lips in the COVID-19 era.

Herein, we have utilised RF sensing to detect lip movements
remotely and extractmotion information from themouthmovements
during speech, in the presence of face masks. The motivation behind
utilising both RF sensing techniques is to demonstrate the perfor-
mance of both techniques to reveal which technique may perform
better than the other in terms of accuracy. Our approach can trans-
formmulti-modal hearing aids under COVID-19 conditions and norms.
Our proposed technique achieved high classification performance
compared to the current state-of-the-art methods, such as vision-
based systems and other hearing aid assistive technologies. We pro-
posed different techniques and AI approaches to read lips using radar
and Wi-Fi signals. Each scenario examined six different scenarios with
spoken sounds for vowels, including lip/mouth movements and facial
expressions: A, E, I, O, U, and Empty (Silence). Various ML and DL
methods are examined using three male and female participants to
correctly categorise the considered face postures with and without
face mask.

Results
The conducted experiments were performed with two different tech-
nologies, i.e., Wi-Fi and radar. Five vowels, A, E, I, O, and U were col-
lected with an empty letter, where subjects were not talking at all, and
the lips were in normal closed position. An illustration of the lip
movements to speak out all classes is shown in Fig. 2a, while the cor-
responding CSI samples and spectrograms are shown in Fig. 2b, c,

Fig. 2 | Pronounced vowels with their representation in Wi-Fi and radar signal.
a A visual illustration of the pronounced vowels. b Wi-Fi data samples with mask

representing various vowels classes. c Radar data samples with mask representing
various vowels classes.
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respectively. In what follows, the experimental hardware setup to
collect these data using both technologies is expressed.

For both experiments (radar and Wi-Fi), three participants, one
male and two females, participated in the data collection process. The
reason to include more participants was to make the dataset more
realistic and diverse. A total of 3600 data samples were collected
during both experiments for six classes, namely, A, E, I, O, U, and Emp,
where Emp represents the lip posture of being silent. In each experi-
ment, a total of 1800 data samples were collected from three partici-
pants, 900 with face mask and 900 without a face mask, where
50 samples were collected in each class. In particular, each participant
repeated the speaking activity of each vowel 50 times with a mask and
50 times without a mask with the radar. Similarly, the same amount of
data was collected fromUSRPwith the same strategy. In this way, each
participant contributed to collect 1200 data samples in total for six
classes, two scenarios (with mask and without mask) and two tech-
nologies (radar and Wi-Fi). The ethical approval to conduct these
experiments was obtained by the University of Glasgow’s Research
Ethics Committee (approval no.: 300200232, 300190109).

Radar-based setup
The hardware setup of radar-based Lip-reading system is shown in
Fig. 3, where Fig. 3a shows the front view and Fig. 3b represents the top
view. Correspondingly, the front and top views of Wi-Fi-based setup
are shown in Fig. 3c, and d, respectively. For radar-based setup, an
ultra-wide band (UWB) radar sensor, Xethru X4M03, was used in this
experiment, which was placed on top of the screen of the laptop. The
Xethru X4M03 is a UWB radar sensor with built-in transmitter (Tx) and
receiver (Rx) antennas, providing a maximum detection range of 9.6
m. Key parameter settings of the radar are indicated in Table 1. The
subject was sitting 0.45 m away from the radar while pronouncing
vowels, as illustrated in 3b. The body was in a normal position and the
only movements were the lip movements along with slight head
movements, which are common while talking. The duration of each
activity was set to 6 seconds, where an activity represents the data

collection of a single vowel from a single subject. The RF signal was
transmitted and received from the radarwithin this duration. TheUWB
radar-based system setup for Lip-reading data collection and proces-
sing is illustrated in Fig. 4a. The details of all components presented in
the figure are discussed later in this section. The features utilised for
the radar are obtained from the short time Fourier transform (STFT) of
the radar signal which provides the spectrograms of radar Doppler
shift due to lip and mouth movements. The analysis of the spectro-
grams showed that different vowels resulted in different spectrograms
due to the differences in lip andmouthmovements. To classify vowels,
pre-trained VGGmodels were utilised due to their better performance
on abstract images like spectrograms24,25.

Wi-Fi-based setup
For the second set of experiments, Wi-Fi was used as a lip move-
ment recognition platform. For this, a USRP X300 was used,
equipped with one directional antenna as a transmitter (Tx) and
two omnidirectional antennas as receivers (Rx), as shown in Fig. 3c.
For experiments, monopole antennas, VERT2450, optimised at
2.45 GHz frequency band, were used as Rx. A log-periodic antenna,
HyperLOG 7040 X BPA, was used as a Tx. Both Tx and Rx antenna

Fig. 3 | Experimental setup of the data collection through radar and Wi-Fi.
a Front viewof the data collection setup using XethruUWB radar.bTop view of the

radar-based data collection. c Front view ofWi-Fi based data collection. d Top view
of the Wi-Fi-based data collection setup.

Table 1 | Configuration parameters of radar software and
hardware

Parameter Value

Platform Xetru radar X4MO3

Instrumental range 9.6 m

Target’s distance from radar 0.45 m

Operating frequency 7.29 GHz

Transmitter power 6.3 dBm

Activity duration 6 s

Collected samples in each class 50
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gains were set to 35 dB. The USRP was connected with a desktop
having an Intel(R) Core (TM) i7-7700 3.60 GHz processors with
16GB RAM. Key parameter settings of the Wi-Fi-based setup are
indicated in Table 2. GNU radio was used to communicate with the
USRP with the help of a virtual machine having Ubuntu 16.04

operating system. A python script was developed to send and
receive data from USRP X300. The experiments were conducted at
an operational frequency of Wi-Fi in 2.45 GHz band. Both the Tx
and Rx antennas were placed around 0.45 m from the target, as
illustrated in Fig. 3d. Each activity was performed for 6 s. TheWi-Fi-
based system setup for Lip-reading data collection and processing
is presented in Supplementary Fig. 1 and details of all components
presented in the figure are discussed later in this section. It is
worth mentioning that Wi-Fi signals were tested with different
features including time–frequency maps, etc. However, the CSI
values of Wi-Fi signals performed best with variations in CSI
amplitudes unlike the radar signals, where frequency shift was a
major differentiating factor. The variations in one-dimensional CSI
amplitude showed clear patterns which could be attributed to a
spoken vowel.

In what follows, the performance of considered ML and DL algo-
rithms on the datasets collected from Wi-Fi and radar for the cases of
with face mask and without face mask is discussed.

Evaluation metrics of classification models
The performance of the DL and ML models in the classification of
vowels is evaluated through accuracy, true positive Rate (TPR) and
false Positive Rate (FPR). TPR and FPR are calculated using Eqs. (1) and
(2), respectively. Further, accuracy, which is one of the most
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Table 2 | Configuration parameters of USRP software and
hardware

Parameter Value

USRP Platform X300

OFDM subcarriers 51

Operating frequency 2.45 GHz

Transmitter Gain 35 dB

Receiver gain 35 dB

TX Antenna Log periodic HyperLOG 7040, 700
MHz to 4 GHz

Rx Antenna Monopole VERT2450, 2.45 GHz

Target’s distance from Tx and Rx
antennas

0.45 m

Activity duration 6 s

Collected samples in each class 50
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commonly usedmetrics in the literature for classification, is calculated
using Eq. (3).

TPR=
TP

TP+FN
ð1Þ

FPR=
FP

FP+TN
ð2Þ

Accuracy=
ðTP+TNÞ

ðTP+FP+TN+FNÞ ð3Þ

where TP stands for true positive, i.e., both the truth and the predicted
values are positive. FN is false negative, which represents the cases
when the truth is positive and the prediction is negative.

Radar data
The evaluation results of the considered DL algorithms (VGG16,
VGG19, and InceptionV3) on the radar dataset are presented in
Table 3. VGG and Inception are CNN-based deep learning models
(trained on ImageNet dataset26), which are commonly used in image
classification. VGG16, VGG19 and InceptionV3 have 16, 19 and deep
layers, respectively. A detailed description of these models is pre-
sented in refs. 27, 28. Moreover, ref. 29 provides the fundamental
understanding of ML.

It can be observed from Table 3 that all algorithms produce
comparable results with VGG16 slightly outperforming others on all
individual subjects and combined datasets in terms of accuracy. Using
VGG16, the classification accuracy of 91.7% is observed on S1 dataset
withoutmask, which is reduced to a promising accuracy of 83.3%when
the subject wears the face mask. The other performance metrics, such
as TPR and FPR arepresented in Supplementary Table 2 and 3. It canbe
observed from the tables that they perform well on all individual
classes. Almost all individual classes produce 100% TPR withmask and
promising TPR on without mask dataset. Similarly, on combined
dataset the same algorithm produces best results in terms of classifi-
cation accuracy for both with mask and without mask. Overall, a
classification accuracy of 85.94% is observed without face mask on
the combineddataset. On the other hand, the samealgorithmclassifies
the vowels with 73.44% accuracy with a face mask on the combined
dataset. Moreover, other DL models, i.e., VGG19 and Inception V3 also
produce comparable results on the radar dataset.

Figure 4 b shows the accuracies of with mask and without mask
scenarios for different DL algorithms examined on the radar data of

the male subject. It can be observed from the figure that InceptionV3
produces biggest accuracy difference between with mask and without
mask cases, which is around 12%, while VGG19 produces the least dif-
ferent, which is around just 4%. Overall, VGG16 performs better on
both datasets with an accuracy difference of 7%.

Wi-Fi data. Table 4 represents the average accuracy of classifying the
dataset collected from Wi-Fi using different ML and DL algorithms.
Four different algorithms are considered, namely NN, support vector
machine (SVM), Ensemble and Naïve Bayes. The results are generated
using test-train split evaluationmethod. It can be noted from the tables
that the NN algorithm outperforms others for individual male and
female data and the combined dataset. Using NN algorithm, the clas-
sification accuracy of 95.6% is observed on S1 without facemask, while
the same algorithm gives 73.3% classification accuracy on the same
subjectwhenhewears a facemask. Similarly, on the combined dataset,
NN gives a premising accuracy of 73.3% without a face mask and an
accuracy of 61.1% on the with-mask combined dataset. The other per-
formance metrics, such as TPR and FPR are shown in Supplementary
Tables 4 and 5. It canbeobserved that thesemetrics performwell on all
individual classes. Almost all individual classes produce 100%TPRwith
mask and promising TPR on without mask dataset. Interestingly, the
classification accuracy ofmale dataset for all algorithms is higher than
the females’ dataset. This is due to the reason that the lip movements
ofmale subject in pronouncing vowels were comparatively larger than
the females among the participants.

Overall, the classification accuracy of with mask dataset is
lower than without the face mask. This is because of the reason that
lip movements are restricted due to the restraints caused by the
face mask. For instance, a person may not be able to fully open the
mouth while wearing a face mask. The percentage accuracy differ-
ence in classifying with mask and without mask dataset is depicted
in Fig. 4c. The biggest accuracy difference is observed for male
subjects for NN algorithm where an accuracy difference of around
23%. The minimum difference observed is for ensemble algorithm
on S1 dataset, where with mask and without mask accuracy differ-
ence is 12%.

Discussion
In this study, a Lip-reading RF-sensing-based framework is pro-
posed using both RF sensing technologies, i.e., Wi-Fi and radar. Wi-
Fi signals are generated using USRP x300, which uses CSI signals to
identify human lip movements for all considered classes. For radar,
a UWB radar sensor, Xethru X4M03 was used, where reflected

Table 3 | Comparative result of vowels with and without mask using radar

Subject VGG16 VGG19 InceptionV3

With mask Without mask With mask Without mask With mask Without mask

S1 (Male) 83.33% 91.07% 83.33% 86.67% 80.00% 90.00%

S2 (Female) 85.00% 83.03% 75.00% 81.67% 70.00% 80.00%

S3 (Female) 76.07% 85.00% 75.00% 76.07% 75.00% 80.00%

Combined 73.44% 85.94% 68.09% 79.69% 65.00% 73.44%

Table 4 | Comparison between different ML and DL algorithms in classifying vowels on the Wi-Fi dataset

Subject Neural network Pattern
recognition

SVM (Medium
Gaussian SVM)

Ensemble (boosted trees) Naïve Bayes (Kernel
Naïve Bayes)

With mask Without mask With mask Without mask With mask Without mask With mask Without mask

S1 (Male) 73.03% 95.06% 51.03% 73.00% 59.07% 76.03% 52.00% 73.03%

S2 (Female) 80.00% 76.03% 61.07% 65.00% 59.07% 61.03% 60.07% 62.07%

S3 (Female) 76.07% 88.09% 54.07% 61.07% 56.00% 62.07% 54.07% 62.03%

Combined 61.01% 73.03% 50.09% 57.08% 56.09% 57.08% 49.00% 57.08%
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Doppler signals (Hz) were plotted in the form of frequency–time
diagrams, such as spectrograms. The proposed RF sensing system
can either work as a standalone system or assist in sensing for
hearing aids through reading of lip and mouth movements in the
presence of face masks, which normally obstruct visual cues for
hearing aids in vision-based systems. A diverse dataset of three
participants (one male and two females) was collected for 5 vowels
A, E, I, O, U, and Empty, where lips were not moving. The collected
dataset was used to train different ML and DL algorithms. The
paper’s major goal was to propose a secure Lip-reading system that
could identify the lip movements in the presence of a mask with
different RF sensing technologies and ML/DL algorithms. In parti-
cular, four algorithms, NN, SVM, Ensemble, and Naïve Bayes, were
evaluated using train-test evaluation methods on the Wi-Fi dataset,
where the maximum classification accuracy of % was observed on
the male datasets without a face mask. On the other hand, DL pre-
trained models VGG16, VGG19, and InceptionV3 were evaluated
using test-trainmethods and found amaximum average accuracy of
91.07% on male data without mask using radar. Moreover, because
the current system is a proof of concept with the goal of showing
the importance and effectiveness of detecting lips using RF-sensing
technology such as radar and Wi-Fi, future experiments will be
conducted to detect different words or sentences in real time and
perform activity from various angles using radar and Wi-Fi. Fur-
thermore, and as mentioned earlier, the dataset used to achieve the
previously reported results is made publicly available to encourage
other researchers and the wider communities to take this system a
step further.

Methods
In the case of Wi-Fi, each instance of the data represents the CSI
amplitudes, where 2000 packets were transmitted in a duration of six
seconds. Figure 2b illustrates the CSI patterns (amplitude) of con-
sidered lip movements, i.e., A, E, I, O, U and empty, in the case of face
mask. The CSI patterns in the case of without face mask are illustrated
in Supplementary Fig. 2. Different colours in each figure represent the
51 subcarriers of the OFDM signal. The Y-axis of each sub-figure
represents the amplitude of the subcarriers while number of received
packets are displayed on x-axis. The same data collection strategy was
applied in radar, where a total number 1800 data samples were col-
lected for three subject male and females with and without a face
mask, with 50 data samples in each class. In the case of radar, each
instance of data sample is represented in the form of a spectrogram,
displayed in Fig. 2c for with face mask. The spectrograms for without
face mask scenario are represented in Supplementary Fig. 3. Different
colours in each figure represent change in frequency. The Y-axis of
each sub-figure represents the Doppler (Hz) while time is displayed on
the x-axis.

Processing radar data
In the beginning, the radar chip was configured via the XEP interface
with x4driver. Data were recorded from the module at 500 frames
per second (FPS) in the form of the float message data. A loop was
used to read the data file and save the data into a DataStream
variable, which was mapped into a complex range-time-intensity
matrix. Thereafter, moving target indication (MTI) filter was applied
to get the Doppler rangemap. Afterwards, the secondMTI was used
as a Butterworth 4th order filter to generate the Spectrograms using
the following parameters: window length, overlap percentage, and
fast Fourier transform (FFT) padding factor. In particular, a window
length of 128 samples, and a padding factor of 16 was used. In
addition, a range profile was created by first converting each chirp
to an FFT. A second FFT is then conducted on a defined number of
consecutive chirps for a given range bin. Furthermore, an STFT
was used to create these spectrograms, because, unlike Fourier

transform, it offers both temporal and frequency information30.
This is done by segmenting the data and then performing Fourier
transform on each segment. When the window length is changed,
both the temporal and frequency resolutions are altered inversely.
For example, if one increases the other decreases. The level of
Doppler detail in RADAR data is determined by the hardware’s
sampling capability. The greatest unambiguous Doppler frequency
in RADAR is Fd ,max = 1

2 tr , where tr is the chirp time. In this paper,
we look at Lip-reading recognition at a distance D(t) from a speci-
fied location such as the mouth. V(t) represents the point of target
movement in front of the RADAR, and Ts represents the transmitted
signal,

TsðtÞ=A cosð2πf tÞ: ð4Þ

The received signal is provided by Rs(t),

RsðtÞ= �A cos 2πf t � 2DðtÞ
c

� �� �
, ð5Þ

where A is the reflection coefficient, and c is the speed of light. The
reflected signal can be expressed asRs(t), where the signal reflected off
the target points at an angle θ to the direction of RADAR.

RsðtÞ= �A cos 2πf 1 +
2vðtÞ
c

� �
t � 4πDðθÞ

c

� �� �
: ð6Þ

The Doppler shift that corresponds to it can be written as,

f d = f
2vðtÞ
c

: ð7Þ

The returned signal becomes a composite of several moving elements
such as the head and lips. Each componentmoves at its own speed and
acceleration. If we consider i to be the various moving components of
the lip, we can write the received signal as

RsðtÞ= ∑
N

i
Ai cos 2πf 1 +

2viðtÞ
c

� �
t � 4πDið0Þ

c

� �� �
: ð8Þ

The Doppler shift is the result of a complex interaction of numerous
Doppler shifts induced by differentmoving faceparts. Detection of Lip
reading in a reliable fashion clearly dependsupon the characteristicsof
the Doppler signatures. After obtaining the spectrograms of various
vowels and empty files from the participants a dataset was con-
structed. As indicated in the high-level signal flow diagram in Fig. 4a,
the dataset consisted of two key modules: (i) System Training and (ii)
SystemTesting. The proposed pre-trained DL classification algorithms
were implemented on spectrogram to recognise vowels and the Empty
dataset.

Processing Wi-Fi data
Thedatawere transmitted in the formofOFDMsymbols comprising 52
closely spaced subcarriers. Data were collected in the form of a matrix
that contains frequency responses of allN = 51 subcarriers, as shown in
Eq. (9).

H = ½H1ð f Þ,H2ðf Þ, � � � ,HNð f Þ�T , ð9Þ

Here frequency of each subcarrier Hj can be represented as

Hj fð Þ= ∣Hj fð Þ∣e jffHj ð f Þ, ð10Þ

where ∣Hj(f)∣ and ∠Hj(f) are the amplitude and phase responses of the
jth subcarrier. Each of these subcarrier responses is related to the
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system input and output as given in Eq. (11),

Hjðf Þ=
Y jð f Þ
Xjð f Þ

, ð11Þ

where Xj(f) and Yj(f) are the Fourier transforms of input and output of
the system. Indeed, the received CSI samples are impaired due to
environmental noise. As a result, the collected samples are denoisedby
subtracting themean receivedpower fromeach subcarrier. Toobserve
the maximum variation due to lip movements the subcarrier with
highest variance was identified for the feature extraction. A total of 15
features were extracted namely, mean, median, standard deviation,
variance, minimum, eight peaks and high order moments, such as
skewness and kurtosis. The extracted features were stored in a comma
separated values (CSV) file, which is used to train different ML and DL
algorithms discussed later in this section. Thereafter, training, testing
and validationwereperformedusing test-train split evaluationmethod
to accurately classify the vowels and empty class.

Parameter settings of the considered algorithms
The proposed classification methodology to distinguish Lip-reading
activities is divided into two key stages: (i) system training and (ii)
system testing. In the case of radar data, the DL pre-trained models
VGG16, VGG19, and InceptionV331 were used on the spectrogram
images generated from the radar data. While ML algorithms neural
network pattern recognition, support vector machine (SVM, medium
gaussian SVM), Ensemble (boosted trees) and Naïve Bayes (kernel
Naïve Bayes) were used on Wi-Fi data. The parameter settings of ML
and DL model are shown in Supplementary Table 6.

VGG16 model: VGG16 has been used with 16 convolution layers
and a rectified linear unit (ReLU) activation function, with kernel sizes
of 3 × 3. Following each convolution layer, a max-pooling layer with all
kernel sizes of 2 × 2 was added. The final layer worked as three fully
connected layers (FC). The convolution layer and FChold theweight of
the training results, which allows them to determine the number of
parameters. The architecture of VGG16 with parameter settings is
shown in Supplementary Fig. 4.

VGG19 model: A 3 × 3 filter was used to capture image details,
consisting of five stages of convolution layers, five pooling layers, and
three fully connected layers. Thedepthof the convolution kernel in the
VGG19 network has been raised from 64 to 512, allowing for improved
image feature vector extraction. A pooling layer was applied after each
stage of convolutional layers. Each pooling layer has the same size and
step size, which is 2 × 2.

InceptionV3model:A 48-layered InceptionV3 DLmodel was also
applied on the dataset. Three convolution layers were added first,
followed by a max-pooling layer, two more convolution layers, and
another max-pooling layer. The spectrograms were sent to various
convolutions, which convoluted the input images using various filters,
stacked the extracted data, and sent it forward, and this process was
repeated multiple times across the network, rather than manually
adjusting the filter size for each layer.

Neural network pattern recognition model: Data were passed
through two-layer feed-forward networks with sigmoid hidden neu-
rons, SoftMax output neurons, and scaled conjugate gradient back-
propagation. Meanwhile, weight and bias values are updated
according to the scaled conjugate gradient method. Training, valida-
tion, and test sets of data were created. Network performance was
measured using cross-entropy and miss-classification errors.

SVM (Medium Gaussian SVM) model: SVM was used for the
classification of dataset by determining the optimum hyperplane for
separating data points from one class to another. Training data,
parameter values, prior probabilities, support vectors, and algorithmic
implementation details were stored in trained SVM classifiers. The
experimental data were modelled using a Gaussian kernel.

Ensemble (boosted trees)model: Ensemble classifiers combined
the results of a number of low-quality learners into a single high-quality
ensemble model. Boosting ensemble method was used on the dataset
to regulate the depth of tree learners by specifying the maximum
number of splits or branch points. The experimental setup achieved
better accuracy with 0.1 learning rate.

Naïve Bayes(Kernel Naïve Bayes) model: Naïve Bayes classifier
was used for Lip-reading classification, which is based on the Bayes
theorem and assumes that predictors are conditionally independent in
the given class. Specifically, a Gaussian Naïve Bayes kernel was used in
this experiment.

Data availability
The lip-reading dataset generated during the current study is available
in the University of Glasgow’s repository (Enlighten), and can be
accessed here32.
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