
Viewing Objects

Peter J Barclay and Jessie B Kennedy

Computer Studies Dept., Napier University

219 Colinton Road, Edinburgh EH14 1DJ

Abstract. This paper examines the incorporation of database views into

an object oriented conceptual model. An approach is presented where views

are themselves objects, instances of view classes. These view objects provide

new ways of interacting with preexisting data; no new objects are required

to populate the view. Although this approach requires no new concepts to

be added to the object oriented data model, a large category of views may

be realised. These views allow (parameterisable) speci�cation of their pop-

ulations, and may be arranged in hierarchies; the objects they contain may

be decomposed or combined, and may have properties added or hidden. The

views presented maintain the integrity of the underlying object model, and

allow updating where appropriate. A prototype implementation of a data

management system supporting such views is described brie
y.

1 Introduction

This paper presents an approach to database views consistent with a generic object

oriented data model. Section 2 reviews database views, and their incorporation in

object oriented approaches. Section 3 overviews the object oriented data model used.

Section 4 shows how a wide category of views can be realised without need of new

modelling constructs. Section 5 addresses the use and maintenance of views, describ-

ing brie
y one implementation. Section 6 concludes with a discussion, a comparison

with related work, and some directions for future research.

2 Background

2.1 Database Views

ANSI/SPARC have de�ned a three-level architecture of database description [Jar76]

where the topmost `external' level represents a collection of subschemata1 appropri-

ate for particular database users. The central `conceptual' level provides a compre-

hensive overall description of the enterprise modelled. Since some users may work at

this conceptual level directly, it might be considered a special case of a view of the

data | the most complete view. The views at the external level are abstractions

over this base.

Views help manage the intellectual complexity of interacting with the data, by

hiding unnecessary detail and presenting information in the most appropriate format;

1 More accurately, these are alternative schemata which may be derived from the concep-

tual schema or some subset of it.



further, they may provide a level of security where only the information allowable

to certain users will be present in the views which they use.

A view is sometimes de�ned as a query, but is perhaps better thought of simply

as a database schema and its extension. Since for the user of a view, the view schema

provides the most comprehensive overall description of the data as she knows it, the

term `notional (conceptual) schema' will be used here to mean a schema describing

the data as if the view it represents were the central conceptual level. The term

`implementing schema' will be used for the schema which shows how the notional

view schema is abstracted from the base conceptual schema. This implementing

schema corresponds to the queries in the `view as query' perspective.

2.2 Views in an Object Oriented Context

Views have been well investigated in the relational context (eg [Dat87, chapter 8]).

However, developments such as object oriented database systems [Dit88], [Oxb88],

[ABD+89], [GJ89], [Kho90], [ZM90b], [ZM90a] and database programming languages

[Atk78], [Bun84] (including persistent programming languages [ABC+83], [ABC+84],

[Coc82], [Coo90]) require development of the concept of a view beyond that found

in the relational model.

Programming languages have incorporated various notions of data abstraction

[Gut77], [MP88] which have been realised in constructs such as the packages of Ada

[Bar82], [alr83]. Data abstraction is central in the class concept of object oriented

programming languages [SB85], [Sau89] such as Simula [BDMN79], Smalltalk [GR83]

and C++ [Str87], [BG93]. Although some object oriented database systems such as

Postgres have been based on extensions of the relational model [pos90], [Sto87],

others such as Gemstone [BMO+89] and ONTOS [ont90] have been based closely on

such object oriented programming languages. However, the programming language

notions of data abstraction are often insu�cient for database views since the latter

requires the notions of population | a subset of preexisting objects are to participate

in the view. Further, databases frequently require multiple coexisting abstractions

over the same data.

So far, views have been little supported in object oriented database systems

(some exceptions are reviewed in section 6.2). Whereas relational views may hide or

create attributes in tables, objected oriented views must hide or create behaviour as

well as structure. Further, they should not violate encapsulation, and should interact

felicitously with the inheritance graph and the composition graph of the underlying

model. Some approaches to object oriented views (eg [HZ90]) have involved the

creation of new objects to populate the view; this gives rise to various problems in

assigning identity [KC86] to these `imaginary' objects.

3 NOM | The Napier Object Model

This section reviews brie
y the object oriented modelling context within which views

will be explored.



3.1 A Conceptual Object Oriented Model

NOM (the Napier Object Model) is an object oriented data model based on the

modelling approach described by the authors in [BK91]. The basic aim of NOM is to

provide a simple, `vanilla' object data model for the investigation of issues in object

oriented modelling. The model is more biased towards expressivity for semantics

capture than towards e�cient implementation.

NOM has been used for the analysis of novel database application areas [BK92a],

and for the investigation of speci�c modelling issues such as declarative integrity

constraints and activeness in object oriented data models [BK92b].

3.2 NOODL | the Napier Object Oriented Data De�nition Language

NOODL (Napier Object Oriented Data De�nition Language) is a data de�nition

and manipulation language based on the textual notation used in [BK91]. A brief

summary only is given here; further detail will be introduced later through examples.

A complete description of NOODL may be found in [Bar93].

A NOODL schema consists of a collection of class de�nitions; each de�nition

pertains to one particular class of object appearing in the domain modelled. Each

class is named, and its ancestors (superclasses) cited. The properties of the class

are named and de�ned, and their sorts given. NOM blurs any distinction between

`attributes' and `methods'; the term `property' is intended to cover both. Properties

declared without de�nition represent stored values, those declared with de�nition

represent computed values. The de�nition of a property may be an arbitrary query.

The names of properties may serve as messages to get and set the correspond-

ing values; such messages are called gettors and settors respectively, and are dis-

tinguished simply by the absence or presence of the new value. For example, the

expression x.name returns the name of the object x, and x.name("Inyan Hoksi")

sets the value of the name property of x to be \Inyan Hoksi".

Operations2 which may be su�ered by instances of the class, and integrity con-

straints to which they are subject, are also speci�ed in each class de�nition. A simple

example of a NOODL schema is shown in �gure 1.

4 Object Oriented Views

4.1 An Approach to Object Oriented Views

The basic technique used here to create any desired view is to create a class of objects,

instances of which represent the view itself. The operations of this class provide a

site for the various queries de�ning how the view is derived from the base. No new

objects are created to populate the view; the same populations are simply viewed

di�erently, through the new operations. This approach circumvents the problems of

assigning identity to imaginary view objects, and facilitates updatability.

2 Properties are simple characteristics of an object, representing a (notionally) stored value;

operations represent the more complex behaviour of an object, are parameterisable and

represented by arbitrarily long sequences of query expressions.



In the following sections, three classes of views are treated separately: selection-

views, projection-views, and join-views3. Any general view may be a combination of

these three categories, which are treated separately for clarity of exposition.

A selection-view does not change the `shape' of the data, but hides the existence

of those instances which do not meet the selection criterion ; the selection criterion

thus speci�es the population of the view. A projection-view reshapes instances of

individual classes; objects may lose some properties they possess in the base, and

(despite the name `projection') may also gain new properties not speci�ed in the

base. A join-view may aggregate together objects which are separate in the base, or

disaggregate single base objects into fragments in the view.

Such views can be speci�ed (and implemented) entirely at the conceptual level,

using NOODL. For simplicity of exposition, the example base schema shows only

properties; operations can be treated similarly. (Operations are however used exten-

sively in the implementation of the example views).

4.2 Example

In this section an example of a NOODL schema is presented which will serve as the

base for the views developed subsequently (�gure 1). This schema corresponds to

the `conceptual level' of the ANSI/SPARC architecture. Exact NOODL syntax is

sometimes altered slightly for clarity of exposition.

This schema describes a fragment of an enterprise involving employees and other

people, and the departments the former work for. The domain declaration introduces

Location as an enumerated domain, containing only the values speci�ed. These are

taken to be all the locations with which this enterprise is concerned.

The schema shows that a person has a name, of sort Text (an arbitrary collection

of alphanumeric and formatting characters), and a date of birth (dob) of sort Date4.

An integrity constraint is that any living person must have been born after the

beginning of 1880 and not later than the current date.

An employee is a sort of person, having the properties of a person above, together

with its own direct properties wage, of sort Money, and dept, of sort Department.

The line \ staff means that sta�, de�ned in the Department class, is the obverse5

property to dept de�ned in the Employee class.

Finally, a department is shown to have a name (of sort Text), a location (of the

enumerated sort Location), and some sta�; the sort of the sta� property is a set of

Employees, denoted # Employee.

4.3 Selection Views

In order to create a selection-view, it is necessary to hide the existence of any objects

which do not meet the selection criteria. Such objects must not be found when

3 Although these names follow relational terminology, there are some di�erences between

these categories and the relational equivalents; these are indicated as they arise.
4 This is essentially an abstract data type (de�ned elsewhere) with appropriate operators

to support date arithmetic.
5 By `obverse' is meant the intuitive inverse of a set-valued property | see [BK91] or

[Bar93].



domain Location is ("Edinburgh", "Paris", "Athens", "Reykjavik")

class Person

properties

name : Text ;;

dob : Date ;;

constraint

reasonable_age is

"1-Jan-1880" < self.dob and self.dob <= Today.date ;;

class Employee

ISA Person

properties

wage : Money ;;

dept : Department

\ staff ;;

class Department

properties

name : Text ;;

location : Location ;;

staff : # Employee

\ dept ;;

Fig. 1. Example NOODL Schema (Base)

traversing class extents, must not be returned by queries, and must not be created

by database updates.

This is achieved by de�ning operations on the view which represent these �ltered

extents; these can be thought of as virtual classes, but do not introduce new sorts

into the model. Then operations are de�ned on the view to represent the properties

as in the base, but which hide the existence of any unwanted objects. The necessary

steps are itemised below.

{ Create a class to represent the selection-view itself.

{ De�ne operations on the view class to return the extents of the data classes in

the base, �ltered by the selection criterion.

{ De�ne operations to represent all properties returning objects not a�ected by

the selection criterion; these are (trivially) de�ned as in the base.

{ De�ne operations representing those properties returning objects a�ected by the

selection criterion; these evaluate the properties as de�ned in the base, and then

either return the result or a substituted fail value, depending on whether the

selection criterion is met.

{ De�ne operations to represent settors for properties not a�ected by the selection

criterion; these are (trivially) de�ned as in the base.

{ De�ne operations to represent settors for properties a�ected by the selection

criteria; these invoke the settors de�ned in the base if the criteria are met,



otherwise abort.

For example, consider a selection-view which limits the population of the viewed

data to only those departments located in Edinburgh or Reykjavik, and only those

persons born after the beginning of 1960. A notional conceptual schema for such a

view is shown in �gure 2; The NOODL schema which actually implements this view

in terms of the base is shown in �gures 3 and 4.

domain Location is ("Edinburgh", "Reykjavik")

class Person

properties

name : Text ;;

dob : Date ;;

constraint

valid_age is

"1-Jan-1960" < self.dob and self.dob <= Today.date ;;

class Employee

ISA Person

properties

wage : Money ;;

dept : Department ;;

\ staff ;;

class Department

properties

name : Text ;;

location : Location ;;

staff : # Employee

\ dept ;;

Fig. 2. Notional Schema for Selection View

Figure 3 shows the de�nition of the virtual classes. These are de�ned using the

NOODL where-clause, which returns a set containing those values of the speci�ed

set meeting the speci�ed condition. The virtual classes SV_person, SV_employee

and SV_department will generally have smaller extents than the corresponding real

classes Person, Employee and Department in the base.

Note that parameterised view extents as described in [AB91] are easily imple-

mented in this approach. For example, if the extent of class Person had been de�ned

in the view by:

SV_person Date d : # Person is

Person where its.dob > d ;;



then all persons born after the beginning of 1960 would be represented by

SV_person("1-Jan-60"); similarly, all persons born after, say, the beginning of

1940, would be SV_person("1-Jan-40"). This parameterisation produces an in�-

nite number of virtual classes, although of course only �nitely many of them will be

populated. Figure 3 also shows gettors for the selection-view; where a gettor would

return a value not meeting the selection criteria, it is substituted for a fail value.

domain Namable is Person or Department

class SV { selection-view }

operations

{ class extents }

SV_person : # Person is

Person where its.dob > "1-Jan-60" ;;

SV_employee : # Employee is

Employee where its.dob > "1-Jan-60" ;;

SV_department : # Department is

Department where its.location in ("Edinburgh", "Reykjavik") ;;

{ gettors }

SV_name Namable pd : Text is pd.name ;;

SV_dob Person p : Date is

if p.dob > "1-Jan-60" then

p.dob

else

bottom { fail value } ;;

SV_wage Employee e : Money is e.wage ;;

SV_dept Employee e : Department is

if e.dept.location in ("Edinburgh", "Reykjavik") then

e.dept

else

bottom { fail value } ;;

SV_location Department d : Text is

if dept.location in ("Edinburgh", "Reykjavik") then

dept.location

else

"error - I don't exist!" ;;

SV_staff Department d : # Employee is

d.staff where its.dob > "1-Jan-60" ;;

{ bottom is NOODL universal fail value }

Fig. 3. Implementing Schema for Selection View (Extents and Gettors)



{ selection view settors }

SV_set_name Namable pd, Text n is pd.name(n) ;;

SV_set_dob Person p, Date d is

if d > "1-Jan-60" then

p.dob(d)

else

error("selection view update violation") ;;

SV_set_wage Employee e, Money w is e.wage(w) ;;

SV_set_dept Employee e, Department d is

if d.location in ("Edinburgh", "Reykjavik") then

e.dept(d)

else

error("selection view update violation") ;;

SV_set_location Department d, Location l is

if l in ("Edinburgh", "Reykjavik") then

d.location(l)

else

error("selection view update violation") ;;

SV_set_staff Department d, # Employee se is

d.staff(se where its.dob > "1-Jan-60") ;;

Fig. 4. Implementing Schema for Selection View (Settors)

Figure 4 shows the de�nition of settors appropriate to the view; it is the respon-

sibility of the view designer to ensure that they maintain value-closure [HZ90]; that

is, that they do not create objects which cannot exist in the view.

4.4 Projection Views

In a projection-view, the shapes of the data objects are altered; they may gain or

lose properties.

For example, consider a view where class Person is hidden, as are the wage and

dob properties of an employee. To show how a class may also gain properties not

de�ned for it in the base6 the class Employee gains a property age derived from the

hidden base property dob. The location property of class Department is hidden.

Figure 5 shows the notional conceptual schema which would describe this projection-

view. The schema actually implementing this view over the base (as de�ned in �gure

1) is given in �gure 6. The steps to create a projection-view are itemised below.

{ Create a class to represent the projection-view itself.

{ De�ne operations to return the (full) extents of those data classes in the base

which appear in the view.

{ De�ne operations to represent gettors for all properties in the base appearing

in the view. No gettors are de�ned for those properties which are to be hidden.

6 This could be termed an `accretion-view'



class Employee

properties

name : Text ;;

age : Number ;;

dept : Department

\ staff ;;

class Department

properties

name : Text ;;

staff : # Employee

\ dept ;;

Fig. 5. Notional Schema for Projection View

(For consistency, any properties which return objects belonging to classes which

are hidden in the view should themselves be hidden).

{ De�ne operations representing those gettors for properties de�ned in the view

but not present in the base.

{ De�ne operations to represent settors for properties present in both the base

and the view; these are (trivially) de�ned as in the base.

{ De�ne operations to represent settors for properties present in the view but not

the base (where possible).

Where classes or properties are hidden in a view, it is the responsibility of the

view designer to ensure that type-closure is maintained [HZ90]; that is, all the sorts

mentioned in operation signatures appearing in the view schema must be provided

in the view.

4.5 Join Views

A `join-view' is a view in which separate base objects may be aggregated into single

view objects, or single base objects may be disaggregated into separate view objects.

Despite the name, relational-style join operations will often be unnecessary since

links between objects will be encoded in the schema; that is, �nding them requires

navigations rather than searches (see [Bar93, chapter3]). The steps necessary to

construct a join-view are itemised below:

{ Create a class to represent the join-view itself.

{ De�ne operations to return the extents of those data classes which appear in

the view. Where objects of several base classes are aggregated, a virtual class

derived from the extent of one of these will serve to represent the aggregation.

Where base objects are disaggregated, several virtual classes derived from the

same base class will be used.

{ De�ne operations to represent gettors for properties of data classes appearing in

the view without (dis)aggregation; these are (trivially) de�ned as in the base.



class PV { projection-view }

operations

{ class extents }

PV_employee is Employee ;;

PV_department is Department ;;

{ gettors }

PV_name Namable pd : Text is pd.name ;;

PV_age Employee e : Number is (Today.date - e.dob) div 365 ;;

PV_dept Employee e : Department is e.dept ;;

PV_staff Department d : # Employee is d.staff ;;

{ settors }

PV_set_name Namable pd, Text n pd.name(n) ;;

PV_set_dept Employee e, Department d is e.dept(d) ;;

PV Department d, # Employee se is d.staff(se) ;;

Fig. 6. Implementing Schema for Projection View

{ De�ne operations to represent gettors for properties of objects su�ering

(dis)aggregation in the view; these gettors will incorporate queries containing

the necessary navigational or search expression.

{ De�ne operations to represent settors for properties of data classes appearing in

the view without (dis)aggregation; these are (trivially) de�ned as in the base.

{ De�ne operations to represent settors for properties of objects su�ering

(dis)aggregation in the view; this will involve inverting the query expressions to

update the correct object in the base.

As an example, imagine that some users have a view in which person and de-

partment objects are not present; instead, each employee has as a direct property

the name, size and location of the department for which she works. The notional

schema describing this view is shown in �gure 7. The schema actually implementing

this view is shown in �gure 8.

The properties dept_name, dept_size and location of an employee are imple-

mented by delegation to the appropriate associated instance; this is similar to the

technique Neuhold and Schre
 calls `message-forwarding' [NS88]. Note that it is

possible to update the dept_name and location properties, but not the dept_size

property.

Since in an object oriented model information will often be contained in naviga-

tion paths which in the relational model would require a join, it may be expected

that a wider class of views will be updatable. However, updatability still relies on

being able to invert the derivation function, so for example `statistical summary'

views will not in general be updatable.



class Employee

properties

name : Text ;;

dob : Date ;;

wage : Money ;;

dept_name : Text ;;

dept_size : Number ;;

location : Text ;;

Fig. 7. Notional Schema for Join View

class JV { join-view }

operations

{ class extents }

PV_employee is Employee ;;

{ gettors }

PV_name Employee e : Text is e.name ;;

PV_dob Employee e : Date is e.dob ;;

PV_wage Employee e : money is e.wage ;;

PV_dept_name Employee e : Text is e.dept.name ;;

PV_dept_size Employee e : Number is e.dept.staff.cardinality ;;

PV_location Employee e : Text is e.dept.location ;;

{ settors }

PV_set_name Employee e, Text n is e.name(n) ;;

PV_set_dob Employee e, Date d is e.dob(d) ;;

PV_set_wage Employee e, Money m is e.wage(m) ;;

PV_set_dept_name Employee e, Text n is e.dept.name(n) ;;

{ department size not updatable since it is a "statistical" function }

PV_set_location Employee e, Text l is e.dept.location(l) ;;

Fig. 8. Implementing Schema for Join View

The semantics represented are that changing the department name of an em-

ployee represents a change in name of the department; all others employees of the

department will `see' the change, since the one object to which they all delegate the

get-name message is the only object actually modi�ed. If updating the department

name of an employee were to mean transferring the employee to a di�erent depart-

ment, then the gettor could still be de�ned appropriately. The view designer must

establish the intended semantics of such an update.



In general, it is the responsibility of the view designer to ensure that update

operations provide equivalence-preservation [HZ90]; that is, that they provide the

correct changes in the base to provide the intended update in the view.

If objects in the base are to be disaggregated in the view (ie really it is an `unjoin-

view'), this may be accomplished in a similar manner. If a class Lorry has properties

representing information both about the motor and the trailer of the lorry, two new

classes Motor and Trailer may be de�ned if these are to be disaggregated in the

view. In fact, both classes have the same extent, the same as the extent of Lorry,

but properties relating to the motor or the trailer speci�cally are de�ned only on

the appropriate virtual class in the view. In this way one class in the base is split

into two virtual classes in the view.

5 Using and Maintaining Views

5.1 Interacting with Data Through a View

Another way of thinking of a view is as an interface between some data and some

programs; even the interactive manipulation of viewed data by a user requires some

program (a browser or query engine) to access the data, and so may be considered

in the same way.

To use a view, an instance of the view class must be created; let it be called

myview. Then the extent of class Person under this view is represented by the

NOODL expression myview.MV_person(), and the name of object x under the view

by myview.MV_name(x). Instead of sending the message to the data object as in

the base (x.name), the message is sent to the view itself, with the data object as

parameter. The tag MV_ shows in which view these messages are de�ned. Of course,

if desired, any program accessing these view operations may rename them, elimi-

nating the view identi�er tag so that in the local name space of the program these

names correspond to those in the base; for clarity the tagged forms will be used

here. (Similarly, the operations could be locally rede�ned to be applied to the data

objects themselves rather than to the view).

Calling the place where a program looks for the persistent data to which it binds

a binding space, then to use a view a single instance of the view-class is created and

placed in this binding space. The operations on persistent objects under this view

are then available as the operations, parameterised by these objects, on the view

object itself.

5.2 View Evolution

Views should provide logical data independence; this enforces a separation of an in-

dividual's view of the data from the community view. The alteration of one view of

the data should not impact on any other view of the data (unless of course the latter

is a higher level view based on the changed view). Since views are represented as ob-

jects de�ned within the enterprise schema, alteration of a view may be considered as

a schema evolution [BCG+87]. In general, where preexistent instances of persistent

classes do not require to be modi�ed, evolution may be supported relatively easily;



where instances do require modi�cation, techniques such as conversion, screening

[BMO+89], lazy evolution [Owo84] or partial evolution [Bar93] are required. How-

ever, since views as presented here do not require the creation of any new database

objects other than the ones representing the views themselves, in any implementa-

tion the modi�cations required by a view evolution should be only of the former,

more straightforward kind.

5.3 GNOME | a Generic Napier Object Model Environment

GNOME (Generic Napier Object Model Environment) is a software system to sup-

port the construction of data intensive applications in the persistent programming

language Napier88 [DCBM89], [MBCD89]. GNOME is based on the software con-

struction approach described in [Bar93]. GNOME contains a schema compiler which

allows the automatic generation of the Napier88 structures necessary to represent

data described in NOODL, providing an active interface to the data [Day88] and

enforcing integrity constraints. Although Napier88 is not an object oriented pro-

gramming language, GNOME supports the development of applications in Napier88

based on an object oriented data design. Data modelling [Mul92], [Gol92] and ad hoc

querying tools are under construction, and facilities of management of data evolution

are planned.

GNOME created the necessary infrastructure to represent an enterprise described

in NOODL. Collections representing class extents and procedures, the application7

of which represent sending messages to objects, are made available to applications

which interact with the data. The actual physical data structures are hidden behind

this interface, providing �rst order information hiding [CW85]. These access proce-

dures are placed in a Napier88 environment [Dea88], which constitutes the binding

space between the persistent data and the applications. The automatically created

binding space contains a complete realisation of the conceptual level description of

the data.

This presentation of object oriented views has focussed on their incorporation into

a conceptual model. However, since no new constructs are required for the realisation

of the object oriented views described in section 4, GNOME immediately provides

an implementation for these views without need for modi�cation; similarly, the use

of such views adds 
exibility and usability to GNOME. The semantic checking which

GNOME provides for NOODL schemata ensures that these views are well-formed. It

is planned to experiment with some substantial case studies of view-implementation.

6 Conclusion

6.1 Discussion

An approach has been described where views themselves are represented as objects.

There is not a general class `View'; rather, a class is de�ned for each view required,

showing how the view is derived from the base schema. An instance of this view

7 Despatching over class to execute the correct local code is handled by the GNOME

infrastructure.



class then is an object which can mediate access to the database, presenting the

underlying data as required by the view.

Views can be used in the construction of other, higher level views. One interesting

possibility arising from the representation of views as objects is the construction of

view hierarchies. This would be particularly useful where a number of views are in

use, corresponding to varying levels of detail, or varying levels of security.

The main disadvantage of this approach is the need to introduce a class for each

view which has but a single instance, which may seem contrived from a conceptual

viewpoint. On the other hand, such one-instance classes can provide other useful

functions such as providing structure for enterprise models [Bar93, chapter 4].

6.2 Related Work

Connor et al have presented a technique for using the existential types [MP88] of

Napier88 to construct strongly typed multiple coexisting abstractions over the same

persistent data [CDMB90]. This provides a mechanism similar to database views,

although it focuses only on what are here termed projection-views. Since there is

no notion of inheritance in Napier88, these views are not object oriented. Connor

et al 's work develops a particular way of using Napier88, in contrast with the work

reported here which uses Napier88 as the implementation vehicle for a particular

semantic model.

Neuhold and Schre
 have described a system based on message forwarding [NS88]

where a knowledge base management system attempts to deduce and construct a

personalised view of data based on a user's attempts to query it. This work focuses

on techniques to realise such a personalised view, rather than on basic issues of view

de�nition.

Shilling and Sweeney have described extensions to the conventional object ori-

ented paradigm which support the construction of views in a software development

environment [SS89]. Multiple copies of instance variables are available to support

versioning, and a system implemented in C++ resolves references to these by meth-

ods. Unlike in the work reported here, a `view instance' is taken to signify a particular

activation of a view with a corresponding set of values of the instance variables.

Views in an object oriented database are outlined by Mariani in [Mar92]. These

views have a relational 
avour; a mechanism is shown where views can be represented

by classes de�ned using selective inheritance.

Mamou and Medeiros describe `hyperviews' [MM91]. A software system con-

structs a view, given the schema which de�nes it and a query which establishes

its population; a graphical interface to the view can then be constructed. Mamou

and Medeiros's focuses on the presentation and manipulation of data through views,

rather than on view de�nition.

Abiteboul and Bonner present an approach to views which centres on specifying

the populations of the view [AB91]; this work focuses heavily on type-inference,

relieving the user of the need to specify the position of the view classes within the

class hierarchy (view classes are virtual classes integrated into the conceptual level

description, rather than a self-contained alternative description). Since the approach

used involves creating new objects, �xing the identity of these is problematical.



Heiler and Zdonik present the only work aimed at realising views without the

need for new constructs in the data model. Data abstraction through views is exam-

ined [HZ88], the important criteria of value-closure, type-closure and equivalence-

preservation are introduced, and the use of views to support the federation of het-

erogeneous databases is discussed [HZ90].

Richardson and Schwartz introduce `aspects', which provide a convincing solu-

tion to allowing objects to have multiple, independent rôles within a strongly typed

model [RS91]. Aspects provide new interfaces to existing objects, and hence could

be adapted as a view mechanism. However, providing a new view of a schema would

involve creating a new aspect instance for each object populating that schema.

None of the above have emphasised investigation of the extent to which the

potential to support views is inherent in a representative `vanilla' object model. The

work reported in [AB91] and [HZ90] is the most similar to that reported in this paper.

However, the approach of both of these papers allows the creation of new objects

to populate views, raising problems of �xing identity. Neither has represented views

themselves as objects, which not only integrates views well into the basic object

model but also allows the construction of hierarchies of views (see section 6.1). None

of the other work has identi�ed and treated the three issues of populating a view,

restructuring objects in a view, and aggregating or disaggregating objects in a view

respectively through the (extended) concepts of a selection-view, projection-view

and join-view.

6.3 Further Work

Some case studies of view-implementation in real-world applications remain to be

investigated.

By careful construction of settors it has often been possible to create updatable

views; a detailed investigation of updatability in object oriented views is merited

(including object creation within views, which for brevity is not discussed in this

paper). Such an investigation might identify useful standard approaches to updata-

bility, guaranteeing equivalence-preservation, and relieving the designer of some of

the e�ort of crafting the settors.

An interesting and unexplored area is the automatic derivation of views, in the

sense of generating the implementing schema from the notional view schema and the

base schema. It is hoped that a GNOME tool will be developed from exploration of

this idea.

7 Summary

A proposal for the representation of views in an object context has been presented;

the approach followed should be possible in any objected oriented model or system

which allows the de�nition of parameterisable operations on user-de�ned classes.

Since no constructs are added to the model used speci�cally for the support of

views, this work demonstrates that the potentiality for views of useful sophistication

is inherent in many object oriented models and systems.

Examples have been given of how view populations may be speci�ed, how objects

gain and lose properties in the view as compared to in the base, of how base objects



may be aggregated or disaggregated in the view, and of how appropriate update

operations may often be de�ned. Multiple views may be de�ned over the same base,

and views may be arranged into hierarchies.

No new objects are created in view populations, obviating problems of assigning

identity. Views of objects interact safely with the generalisation and aggregation

structures of the model, and with explicit integrity constraints. A system supporting

such views is brie
y described.

References

[AB91] S Abiteboul and A Bonner. Objects and Views. In proc ACM SIGMOD con-

ference (SIGMOD Record), pages 238 { 247, June 1991.

[ABC+83] MP Atkinson, PJ Bailey, KJ Chisholm, WP Cockshott, and R Morrison. An

Approach to Persistent Programming. Computer Journal, 26(4), 1983.

[ABC+84] MP Atkinson, P Bailey, WP Cockshott, et al. Progress with Persistent Pro-

gramming. In Stocker, editor, Databases - Role and Structure. Cambridge Uni-

versity Press, 1984.

[ABD+89] M Atkinson, F Bancilhon, D DeWitt, K Dittrich, D Maier, and S Zdonik. The

Object Oriented Database System Manifesto: (a Political Pamphlet). In proc

DOOD, Kyoto, Dec 1989.

[alr83] A Reference Manual for the Ada Programming Language. US Government

(ANSI/MIL-STD 1815 A), 1983.

[Atk78] Malcolm P Atkinson. Programming Languages and Databases. In proc VLDB

4, pages 408 { 419, Berlin, Sep 1978.

[Bar82] John GP Barnes. Programming in Ada. Addison Wesley, 1982.

[Bar93] Peter J Barclay. Object Oriented Modelling of Complex Data with Automatic

Generation of a Persistent Representation. PhD thesis, Napier University, Ed-

inburgh, 1993.

[BCG+87] J Banerjee, H-T Chou, JF Garza, W Kim, D Woelk, and N Ballou. Data Model

Issues in Object Oriented Applications. ACM Transactions on O�ce Informa-

tion Systems, 5(1):3 { 26, Jan 1987.

[BDMN79] GM Birtwistle, O-J Dahl, B Myhrhaug, and K Nygaard. Simula Begin. Van

Nostrand Reinhold, New York, 1979.

[BG93] Kenneth Barclay and Brian Gordon. Developing Object Oriented Software in

C++. Prentice Hall, 1993.

[BK91] Peter J Barclay and Jessie B Kennedy. Regaining the Conceptual Level in Ob-

ject Oriented Data Modelling. In proc BNCOD-9, Wolverhampton, Jun 1991.

Butterworths.

[BK92a] Peter J Barclay and Jessie B Kennedy. Modelling Ecological Data. In proc 6th

International Working Conference on Scienti�c and Statistical Database Man-

agement, Ascona, Switzerland, Jun 1992. Eidgenossische Technische Hochschule,

Zurich.

[BK92b] Peter J Barclay and Jessie B Kennedy. Semantic Integrity for Persistent Ob-

jects. Information and Software Technology, 34(8):533 { 541, August 1992.

[BMO+89] R Bretl, D Maier, A Otis, J Penney, B Schuchardt, and J Stein. The Gem-

stone Data Management System. In W Kim and FH Lochovsky, editors, Object-

Oriented Concepts, Databases, and Applications, 1989.

[Bun84] P Buneman. Can We Reconcile Programming Languages and Databases? In

Stocker, editor, Databases - Role and Structure. Cambridge University Press,

1984.



[CDMB90] Richard Connor, Alan Dearle, Ron Morrison, and Fred Brown. Existentially

Quanti�ed Types as a Database Viewing Mechanism. Technical report, Univer-

sity of St Andrews, 1990.

[Coc82] W Paul Cockshott. Orthogonal Persistence. PhD thesis, University of Edin-

burgh, 1982.

[Coo90] Richard Cooper. On The Utilisation of Persistent Programming Environments.

PhD thesis, University of Glasgow, 1990.

[CW85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction,

and Polymorphism. Computing Surveys, 17(4), Dec 1985.

[Dat87] CJ Date. An Introduction to Database Systems. Addison-Wesley, 1987.

[Day88] Umeshwar Dayal. Active Database Management Systems. In proc 3rd Interna-

tional Conference on Data and Knowledge Bases, pages 150 { 169, Jerusalem,

Jun 1988.

[DCBM89] Alan Dearle, Richard Connor, Fred Brown, and Ron Morrison. Napier88 - A

Database Programming Language? In proc DBPL 2, 1989.

[Dea88] Alan Dearle. Environments: A Flexible Binding Mechanism to Support System

Evolution. 22nd International Conference on Systems Sciences, 1988.

[Dit88] KR Dittrich. Advances in Object Oriented Database Systems. Lecture Notes

in Computer Science, 334, 1988.

[GJ89] MA Garvey and Michael S Jackson. Introduction to Object Oriented

Databases. Information and Software Technology, 31(10), Dec 1989.

[Gol92] Craig Goldie. An Object Oriented Schema Compiler. Technical report, Napier

University, Edinburgh, 1992.

[GR83] A Goldberg and D Robson. Smalltalk-80: the Language and its Implementation.

Addison-Wesley, May 1983.

[Gut77] John Guttag. Abstract Data Types and the Development of Data Structures.

CACM, 20(6), Jun 1977.

[HZ88] Sandra Heiler and Stanley Zdonik. Views, Data Abstraction and Inheritance in

the FUGUE Data Model. In proc 2nd Workshop on Object Oriented Database

Systems, pages 225 { 241. Springer Verlag, 1988.

[HZ90] S Heiler and S Zdonik. Object Views: Extending the Vision. In proc 6th In-

ternational Conference on Data Engineering, pages 86 { 93. IEEE Computer

Society Press, 1990.

[Jar76] DA Jardine. The ANSI/SPARC DBMS Model. North-Holland Pub. Co., 1976.

[KC86] S Khosa�an and GC Copeland. Object Identity. In Norman Meyrowitz, editor,

proc OOPSLA, pages 406 { 416, Portland, Oregon, September 1986.

[Kho90] S Khosha�an. Insight into Object Oriented Databases. Information and Soft-

ware Technology, 32(4):274 { 289, 1990.

[Mar92] John A Mariani. Realising Relational-Style Operators and Views in the Oggetto

Object Oriented Database. Technical report, Lancaster University, Lancaster,

1992.

[MBCD89] R Morrison, F Brown, R Connor, and A Dearle. The Napier88 Reference Man-

ual. Technical report, Universities of Glasgow and St Andrews, Jul 1989.

[MM91] J-C Mamou and CB Medeiros. Interactive Manipulation of Object Oriented

Views. In proc 7th International Conference on Data Engineering, pages 60 {

69. IEEE Computer Society Press, 1991.

[MP88] John C Mitchell and Gordon D Plotkin. Abstract Types Have Existential Type.

ACM TOPLAS, 10(3):470 { 502, Jul 1988.

[Mul92] Anthony Mullen. An Object Oriented Modelling Tool. Technical report, Napier

University, Edinburgh, 1992.



[NS88] EJ Neuhold and M Schre
. Dynamic Derivation of Personalised Views. In

proc 14th International Conference on Very Large Data Bases, Long Beach,

California, 1988.

[ont90] ONTOS SQL User's Guide. (ONTOS documentation), 12 Dec 1990.

[Owo84] GO Owoso. Data Description and Manipulation in Persistent Programming

Languages. PhD thesis, University of Edinburgh, 1984.

[Oxb88] EA Oxborrow. Object Oriented Database Systems: What are they and what is

their Future? Database Technology, Jun 1988.

[pos90] Postgres Reference Manual (version 2.0). University of California, 1990.

[RS91] Joel Richardson and Peter Schwartz. Aspects: Extending Objects to Support

Multiple, Independent Roles. In proc annual SIGMOD conference, pages 298 {

307. ACM Press, 1991.

[Sau89] John H Saunders. A Survey of Object Oriented Programming Languages. Jour-

nal of Object Oriented Programming, Mar/Apr 1989.

[SB85] M Ste�k and DG Bobrow. Object Oriented Programming: Themes and Varia-

tions. the AI Magazine, 1985.

[SS89] John J Shilling and Peter F Sweeney. Three Steps to Views: Extending the

Object Oriented Paradigm. In Norman Meyrowitz, editor, proc OOPSLA, pages

353 { 361, October 1989.

[Sto87] Michael R Stonebraker. Extending a Relational Database System with Proce-

dures. In ACM TODS, Sep 1987.

[Str87] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1987.

[ZM90a] S Zdonik and D Maier. Fundamentals of Object Oriented Databases. In

SB Zdonik, editor, Readings in Object Oriented Database Systems, San Mateo,

Ca, 1990. Morgan Kaufmann.

[ZM90b] SB Zdonik and D Maier, editors. Readings in Object Oriented Database Sys-

tems. Morgan Kaufmann, San Mateo, Ca, 1990.


