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Abstract: In this paper, the potential application of adaptive lattice equalisers based on gradient search adapt-
ive algorithms, is examined. The assessment is based on simulations of equaliser performance in data communi-
cations systems which provides a comparison of the relative performance of these adaptive lattice equalisers
with transversal equalisers. It highlights the critical balance between rapid convergence and degradation due to
algorithm noise, which is involved when selecting the algorithm stepsize. Two new adaptive equaliser
approaches are suggested, one based on a timed lattice structure feeding a linear combiner. The other is a short
timed lattice structure in cascade with a transversal equaliser. Both approaches are shown to offer fast converg-
ing adaptive equalisers for data communications applications, which have a converged error performance supe-
rior to that of the direct application of a gradient adaptive lattice equaliser.

1 Introduction

Fig. 1 shows the generalised schematic diagram of an
adaptive filter [1] to which a distorted signal s(t) is input.
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Fig. 1 Generalised block diagram of an adaptive filter

This is filtered to give an output y(¢), which is subtracted
from a training signal d(t) (sometimes called the desired or
conditioning signal) to yield an error e(t).

e(t) = d(t) — y(t) (1

This error is subsequently used in an adaptive algorithm
[1] which updates the filter parameters to minimise the
error. This structure is widely used in communication as
an adaptive equaliser to minimise transmission distortion
[2]. Other applications include the cancellation of echoes
due to mismatches in the 2-4 wire hybrid transformer used
in telephony [3] and cancellation of CW interference [4]
or of noise [1], in high-interference environments such as
aircraft cockpits and close to large motors.

The programmable filter most commonly used in adapt-
ive processing is the finite-impulse-response (FIR) trans-
versal structure [5], Fig. 2, and the most popular adaptive
algorithm for controlling the filter weights is the least-
mean-squares (LMS) stochastic gradient search approach
first reported, in the context of adaptive filters, by Widrow
[1]. Such adaptive filter designs are extensively reported in
the literature and are widely applied in practical communi-
cations equipment, ranging from speech-band data
modems [6] to wideband microwave digital radio systems
[7]. In many of these applications the need for a separate
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training signal is overcome by differencing the filtered
output with the detector output, after the decision process,
in order to derive the error signal [6, 7].
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Fig. 2  Finite impulse response, transversal filter

These FIR adaptive filter structures are relatively easy
to implement and are not too computationally demanding.
Hardware and algorithm complexity rises linearly as a
function of the order of the filter. However, their rates of
convergence and ability to track non-stationary received
signals are heavily dependent on the parameters of the
communications channel itself.

Kalman estimation [8, 9] based structures avoid this
problem, but at the expense of increased complexity. In
these structures the computational load can be shown to
increase as the cube of the filter order. Similar figures are
quoted for matrix inversion based adaptive processors
[10]. Fast Kalman techniques [11] are also attractive as
they are not quite as computationally demanding, as accu-
racy of the arithmetic may be reduced. Their overall com-
plexity may be close to lattice filter approaches reported
here.

This paper is concerned with equaliser designs which
are based on the gradient search adaptive lattice structure
[12, 25]. This structure is widely used in parametric spec-
tral analysis [14] and linear predictive coding (LPC) of
speech waveforms for bandwidth compression [15]. Gra-
dient lattice equalisers offer a convergence rate and com-
plexity which falls between the stochastic gradient
algorithm transversal and Kalman techniques.

Designs of lattice processors based on exact least-
squares estimation techniques [14] have also been report-
ed for use in equalisation [16, 17]. These use techniques
similar to Kalman estimation to calculate the filter coeffi-
cients. This requires division and hence is computationally
much more demanding than the adaptive gradient search
lattice approach reported in this paper. Our approach is
better viewed as an extension of gradient search adaptive
transversal filter techniques where the lattice filter is incor-
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porated to precondition the signal before it enters the
weighted combiner. The primary aim of the paper is to use
this slightly more sophisticated filter structure to provide
faster initial convergence or, alternatively, superior track-
ing performance on ill conditioned channels.

A hardware lattice equaliser design has been previously
reported as a TTL breadboard [18, 19] which offers a 16-
stage equaliser at 17 kHz sample rate. It employed 12-bit
input quantisation with 24-bit filter coefficient accuracy. A
separate study on a bit-serial design for 5 um feature size
NMOS process shows that a five-chip VLSI set is capable
of processing signals at 20 kHz sample rate for a 16-stage
lattice filter [19, 20]. Other integrated structures have
reported alternative designs at slightly slower sample rates

[21].

2 Adaptive lattice equaliser designs

The transversal filter of Fig. 2 comprises a linear combiner
structure fed from a shift register. In the simplest lattice
equaliser realisation (Fig. 3) the shift register is replaced by
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Fig. 3  Adaptive lattice equaliser employing a global combining structure

the lattice filter structure, which is also adaptive. The latter
processes the input signal, using a set of PARCOR coeffi-
cients (K(1, ..., N)), whose values are obtained by an iter-
ative adaptive recursion procedure. The equations
governing the operation of the adaptive lattice structure
are given in Table 1. The b outputs of the different stages
are those of a family of prediction-error filters of increasing
order. Thus all the respective b(n, t) outputs can be shown
to be orthogonal to each other as well as the input signal
[13].

The process of orthogonalisation is also a spectral
whitening process so the output from the final stage of the
lattice structure is a noise-like signal. The PARCOR coeffi-
cient values thus contain certain information regarding the
spectral properties of the input signal. In the linear predic-
tive coder used for speech bandwidth compression [15],
the whitening filter (PARCOR) coefficients values are
transmitted to provide a time varying model of the speech
signal. This is an example of one use of the adaptive lattice
filter as a parametric spectrum analyser.

The problem inherent in the adaptive transversal filter is
that the intersymbol interference (ISI) caused by the distor-
ting channel in turn causes interaction between the con-
vergence of the individual tapweights. This slows down the
convergence of the adaption process in the combiner. The
modes of convergence of a combiner structure have been
related [22] to the eigenvalues of the cross-covariance
matrix of the input signals, which in this case is the
channel autocovariance matrix whose eigenvalues are
closely related to the input power spectrum [23]. The
optimum stepsize is inversely proportional to the mean
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Table 1: Lattice structure equations

Initialisation:

K(t,...,N,0)=0

b(1,....N,0)=0"

p(1, ..., N, 0) =0.002/E¢S%(t)> suggested values
Lattice signals:

(0, t) =b(0, t) =s(t)

f(n.ty=Ff(n=-1,t)-K(n, t) -b(n-1,1t-1)

b(n, t)y=b(n-1,t=-1)=K*(n, t) - f(n=1,1)

K*(n, t) in the complex conjugate of K(n, t) but for processing of
real signals K{n, t) =K*(n, t)

Stepsize recursion:
Vun, t) = (1 —a) - (1/u(n, t=1)
+B- (I f(n=1, 02+ |b(n=-1,t-1)?
where constants a=0.02 and =1
PARCOR recursion:
K(n, t+1)=K(n, t) +u(n, t)
(f(n, 1) b*(n=1,t=1)+b*(n, &} - f(n—1,1))

power of the input [24] and the rate of convergence of a
mode is proportional to the product of its eigenvalue and
the single stepsize. Thus a small eigenvalue shows the rate
of convergence of that mode, restricting the overall filter
convergence. '

The lattice structure is deployed to alleviate these prob-
lems. It preprocesses the signal and supplies a set of
orthogonal signals to the combiner structure, whose ampli-
tudes are related to the channel eigenvalues. The updating
of the weights on each tap of the combiner in the lattice
equaliser is then given a stepsize which is inversely pro-
portional to signal power at the corresponding lattice
output to give all taps the same rate of convergence [25].
The equaliser’s overall rate of convergence is thus made
independent of input channel characteristics. This is math-
ematically equivalent to normalising the signal power at
the output of each stage. An alternative viewpoint is that
in providing orthogonal signals, the lattice has removed
the tapweight interaction and allowed a more reliable rate
of convergence. It has recently been shown [26] that the
time domain lattice structure is equivalent to the space
domain Gram-Schmidt preprocessor [27] used in adaptive
arrays, hence it is appropriate to study lattice structures
further for fast converging adaptive equalisers.

There are several variants of the detailed design of gra-
dient search adaptive lattice equalisers. One design com-
bines all the lattice outputs in the single global combining
structure of Fig. 3, which is similar to that used in the
transversal filter (Fig. 2). This results in the same error
signal being used in each tapweight update loop. For the
same number of delay stages both the structures of Figs. 2
and 3 will attempt to converge to the same FIR filter solu-
tion with identical impulse response values. The trans-
versal filter impulse response is controlled directly by the
combiner weight values H(N, t) while the response of the
lattice equaliser, Fig. 3, is dependent on both K(N, t) and
G(N, t) values. These can be shown [19] to be directly
related to the H(N, t) values.

An alternative structure [19] is the distributed combiner
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of Fig. 4 where individual error signals are derived for each
of the update loops. This structure is more suitable for

s(t) .
0 S 5>

@

y(t)
Adaptive lattice equaliser employing a distributed combining

Fig. 4

Structure

a Order-dependent combiner
b Order-independent combiner

hardware multiplexing than the global type, but suffers
from an increased level of algorithm noise. There are
further variants [19] on the distributed combiner, which
may be chained into order dependent structure (Fig. 4a) or
separated into an order independent structure (Fig. 4b).
The equations governing the operation of these adaptive
combiner structures are given in Table 2. Note that these
combiner structures also use the lattice stepsize recursion
of Table 1 to set the value of u (n, t).

2.1 Rate of convergence
The factors which control the rate of convergence of an
adaptive transversal filter are the magnitude of the input

Table 2: Linear combiner equations

Initialisation:
GO, ....N, t)=0
Combiner signals:
y(0,1)=0
y(n+1,t)=y(n, t)+G(n,t) - b(nt)
Order-dependent distributed combiner error signal:
e(0, 1) =d(t)
e(n+1,t)=e(n t)y—-G(n, t) -b(n,t)
Global combiner error signal (éltemative to above)
e(n. t) =d(t) —y(N. 1)
Combiner weight recursion:

G(n t+1)=G(n, t)+2 - -u(n, t)y -b*(n, t) ~e(n+1,1)

1EE PROCEEDINGS, Vol. 131, Pt. F, No. 5, AUGUST 1984

signal and the stepsize, used in the tapweight update calcu-
lation. When the stepsize selected is dependent on the
mean power input to the filter [24], i.e. the mean of the
eigenvalues [23], the rate of convergence is largely deter-
mined by the value of the minimum eigenvalue. This is
further illustrated in Fig. 5, which shows convergence plots

N &N O
—TT

mean square error ,dB
]
N
N
T

-40F NN Neeeo

10 15 20 25 30 35 40 45 50
iterations x1

0 s o

Fig. 5  Convergence plots for an 8-tap real LMS adaptive transversal
equaliser when the distorting channel response has an eigenvalue ratio
(EVR) of 6.6 (dotted curve) and 47 (solid curve)

for a real 8-tap adaptive transversal equaliser employing a
fixed stepsize. The distorted signal used in the dotted curve
has an eigenvalue ratio (EVR) or ratio of maximum to
minimum eigenvalue of 6.6. In the upper solid curve the
higher eigenvalue ratio of 47 gives a slower convergence.
This is a similar property to jammer cancellation in adapt-
ive antennas where high-level signals provide a higher loop
gain and converge to a null more rapidly than the low-
level signals [27]. These simulations show typical con-
vergence characteristics by plotting instantaneous error
power under noise-free conditions. Local deviations are
introduced by the standard pseudo noise data which was
transmitted. These can be removed by ensemble averaging,
but this is not used in our simulation in order to econo-
mise on computer run time.

The convergence behaviour of the lattice equaliser is
more complicated as one must consider the convergence of
both PARCOR (K) and combiner (G) coefficients, Figs. 3
and 4 and Tables 1 and 2. The latter cannot start
approaching the correct values until the former have con-
verged towards their final solution, and the higher-order
PARCOR coefficients are also affected by the convergence
of lower-order values. Luckily, it has been shown that the
PARCOR coefficients usually reduce in value with increas-
ing order [19], minimising the delaying effect of the set-
tling of the early stages on the values of later stages.

It is necessary to select appropriate stepsizes for both
PARCOR and combiner coefficient calculations. Investiga-
tions have previously been conducted into the optimum
stepsizes for the PARCOR recursion [28] and the results
suggested that each stage should be designed for the same
rate of convergence, i.e. with a stepsize inversely pro-
portional to its power input. This has now been extended
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[19] to obtain the optimum ratio of PARCOR to com-
biner stepsizes, again assuming equal rate of convergence
within the PARCOR and combiner coefficients. Fig. 6

Or

stepsize ratios:

-24 \
_2% N
0 S5 10 15 20 25 30 35 40 45 50
iterations x10'
Fig. 6 Convergence properties of a 16-tap complex gradient adaptive

lattice equaliser converging on a complex channel of eigenvalue ratios equal
to 20

Three ratios of stepsize in the combiner to lattice structures are shown. A stepsize
ratio of 2 is given in dotted curve while ratios of 1.414 and 2.828 are shown as solid
curves

shows a typical set of equaliser convergence results for dif-
ferent ratios of the PARCOR to combiner stepsizes. The
conclusion drawn, from these and other simulations [19],
was that the combiner coefficient calculation had to have
twice the stepsize of the PARCOR coefficients; hence the
multiplication by two in the combiner recursion in Table
2. This difference arises from the fact that the PARCOR
recursion has two correlation terms, while the combiner
recursion employs only one. Hence a factor of two ensures
equal convergence rates for both coefficients.

The rate of convergence is only part of the problem as it
has also been found that the magnitude of the final con-
verged error is also dependent upon the stepsize. After a
gradient search adaptive filter has converged, its coeffi-
cients will deviate from those of the optimum Wiener filter
by a small amount. This small random deviation arises
from the stochastic nature of the self-adjustment process
and the resulting increase in error is called algorithm noise.
It has been shown [24] that the additional error due to
algorithm noise is proportional to both stepsize and the
ideal error output of the Wiener filter as given in [24]

E{e*) = 2e*(opt)/2(2 — uNR(0)) @

Where e?(opt) is the mean-square error of the Wiener filter,
E{e?) is the actual filter mean-squared output, u is the
stepsize, N is the number of taps and R(0) is the mean-
squared value of the signal input.

Ungerboeck [24] has also derived a formula for calcu-
lating the stepsize for a tap in global combiner structure,
to give near-optimum rate of convergence

_ L
NP

where P is the mean power input to the tap. This rapid

)
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convergence is offset by an algorithm noise which equals,
and thus doubles, the output error power. Global com-
biners used in equaliser applications typically have con-
verged errors below —20 dB, and an additional 3 dB will
not degrade operation unduly. Nevertheless, if it is necess-
ary to approach the optimum even more closely, the com-
biner stepsize may be reduced at a later stage in the
convergence.

Unfortunately, a gradient lattice stage may be also
regarded as a one-tap adaptive filter, where the output of
the stage is the adaptive filter error signal. Selecting a step-
size using eqn. 3 adds to the output signal an equal
amount of stochastic algorithm noise. Ungerboeck’s [24]
equation for algorithm noise converts into lattice symbols
as:

2
o0y = L= IK@00 — 1) @
= 0.707u(n, )Q(n — 1)
where Q(n) is the mean-square value of b(n, t) i.e. the power
out of the lattice stage.

The resulting degradation in signal/noise ratio as one
progresses down the lattice structure is seldom acceptable
and a lower stepsize must be used. The noise introduced
into the lattice structure decreases as the value of the
PARCOR coefficient, K(n), approaches its bounds of +1
[21]. This noise on the lattice structure outputs increases
on progression to higher orders, which introduces further
errors in the target values towards which the later
PARCOR coefficients are converging. Further noise is sub-
sequently added by the adaptive combiner structure.

Fig. 7 shows a comparative plot of mean-squared error
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stepsize

Fig. 7  Converged error against stepsize for 12-tap fixed stepsize adapt-
ive transversal and lattice equalisers

output from lattice and transversal filters for various step-
size. The lattice algorithm deployed in these measurements
used the order-dependent distributed combiner structure,
Fig. 4a, with a fixed stepsize and not one which is inversely
proportional to signal power. Nevertheless, it is clear that
for a stepwise of > 0.01 the algorithm noise of the lattice
equaliser is much larger than in the transversal equaliser.
As the stepsize is reduced to < 0.01 both curves tend
asymptotically towards the same Wiener solution, for this
12-tap equaliser.

For optimum rate of convergence the transversal filter
stepsize for this case is given by eqn. 3 as u =0.1. Fig. 7
shows that this value of u cannot be used in the lattice
without incurring an excessive noise penalty. Thus the
lattice stepsize must be reduced to a value close to
u = 0.01 to obtain a converged error performance équiva-
lent to the transversal filter. Thus stepsize values close to
Ungerboeck’s optimum [24] cannot be used in practice in
the lattice to obtain fast convergence without incurring a
significant noise penalty.

These deficiencies are further illustrated in Fig. 8, which
shows convergence plots for fixed stepsize complex lattice
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(dotted) and transversal (solid) equalisers with orders
(numbers of delay stages or combiner taps) between 8 and

equalised type and order
L = lattice
T =transversal

_38 327
0 S5 10 15 20 25 30 35 40 45 50
iterations x10
Fig. 8 Convergence properties for fixed stepsize complex adaptive

lattice (dotted) and transversal (solid) equalisers of 8, 11, 16, 22 and 32 tap
complexity when operating on a complex channel of low distortion
(eigenvalue ratio equal to 8)

32, on a channel with an eigenvalue ratio of 8. This
complex channel is typical of a severely distorted UK tele-
phone channel. The lattice equalisers generally show faster
initial convergence but in the transversal equaliser the final
converged error is seen to improve considerably when
higher-order filters are used. In the lattice equaliser,
however, the algorithm noise in the lattice structure pro-
vides a 17-18 dB floor which removes the benefit of the
higher-order filters. The same floor persists when the
length of the structure is increased beyond 16 stages, as the
increase in the number of stages contributing to the noise
is offset by the stepsize reduction according to eqn. 3,
maintaining the same 17-18 dB noise level. The lattice
equaliser stepsize could be further reduced to improve the
algorithm noise, but the convergence would then be slower
than the transversal filter, making it a more complex and
cumbersome structure with no particular advantages.

It is a feature of the adaptive stepsize algorithm, Table
1, that the stepsize, in addition to being adjusted relative to
the normalised signal power at each stage, may also be
given an artificially high initial value. The entire stepsize
vector will then tend asymptotically to its steady-state
value as the convergence progresses. The result is a rapid
initial convergence towards the optimum coefficient values,
followed by a slower approach to a tapweight vector very
close to the Weiner solution. Fig. 9 compares such an
approach against the convergence of an 8-tap transversal
filter with a fixed optimum stepsize of 0.125. The perfect
Weiner solution for .the transversal equaliser on this
channel was calculated as —24.4 dB and the simulated
dotted curve is shown to approach within 3 dB of this
figure as suggested in Reference 24. The §8-tap lattice struc-
ture of Fig. 4a initially employed a fixed stepsize of two
times the optimum value, eqn. 3, in each stage. This value
was then reduced during the stepsize recursion to 0.25 of

1EE PROCEEDINGS, Vol. 131, Pt. F,No. 5, AUGUST 1984

the transversal optimum value, over the first 50 iterations.
This achieves a faster convergence for the solid lattice filter
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Fig. 9  Convergence properties of transversal (dotted) and lattice (solid)
equalisers for a real channel with high distortion (eigenvalue ratio of 47)

Transversal filter uses a fixed stepsize of 0.125. Lattice commences with initial value
of 0.25 on each stage, for fast initial convergence and subsequently reduces to 0.25
the optimum transversal value over the first 50 iterations to minimise algorithm
noise

characteristic, but it still introduces excess noise in the
converged state. The distorting channel deployed in these
simulations was real rather than complex. It was the syn-
thetic channel used earlier in Fig. 5 which had an impulse
response of 0.4 + z~! + 0.4z72, giving an eigenvalue ratio
for 8-tap equalisers equal to 45.

It was concluded from Fig. 9 and other similar simula-
tions which were conducted [19] that, although the gra-
dient lattice equalisers can provide faster initial
convergence, their increased algorithm noise introduces
degradation in the final convergence performance com-
pared to simpler transversal filter based equaliser. Thus the
higher complexity. of the lattice approach cannot be fully
justified on these performance considerations.

3 Alternative equaliser design

One alternative design approach retained the distributed
combiner structure of the normal lattice equaliser, but
froze the lattice PARCOR coefficients after 10-30 iter-
ations. This ensures that the lattice structure will be close
to convergence and will have removed most of the correla-
tion from the signals feeding the combiner weights. Freez-
ing the PARCOR coefficients removes the algorithm noise
contributed by the lattice structure. This was found to be
only partially successful, when using the distributed com-
biner, Fig. 4, as the latter must be fed with truly orthog-
onal signals in order to operate effectively. Since the
PARCOR coefficients were frozen prematurely this condi-
tion was not achieved. However, Fig. 10 shows results for
such a timed algorithm using a global combiner, Fig, 3, in
an §-tap lattice equaliser. The same synthetic channel was
used as in the simulation of Fig. 9. Fig. 10 shows that the
lattice equaliser has a similar rate of initial convergence to
the untimed lattice in Fig. 9, but considerable improve-
ment is obtained in the converged error by freezing the
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lattice recursion after 15 iterations and employing the
global combiner in place of the distributed combiner.

transversal

timed lattice

0 S 10

15 20 25 30 35 40
interations

15 50
x10~!

Fig. 10  Convergence properties of a timed lattice equaliser, employing
the global combiner structure, Fig. 3

Here the lattice recursion to calculate the PARCOR coeflicients is frozen after 15
iterations providing a significant reduction in the converged error compared to
Fig.9

A further concept was evaluated in which the highest-
order output of an adaptive lattice filter structure preceded
an adaptive transversal filter. Since it is a prediction-error
filter, the lattice structure operates as a whitening filter and
its final output reduces the overall eigenvalue ratio of the
signal before it enters the transversal filter. The whitening
of the input signal causes the transversal filter to converge
faster as shown earlier in Fig. 5. Unfortunately, the prewhi-
tening filter effectively spreads the channel impulse
response in time, increasing the transversal filter order
which is required to achieve a specific converged error.
The maximum value on this time spread is equal to the
order of the lattice filter. As it results from the convolution
of the channel and converged lattice filter impulse
responses the actual time spread is dependent on the con-
verged lattice values.

It was found best to employ only a single-stage lattice
filter, Fig. 11, to minimise the time spread and again freeze
the PARCOR coefficients after 15-30 iterations to mini-
mise algorithm noise. Fig. 12 shows a convergence curve
for such an 8-tap combined equaliser, compared to a con-
ventional transversal equaliser, for the same synthetic

H(NY)

e

Equaliser structure with single stage adaptive lattice prewhite-

Fig. 11
ner followed by conventional adaptive transversal filter
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channel as was used in Fig. 9. The lattice recursion was
again frozen after 15 iterations. This provides an efficient
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Fig. 12  Solid curve shows the results obtained by applying a single
stage adaptive lattice prewhitening filter in advance of the 8 tap transversal
filter. Lattice filter coefficients are again frozen after 15 iterations. Dotted
curve shows equivalent transversal filter performance as shown earlier in
Fig. 9

solution whose performance in terms of initial rate of con-
vergence lies between the timed lattice equaliser and the
basic transversal type. However as the prewhitened trans-
versal equaliser structure had not been increased in length,
to compensate for the time spread, there is a small degra-
dation in the final converged error in Fig. 12 compared to
the Fig. 10 results.

4 Conclusions

This paper has reported the design of adaptive equalisers
based on gradient search transversal and lattice filter struc-
tures. The lattice structure has been suggested [25] to
potentially offer significant improvements in terms of con-
vergence and tracking rates through its ability to provide
orthogonal signal samples which overcome the intertap
correlation problems of adaptive transversal filters.

Although it is undisputed that the lattice filter is attrac-
tive for parametric spectral analysis [ 14] detailed theoreti-
cal assessment and simulation of its behaviour as an
adaptive equaliser has shown significant problems with
algorithm noise resulting in excessively large converged
errors.

The final Section of this paper has examined other tech-
niques to overcome these problems such as the timed
approach where the lattice filter coefficients are frozen
after initial convergence or the deployment of a small
timed lattice prewhitener in advance of a conventional
transversal filter. Both of these approaches have been
shown to provide a significant reduction in the algorithm
noise compared to nontimed lattices. The timed lattice
approach also preserves the fast initial convergence of the
adaptive gradient lattice structure. The simpler lattice pre-
whitener offers a initial convergence performance which is
superior to the transversal filter but is marginally inferior
to the timed lattice structure. Both approaches offer an
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overall complexity reduction compared to non-timed gra-
dient lattices and are thus now worthy of further investiga-
tion in the context of specific applications.
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