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The efficiency of a binary support vector machine- (SVM-) based classifier depends on the combination and the number of
input features extracted from raw signals. Sometimes, a combination of individual good features does not perform well in
discriminating a class due to a high level of relevance to a second class also. Moreover, an increase in the dimensions of an
input vector also degrades the performance of a classifier in most cases. To get efficient results, it is needed to input a
combination of the lowest possible number of discriminating features to a classifier. In this paper, we propose a framework
to improve the performance of an SVM-based classifier for sensor fault classification in two ways: firstly, by selecting the
best combination of features for a target class from a feature pool and, secondly, by minimizing the dimensionality of input
vectors. To obtain the best combination of features, we propose a novel feature selection algorithm that selects m out of M
features having the maximum mutual information (or relevance) with a target class and the minimum mutual information
with nontarget classes. This technique ensures to select the features sensitive to the target class exclusively. Furthermore, we
propose a diversified-input SVM (DI-SVM) model for multiclass classification problems to achieve our second objective
which is to reduce the dimensions of the input vector. In this model, the number of SVM-based classifiers is the same as the
number of classes in the dataset. However, each classifier is fed with a unique combination of features selected by a feature
selection scheme for a target class. The efficiency of the proposed feature selection algorithm is shown by comparing the
results obtained from experiments performed with and without feature selection. Furthermore, the experimental results in
terms of accuracy, receiver operating characteristics (ROC), and the area under the ROC curve (AUC-ROC) show that the
proposed DI-SVM model outperforms the conventional model of SVM, the neural network, and the k-nearest neighbor
algorithm for sensor fault detection and classification.

classes obtained from historical data, a process referred to
as classification.

The sensors in industrial systems are listed as a second major
source of faults after the rolling elements (e.g., bearings) on
top [1-3]. These faults lead to intolerable consequences
including an increase in maintenance costs, compromising
the reliability of products and, even more critical, safety
[3, 4]. These issues can be avoided significantly by detecting
fault appearance instantly. Therefore, the output of a sensor
is monitored to promptly identify the anomaly. After
detecting, it is mandatory to find out the primary reason of
the fault occurrence in order to implement safety measures.
For this purpose, faults are categorized into predefined

Recently, machine learning (ML) techniques, such as
neural networks (NN), support vector machines (SVM),
and k-nearest neighbors (KNN), are favored for classification
problems due to an efficient performance [5-12]. However,
they require a feature extraction method to overcome the
curse of high dimensionality of input signals. This method
characterizes the hundred- or even thousand-dimensional
input signal by extracting a few features. Then, these features
are used as inputs to the classifiers instead of the raw signal.
Although this technique may increase the efficiency in some
cases, mostly there is no or very little improvement in the
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performance of the classifier. A major reason is the use of
features with low discriminating power between the samples
of different classes. The good features are the ones that
characterize the signals from all classes in a dataset such that
a signal of one class is easily discriminated from others. To
pick such good features from a feature pool, a feature selec-
tion (FS) algorithm is used. Therefore, the feature selection
step has a dominant role in reliable performance of classifiers
in pattern recognition and classification applications. Never-
theless, a combination of individually good features does not
necessarily lead to a good classification performance [13].
Therefore, a good FS algorithm tries to find the best combi-
nation of features and not a combination of individually good
features. Moreover, as mentioned earlier, the complexity of
the system is dependent on the dimensions of input vectors
in direct relations. Therefore, selecting the fewest possible
features when selecting good features can lead to a classifier
performance enhancement.

ES algorithms are classified as wrapper-based, embed-
ded-based, and filter-based [14-16]. The wrapper-based
methods select features by analyzing the performance of a
classifier after each selection. The features that optimize the
performance of the classifier are selected. These techniques
require high computational resources and a long time to
get the best features; even so, optimality is not ensured.
Embedded-based feature selection optimizes the classifier
and feature selection simultaneously. The problem with these
approaches is that the features are selected for the classifier
under consideration and may not be able to merge with any
other classifier. In contrast, the filter-based feature selection
approach selects features irrespective of classifier optimiza-
tion. In this approach, mutual information (MI) is a widely
used measure to select the features most relevant to the
target class.

The objective of the current work is to develop an effi-
cient detection and classification algorithm for sensor faults
using a supervised ML-based classifier. For this purpose, we
first propose a novel MI-based FS scheme to select the exclu-
sive relevant features with high discriminating power from a
feature pool. Then, we propose a diversified-input SVM (DI-
SVM) model to reduce the dimensions of input vectors to the
classifiers ultimately improving the performance.

1.1. Contributions. The major contributions of this work are
summarized as follows.

(i) A filter-based FS algorithm is proposed to select a
combination of features exclusively discriminating
one class from others. For a target class, the measure
of MI of the appointed feature on the nontarget class
is subtracted from the measure of MI of the same
feature on the target class. This technique selects
the features having high capability of discriminating
target class and, at the same time, having less
sensitivity to nontarget classes. The results show
the efficiency of the proposed FS scheme over other
schemes which utilize the redundancy between the
features in addition to relevance to measure the
goodness of features.
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(ii) Furthermore, we propose a DI-SVM model to
reduce the dimensions of input vectors to classi-
fiers. This model inputs a diversified combina-
tion of features to different SVMs utilized for
multiclass classification. These combinations of
features input to any classifier are selected by
the feature selection algorithm. For example,
the ¢ classifier is fed with a combination that
is selected for the ¢! class. On the other hand,
in a conventional way of using SVMs for multi-
class classification, all classifiers are trained with
the exact similar number and set of features
selected for all classes. The experimental analysis
shows that the proposed DI-SVM model further
improves the classification performance of the
conventional SVM.

(iii) The performance of the proposed methodology is
analyzed using two datasets. In the first dataset,
the faulty signals are obtained by keeping the index
of fault insertion point fixed at 500 during simula-
tion, whereas the second dataset is obtained using
faulty signals with fault insertion point varying
from 0 to 1000 in each sample. The latter case is
used to replicate a practical scenario in industrial
systems. The results show that it is more challeng-
ing to detect and classify faults in the second case.
However, the framework of the proposed FS scheme
and DI-SVM achieves satisfactory results in this
case also.

(iv) A series of five experiments are performed to
compare the performance of the proposed DI-
SVM model with those of the conventional
SVM, NN, and KNN classifiers. The first two
experiments are performed using the conventional
SVM, NN, and KNN classifiers without applying a
feature selection. In the next experiment, we prove
the efficiency of the proposed FS algorithm using
measures of accuracy, receiver operating character-
istics (ROC), area under the ROC (AUC-ROCQ),
and scatter plots in selected feature spaces. In the
last two experiments, we deploy the proposed FS
and DI-SVM model along with the abovemen-
tioned classifier and compare the performances.
The results show that DI-SVM outperforms all
the counter three classifiers.

This paper is organized as follows. A review of related
works and the proposed feature selection algorithm are
presented in Section 2. The theory of the classification model
and proposed DI-SVM model is presented in Section 3. The
experimental results are illustrated in Section 4. Section 5
presents the discussion about the experimental results, and
finally, the study is concluded in Section 6.

2. Mutual Information-Based Feature Selection

2.1. Preliminaries. Before presenting a review of the related
works, we present fundamental background knowledge
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about the MI-based feature selection schemes. For two ran-
dom variables, x and y, the MI is defined as follows [17]:

x39)=||p(xy) lo px.y) x
I(x39) = [[pts ) og £5 T axy, (1)

where p(x) and p(y) are probability density functions of
continuous random variables x and y, respectively, and
p(x,y) is their joint probability density function. For discrete
random variables, the integration is replaced with summa-
tion as follows:

)= Y3 plxy) log P @)
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where p(x) and p(y) are probability mass functions of
discrete random variables x and y, respectively, and p(x, y)
is their joint probability mass function. The MI can be
expressed in terms of entropy as follows:

I(x;y)=H(x)-H(x|y)=H(y) - H(y|x).

3)

H(x) and H(x | y) represent the entropy and conditional
entropy, defined as follows:

=) p(r) log p(r) (4)
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2.2. Related Works. In this paper, we focus on the selection
criteria of features based on the measure of ML Different
FS algorithms have been proposed in the past using different
criteria to measure the goodness of features using MI. Battiti
[18] selected features by calculating the MI I(x;;c) of
individual feature x; with class c. To avoid the selection of
redundant features, the MI measure I(x, ;xj) between two
features x; and x; is calculated. The MlI-based feature

selection (MIFS) is given as [18]

)) =B 1(xi5x;), (6)

ijS

where 3 is the regularization parameter to weight the
redundancy I(x; ; x;) between a candidate feature x; and the
already-selected features x; €8. Kwak and Choi [19] proved
that a large value of f can lead to the selection of
suboptimal features. They improved the MIFS scheme to
propose MIFS-U by making modifications as follows

I(xj5%x;). (7)

x;€8

In both of these algorithms, the selection of a feature is
dependent on the user-defined parameter 3 weighting the

importance of redundancy between features. If § is selected
too large, the feature selection algorithm will be dominated
by the redundancy factor. The authors of [13] proposed
parameter-free criteria of feature selection, named as
minimal-redundancy-maximal-relevance (nRMR), given by

Y 1(x3%), (8)
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where m is the number of features to be selected.

Estevez et al. [20] pointed out that the right-hand sides of
MIFS and MIFS-U, in (6) and (7), will increase with the
increase in the cardinality of the selected feature subset. This
will result in the dominating right-hand side, thus forcing the
FS to select nonredundant features. This may lead to the
selection of irrelevant features before relevant features.
Another problem is that there is no technique to optimize
B and its value depends highly on the problem under consid-
eration. Although the mRMR partly solves the first problem
in MIFS and MIFS-U, the performance is still comparable
with those of MIFS and MIFS-U [21].

A normalized MIFS (NMIEFS) is proposed to address the
above problems and is given as [20]

1 I(x;5%;)
min {H(xj),H(xi)}' (

I(x;5¢c)— 9
RIS )

An improved version of NMIFS (I-NMIFS) is given in
[21] as follows:

I(x;5¢) B 1
log, (1€2|)

I(x;5x) L
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The problem with NMIFS and I-NMIES is that they
both rely on the measure of entropy of both the selected
and under-observation features. The entropy of a feature
is totally dependent on the number of samples from each
class in the dataset. If one class has a high number of
samples than the other, this situation will have an effect
on the value of entropy of a feature leading to degradation
of performance of the classifiers.

Furthermore, all these algorithms rely on the measure of
mutual information of a to-be-selected feature with a target
class (relevance) and with an already-selected feature
(redundancy). In this paper, we focus only on the relevance
of a feature with a target class and nontarget class to assess
the goodness of a candidate feature. Indeed, a feature having
high MI (i.e., relevance) with a target class might not be a
good choice due to a high relevance to at least one nontarget
class as well. This may lead to degrading rather than improv-
ing the performance of the classifier. Therefore, we propose
a feature selection scheme that relies only on the measures
of relative relevance of a feature with different classes in
the dataset. The measure of redundancy is eliminated making
the scheme simplified yet achieving satisfactory performance
compared to that of the FS schemes utilizing the redundancy
factor also in the selection criteria.



2.3. The Proposed Feature Selection Scheme. Given a training
dataset composed of N samples and M features, the aim is to
select m out of M features for each class ¢, individually, where
c€{1,2,...,C} and C is the number of total classes. The
features having maximum relevance to class ¢ and minimum
relevance to remaining c—1 classes are most suitable for
discriminating class ¢. Relevance is usually described by MI
or correlation, of which the MI is a widely adopted measure
to indicate the dependence between two random variables.
Generally, the mutually independent variables have zero MI
between them. The higher the dependency of two variables,
the higher the MI.

The proposed feature selection algorithm selects features
by considering their measures of MI with both target class
and nontarget class. The m features having maximum
relevance with a target class are fit for target class, but it
may also have high relevance with a nontarget class,
making this feature less discriminating. Therefore, the
features having maximum relevance with a target class and
minimum relevance with nontarget classes are selected.
This approach selects the subtlest features among the
feature sets for the target class exclusively. The relevance of
features exclusive for the target class is obtained by
calculating the difference of the MI of the selected feature
vector x;, where i=1,2, ..., M, on target class ¢ and the MI
of x; on nontarget class ¢’. Mathematically,

d=I(xi;c)—I(xi;c/>, (11)

where ¢’ = C/c is the set of nontarget classes. The m among
M features with maximum values of d is selected for target
class c. The MI of x; on class ¢ is calculated in terms of
entropy as follows:

I(x;;¢)=H(c) - H(c|x;), (12)

where H(c) is the entropy of class ¢ and H(c|x;) is the
conditional entropy of ¢ given x;. Assuming 0.log 0=0
from continuity, H(c) and H(c| x;) are defined as

H(e) = ~p(¢) log p(c) ~p(<') log p(<'),
Io (]3)
H(clx) ==Y p(x) ). plelx) log p(elx),

XEX; c=1

where p(c) and p(c’) are the probabilities of the target class
and nontarget class, respectively, and can be calculated as
p(c)=nJN and p(c') = (N - n,.)/N, respectively, where n,
is the number of samples corresponding to class ¢ in the
training dataset. The conditional probability p(c|x) is
given as

p(A)p(x[c)

C pOPs)’ (14

plelx) =

where s=1,2,...,C correspond to the set of all C classes.
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The probability mass function p(x | c) can be estimated
using the Parzen window method as follows [13]:

P = 5 Y P(x -, h), (15)

ciel,

where I represents the set of indices of training samples
corresponding to class ¢ and ®(-) is the window func-
tion. The commonly used Gaussian window function is
expressed as

exp (—(z'27'z12%))
®(z, h) = (Zn)M/ZhM|Z|”2

. (16)

where ¥ is the matrix covariance of the M-dimensional
vectors of random variables, z=x-x;, and the width
parameter h is given by h= f/log N for positive constant
B. The appropriate selection of ®(-) and a large h can
converge (16) to a true density [13]. Using (5), (6), and (7),
the estimated conditional probability mass function can be
obtained as

5, (-5 )
z]f:lzidk exp (—((x - xi)Tz—l (x - xi)/2h2)) .
(17)

plelx)=

A pseudocode of steps in the proposed FS algorithm is
given in Algorithm 1. A training dataset {x;;, ci}z , with N

samples and M features, where x;; is the i" element of the

j feature vector, is given input to the selection scheme. A
matrix X of size C x m is the output of the algorithm where
each cM row contains the m features selected for targeting
class c. In the first step, a target class c is selected among
the sets of all classes 1,2, ..., C. Then, the respective set of
nontarget classes is obtained. In the next step, each feature
vector is selected simultaneously. For each j feature vector,
the elements from class ¢ and class ¢ are stored in x; and
x?, respectively. The mean values of these vectors are

stored in x§ and xf. After a series of calculation of the esti-
mated conditional probability, entropy, and conditional
entropy, d is calculated for given class ¢ using (2). Then,
the m features having maximum values of d in the final
vector are selected and stored in the ¢ row of the matrix
X. Similarly, m features are selected for each class and
stored in the final matrix X.

3. Classification Models

A generic framework of classification methodology using
supervised machine learning-based classifiers is given in
Figure 1. This methodology is performed in two phases: a
training phase and a testing phase. In the training phase, a
classifier is trained using a set of historical (or training) data.
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INPUT: {x;;, c,-}il, Training dataset; j={1,2, ..., M}, Number of features; c € {1,2, ..., C}, Number of classes;

m, Number of features to select by algorithm.
OUTPUT: X,,,, Matrix of C vectors of m features selected for each class c.
1: for cin Cdo

2: ¢ —Clc

3: for jin M do

4: x; — values of j" feature from class ¢

5: x? «— values of j" feature from class ¢’

6: ;< mean of x; from class ¢

7: §<— mean of x; from class ¢

8: Obtain p(c| x{) and P xf) using Eq(8)

9: Obtain H(c), H(c') using Eq(4)

10: Obtain H(c|x;) and H(d | x;) using Eq(4)
11: Obtain I(x;; c) and I(x;; ¢') using Eq(3)
12: Obtain dj « I(x;5¢) = I(x;; ¢') using Eq(2)
13: end for

14: Indices of m maximum values of d° — X,
15: end for

ALGoriTHM 1: Proposed feature selection algorithm.

Training
dataset
Feature

extraction

Feature

pool

Feature
selection

, - !

Testing
dataset
v

Extract
selected
features

{ KNN } SVM

[~ ]

FIGURE 1: (a) Training phase and (b) testing phase of the generic fault classification framework for machine learning-based classifiers.

The steps include feature extraction from raw signals to
obtain a feature pool. Then, an FS algorithm selects the
best features in terms of discriminating power between
data from different classes. Finally, the sets of the selected
features are used to train the classifier, as illustrated in
Figure 1(a). The performance of the trained classifier is
evaluated using a set of unobserved test signals in the testing
phase. The classifier is loaded with the particular features,
selected in the training phase and extracted from the test
signals as shown in Figure 1(b).

The commonly adopted supervised machine learning-
based classifiers include NN, KNN, and SVM-based classi-
fier. A short introduction to each one of these classifiers is

given here for completeness. Then, the proposed DI-SVM-
based classifier model is presented.

3.1. Neural Network. A neural network (NN), also known
as feedforward NN or multilayer perceptron (MLP), is a
machine learning tool for classification and regression
problems. The structure of NN is inspired from the biological
nervous system. It consists of an input layer, an output layer,
and at least one hidden layer. An input signal is propagated
forward from the input layer to the output layer to obtain
the weight vectors of each layer. During this stage, the
neurons in hidden and output layers learn about the input
patterns from different classes. The neurons are triggered



with a differentiable nonlinear activation function. A com-
monly used sigmoid activation function is given as

1
Cl+exp (-v)’

Vi (18)

where v; is the weighted sum of all synaptic inputs and the
bias to the i neuron and y, is the output of the same neuron.

A backpropagation algorithm is used to estimate the
difference between the predicted output of the network
and the true result. An estimate of the gradient vector
containing the gradients of the error surface with respect
to the input weights of neurons in hidden and output
layers is computed. The gradient vector is then passed
backward from the output layer to the input layer to
update the weight vectors of each layer. In this paper, a
Levenberg-Marquardt (LM) algorithm is used to update
the weights of neurons in backpropagation [22].

3.2. k-Nearest Neighbor. A k-nearest neighbor (KNN) is a
simple classifier that takes a decision about the test input by
simply looking at the k-nearest points in the training set
[23]. The classifier counts the number of members from each
class in this set of k-nearest neighbors to test the input and
classifies the test signal in the class having the highest num-
ber of members. The Euclidean distance is commonly used
as a distance metric to obtain the set of the nearest neighbors.

3.3. Support Vector Machine. The SVM is a well-known
classifier primarily addressing two-class classification prob-
lems. A linear hyperplane is drawn as a decision boundary
between the data points of the two classes. The optimal
decision boundary is the one that maximizes the weight
vector ||w|| [3, 24].

For a given set of training samples, x;, and discrete class
labels, ¢;, the SVM tries to obtain the optimal weight vector,
w, using the following optimization problem:

. 1 <
min  ®(w,&) = EHW||2+0¢ZEZ-,
i=1

such that
c(whx,+b)21-¢&, fori=1,2,...,N,§>0Vi,

(19)

where « is the cost parameter and &; represent the slack
variables. A test observation, x;, is classified by the decision

j
function, given as follows:

f(xj) = sign <Z(xiK(xi, Xj) + b) , (20)

where x; represents the set of support vectors obtained in the
training phase and K(x;, ;) is the kernel function explained

in the next section.
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For a multiclass (more than two classes) classification
problem, an equal number of binary SVMs to the number
of classes in a dataset are utilized, where each SVM is used
in a one-versus-rest approach [10, 25-27]. The ¢ classifier
is trained with the samples from the ¢ class as a positive
class and the samples from the remaining classes as a
negative class.

3.3.1. Kernel Functions. To reduce the complexity of the
machine in linearly nonseparable patterns, the data points
are mapped on a higher-dimensional feature space where a
linear decision surface can be drawn to classify the datasets
of different classes. Inner-product kernels are used to
perform this job. This is the key technique of SVM to solve
the optimization problems of the input feature space in a
higher-dimensional feature space. In such a way, the SVM
deals with linearly nonseparable problems. For mapping
function ¢(-), the kernel function of two vectors x and y is

given as K(x,y) = ¢(x) ¢(y). A radial-basis function is a
commonly used kernel function, defined as

e (T
K(x,y) =exp ( 552 ) (21)
3.4. Proposed Diversified-Input SVM Model. The training
and testing phases of the proposed diversified-input SVM
(DI-SVM) model for sensor fault detection and classification
are illustrated in Figures 2(a) and 2(b), respectively. Given a
training dataset composed of N labelled raw signals from a
sensor, the first step is to extract M features to obtain the
feature pool of size N x M. The term raw signal refers to
the signal obtained from a sensor, which is not preprocessed
(i.e., any preprocessing technique, such as feature extraction
and standardization, is not applied). In other words, the
signals from the sensor in the earliest form are the raw
signals, whereas the M-dimensional row vector in the fea-
ture pool, which is composed of the M features and
extracted from a raw signal, is interchangeably referred
to as a sample or an observation. After feature extraction
to obtain a feature pool, the FS algorithm selects m out
of M features for each class, separately. To perform this,
the FS algorithm first selects a target class, ¢, from the
given set of classes 1,2, ..., C, where C is the total number
of classes. Then, the goodness of each feature is assessed
using a selection criterion to take a decision about select-
ing the features for the ¢ class. Subsequently, the next
class is selected as the target class, and the feature selec-
tion steps are repeated. In this way, m features are selected
for each class in the dataset. Finally, the column vectors in
the feature pool of training data corresponding to the fea-
tures selected for each single class are given inputs to C
different SVMs, separately, for training. For example, if
the two features x and y are selected targeting class ¢, then
the vectors x and y containing the values of x and y from
the feature pool are input to the SVM to specifically iden-
tify class c. Furthermore, the ¢ classifier is trained with
observations of the ¢ class labelled as a positive class
and the remaining ¢ — 1 classes labelled as a negative class.
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FIGURE 2: Framework of (a) the training phase and (b) testing phase of the proposed diversified-input support vector machine

(DI-SVM) model.

In such a way, C different SVMs are trained for C-class
classification problems, where the observations input to
each SVM are composed of diversified-feature combinations
selected by the FS algorithm.

To classify a test raw signal, first, the features selected
in the training phase are extracted from the raw signal to
obtain the feature pool. The trained C SVMs are used to
classify the test observation. Input to the SVMs is given
with the same feature combinations as in the training
phase. The output class labels and respective scores of all
the SVMs are stored in the output vector. It is checked
for any observation classified into multiclasses, that is, if
any observation is classified positive by more than one
SVM in the classifier. In this case, the decision of the
SVM with the maximum output score is taken into
account, as shown in Figure 2(b).

3.5. Classifier Parameters

3.5.1. Cross-Validation. The cross-validation (CV) tech-
niques assess generalization and overcome the overfitting
problem of the classifier in the training phase. The k-fold
CV technique partitions the training data into k complemen-
tary subsets to train and validate SVM k times. In each round,
a new subset is used for training, and the remaining samples
are used for validation. This cycle is repeated until each

sample is used for training at least once. Consequently, each
subset is used once for training while being used k — 1 times
for validating the classifier.

3.5.2. Standardization. Standardizing the training data prior
to training the SVM may improve the classification perfor-
mance [28]. This preprocessing technique is applied to
prevent large valued features from dominating the small
valued features in the dataset. The two commonly used
ways of standardizing a dataset include the min-max (also
known as normalization) and the z-score formula. In the
min-max data standardization, the values of the data vector
are scaled from 0 to 1. In contrast, the z-score formula scales
the data vector to a standardized vector having zero mean
and unit variance. Some other standardization techniques
derived from these two basic methods are proposed in the
literature [28, 29].

In fact, there is no obvious answer to which technique
is the best. However, a basic difference between the two
approaches is that the min-max method bounds the
standardized data between 0 and 1. In this approach, a
single outlier in the data may compress the remaining fea-
ture values toward zero. On the other hand, there is no
limit on the range of standardized data using the z-score
formula. This makes z-score standardization more robust
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TaBLE 1: Time-domain features.

Name Definition Name Definition

Mean Standard deviation

Root mean square

Sign function

Square root of amplitude

Variance

L (xi-u)' 1Y x-u\’
Kurtosis value YKV = —= ( ! ) Skewness value YSV = — ( ! )
N ; Ysrp N ; Ysrp
X, max |x
Crest factor Y p = max il Impulse factor Y= |N'|
Yrums (UN) 22 |x;
X; Y
Margin factor Y p = max il Form factor Vg = M8
SRA
Y Yiv
Kurtosis factor KE™ Peak-to-peak value Yppy = max (x;) — min (x;)
(mxl) P : ’
TaBLE 2: Frequency-domain features.
Name Definition Name Definition
1Y r
Center frequency Yic= N ZX,- Sum FET Yppr = Z X,
i=1 i=1

RMS frequency Yrumse =

Root variance frequency

to the outliers in the data as compared to the min-max
standardization method.

In z-score standardization, the input feature vectors are
scaled to a zero mean by subtracting the statistical mean from
each element of the vector and normalized to have a standard
deviation of 1 by dividing by the standard deviation of the
input vector. Given a vector, x;, the formula of z-score
standardization is given as

xi=L P (22)

where x; is the vector of standardized values and ., is the
mean of the feature vector x; with standard deviation o, .

3.6. Feature Pool. A feature pool was obtained by extracting
14 time-domain and 4 frequency-domain features. The
respective names and mathematical definition of these
features are illustrated in Tables 1 and 2.

4. Experimental Analysis

4.1. Dataset Acquisition. The types of sensor faults consid-
ered in this work include drift, erratic, hardover, spike, and

stuck faults [3]. A plot of a raw signal from each of these clas-
ses and normal classes is given in Figure 3. The fault is con-
sidered a drift fault if the output of the sensor increases
linearly. The hardover fault occurred when the output of
the sensor is increased from a normal value, represented by
a red line in Figure 3. If the erratic fault occurs, the variance
of the output signal of the sensor is increased from a routine
value. In the case of spike fault occurrence, spikes are
observed in the output signal of the sensor. When the output
of a sensor sticks to a fixed value, then this fault type is named
as stuck fault. These fault types are divided based on the data
measurements and can be considered generic in different
types of sensors such as the pressure sensor. These faults
are referred to by many researchers, with some using
different nomenclature. For instance, Yu et al. [4] and
Kullaa [30] referred to erratic, stuck, and hardover faults as
precision degradation failure, complete failure, and bias
failure, respectively.

The training and testing datasets utilized in this work are
obtained using a healthy temperature-to-voltage converter
TC1047/TC1047A as follows. A set of 100 raw time signals
is acquired from a sensor using an Arduino Uno microcon-
troller board with a serial communication between the
Arduino and personal computer. Each raw signal is
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FIGURE 3: Plots of samples of all six classes from dataset 1 (with fixed fault insertion point).

composed of 1000 raw data elements from the sensor. Then,
each fault type, that is, drift, hardover, erratic, spike, and
stuck faults, is simulated in each stored signal obtained from
a healthy sensor. In such a way, a set of 100 signals from each
class, including normal and faulty classes, is obtained. The
details of fault simulation in a normal data signal are as
follows: a drift fault signal s27it is obtained by adding a
linearly increasing bias term in a normal signal s\omal
where the bias added to the n'" element is n times the
constant initial bias b,. A hardover fault signal stardover jg
obtained by adding a large constant bias value b to all ele-
ments of the normal signal. To obtain an erratic fault signal

. 2 Normal
. i . . 2
stmatic 3 signal §, of mean 0 and high variance, 8~ > & ,

Normal
where 8° is the variance of the normal signal, is added

to the raw normal signal. To obtain spike fault signals s*Pe,
a constant bias is added periodically to the u™ elements of
the normal signal, where u =v x 7 is the index of elements
in the signal with v={1,2, ...} as a set of natural numbers
and # > 2 as a positive integer. Finally, the stuck fault signals
sStuck are obtained by keeping a fixed value at all indices of the
normal signal. The statistical representations of these faults
are given in Table 3, where sNo™l(n = 1,2, ...,1000) is the
n'" element of the raw signal corresponding to the normal
class. In conclusion, the final dataset is composed of 100

TaBLE 3: Statistical representation of fault simulations in the
normal signal.

Fault Statistical Representation
Drift srift = gNormal g, b = nby, by = constt
Hardover stlardover _ Normal 4 '}y — constt
. . Lo 2 .2 .
Erratic shrmatic - (Normal 4 ¢ 5 N (0,67),8" > ol
Spike _ Normal
spke=g +b,,
b byn=vxn,v={1,2,...,},n=constt
ik n= .
Spike 0, otherwise
Stuck sStuek = o = constt

raw signals of each of the six classes. This means that 100
raw time signals of each class are included resulting in a total
of 6 * 100 raw time signals in the final dataset. As mentioned
earlier, a raw signal is comprised of 1000 data elements.
Therefore, the final dataset of raw signals has a size of
600 * 1000 data points.

In dataset 1, the fault insertion point is kept fixed at
index =500 of each fault sample, illustrated in Figure 3. The
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FiGURE 4: Plots of the 1st, 25th, 50th, 75th, and 100th sample of all six classes from dataset 2 (with a variable fault insertion point).

fault insertion point is the index of the element of the signal
from where the fault occurrence starts. A similar way of fault
simulation is adopted to obtain dataset 2 with the same size
as the first dataset; however, the fault insertion point is a
variable index, chosen randomly, of the signal. This case is
considered to replicate a more practical scenario of the fault
occurrence time in sensors. The time-domain plots of the
Ist, 25th, 50th, 75th, and 100th sample from each class
from the second dataset with a random fault insertion point
are given in Figure 4.

4.2. Performance Evaluation Metrics. The performance of the
classification models is analyzed and compared using the
following metrics.

4.2.1. Accuracy. The accuracy of a classifier is the ratio of
the number of true predictions to the total number of
observations in the test set. Mathematically,

TP+ TN

N (23)

accuracy =

>

where TP and TN denote the number of true positive and
true negative predictions and N is the total number of
observations under the test.

4.2.2. Receiver Operating Characteristics. A receiver operating
characteristic (ROC) graph is used to visualize, analyze,
and select classifiers based on the performance. A two-
dimensional graph represents a tradeoff between the true

positive rate plotted on the y-axis and the false positive
rate on the x-axis.

4.2.3. Area under the ROC. A comparison of two-
dimensional ROC curves of two classifiers becomes difficult
if the difference in the performances is too small. It may be
needed to represent the performance with a scalar value.
Calculating the area under the ROC curve (AUC-ROC) is a
common technique used for this purpose [31].

4.3. Classifier Implementation. The SVM-based classifiers
in both conventional and proposed models are trained
and tested using MATLAB in a one-versus-rest manner.
The cost and box constraints of misclassifications in the
SVM are set to 1. The solution to the optimization prob-
lem is obtained using a sequential minimal optimization
(SMO) algorithm.

The NN is composed of an input layer, three hidden
layers, and an output layer. Unfortunately, there is no way
to compute the optimized number of layers or the number
of neurons per layer in the NN. However, the number of
nodes in the input layer is equal to the number of input
variables. We used 12, 6, and 2 nodes in the hidden layers
with the hidden layer of 12 nodes being the nearest to the
input layer. The output layer is composed of one node,
giving output in the form of an integer number ranging
from 1 to 6 corresponding to the normal, erratic, drift,
hardover, spike, and stuck faults, respectively. A Levenberg-
Marquardt (LM) algorithm is used in the training phase to
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optimize the weights of the neurons. The mean squared error
(MSE) is utilized to update the weights of the network in
backpropagation. A sigmoid function is utilized to activate
the nodes in the hidden layers.

In the KNN classifier, the nearest 3 neighbors are
weighted using the Euclidean distance parameter to classify
a test observation. The cost of wrongly identifying an
observation of a class in any other class is set to 1.

For all experiments, a 10-fold CV technique is applied in
the training phase to improve the generalization of each
classifier. Furthermore, a z-score standardization is applied
in preprocessing of the test dataset to normalize the
input vectors.

4.4. Experimental Results. To analyze the respective efficiency
of the proposed feature selection scheme and the proposed
DI-SVM model, a series of five experiments are performed.
The first and second experiments are performed without
applying a feature selection scheme in the fault detection
and diagnosis procedure, using datasets 1 and 2, respectively.
In these experiments, the performance comparison of the
conventional SVM, NN, and KNN classifiers is presented.
In experiment 3, the performance of the proposed feature
selection scheme is analyzed and compared to the existing
schemes. Lastly, the first two experiments are repeated after
adding the proposed feature selection algorithm to the sys-
tem to observe the effect on the performance of classifiers.
The performance of the proposed DI-SVM model is also
added in comparison with the conventional SVM, NN, and
KNN in last two experiments.

4.4.1. Experiment 1: Fault Diagnosis without Feature Selection
Using Dataset 1. The first experiment is performed without
applying feature selection in the fault detection and classifica-
tion methodology. The dataset contained 1000-dimensional
normal and fault samples having a constant fault insertion
point indexed at 500. All the features given in Tables 2
and 3 are extracted and input to the classifiers.

The accuracy results obtained from this experiment using
the conventional SVM, NN, and KNN classifiers are given in
Table 4. An individual accuracy of each class is obtained by
assuming the given class as a positive class and the remaining
classes as a set of negative classes. The total accuracy is the
percent ratio of the sum of individual accuracies to the sum
of the highest possible accuracies of all classes.

As given in the table, an SVM attains higher accuracies
than NN and KNN for classifying all classes except for the
normal and the stuck faults. The reason is the small differ-
ence between the range of features in normal and stuck fault
classes. However, the SVM outperforms the NN and the
KNN classifiers achieving a total accuracy of 81%. Further-
more, the NN performs worst among the three classifiers
achieving a total accuracy of 78%, a difference of almost 1%
from 79% achieved by the KNN classifier. However, the
NN, as compared to SVM and KNN, distinctly outperforms
in classifying the normal class. Moreover, a KNN classifier
achieves slightly higher accuracy when classifying the stuck
fault class than do NN and SVM.

11

TaBLE 4: Accuracies (%) of classifiers obtained in experiment 1.

Classifier Normal Erratic Drift Hardover Spike Stuck Total

SVM 43.05 8555 92,50 9583  85.83 83.33 81.01
NN 8333 63.05 75,55 86.11 8138 83.33 78.79
KNN 70.83  63.05 82.77 83.61 9250 83.88 79.44

TaBLE 5: Accuracies (%) of classifiers obtained in experiment 2.

Classifier Normal Erratic Drift Hardover Spike Stuck Total

SVM 40.83  90.27 84.44 8694 9333 85.83 80.27
NN 8333 60.00 71.11 8222 77.22 83.33 76.20
KNN 53.33 81.66 65.00 83.05 80.27 83.33 74.44

4.4.2. Experiment 2: Fault Diagnosis without Feature Selection
Using Dataset 2. In this experiment, the fault detection and
classification methodology is similar to that of experiment
1; however, the dataset contains samples with variable fault
insertion between 0 and 1000 index, as shown in Figure 4.

The results in Table 5 show that the samples considered
in this case put a higher challenge to classifiers than those
considered in the previous case. The total accuracy of all
classifiers is degraded as compared to experiment 1. Never-
theless, the SVM still outperforms the NN and KNN classi-
fiers. However, the total accuracy is degraded from 81% to
around 80%. Similarly, the total accuracies of the NN and
KNN classifier also reduced from 78% and 79% to 76% and
74%, respectively. The NN is successful in achieving an equal
accuracy for normal and stuck fault classes, although a reduc-
tion is observed in the accuracies of other classes. The perfor-
mance of the KNN classifier in classifying most of the classes
is reduced with a considerable difference. On the other hand,
an increased accuracy is reported for the erratic fault class
for both SVM and KNN classifiers.

4.4.3. Experiment 3: Feature Selection. The mean values of 14
time-domain and 4 frequency-domain features extracted
from the training samples are given in Table 6. The proposed
ES scheme is supposed to select the exclusive most relevant
features for each class among the given sets of features in
the pool.

To obtain an optimal value of m for the FS scheme, the
ROC:s along with the respective AUC-ROC values are given
in Figures 5, 6, 7, and 8. A conventional SVM classifier was
used to obtain the discriminating efficiency of the classifier
for the normal class in these figures. The results of Figure 5
are obtained using dataset 1. The normal class samples are
trained as a positive class whereas the remaining class
samples are trained as a single negative class. Figure 6 shows
the results obtained using dataset 2 for a similar positive
class, that is, normal class, and negative class. In Figures 7
and 8, datasets 1 and 2 are utilized, respectively; however,
the set of faulty classes is trained as a positive class and the
normal class as a negative class.

As illustrated in the figures, the classifier performs better
when dataset 1 is used as compared to the counter case of
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Figure 6: ROC and AUC-ROC comparison of the conventional SVM model for various numbers of features (m) selected by the feature
selection scheme using dataset 2 when the normal class is selected as a positive class.

using dataset 2. These results show that it is more challenging
for a classifier to perform classification when the dataset with
a variable fault insertion point is used. Furthermore, it can be
observed that m =2 feature selection for the normal class
gives the optimal results in all cases as compared to m =1,
4,9, and 18.

The respective AUC-ROCs for each class are given in
Figure 9 using dataset 1 and Figure 10 using dataset 2. The
AUC-ROC measures in these figures also illustrate that
m =2 is the optimal value for all classes with a given set of
features and fault types. The hardover fault type has an
almost similar value of AUC-ROC for m=1 and m=2.
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The reason is that only a sign function is a good enough fea-
ture to discriminate the hardover fault class. A further
increase in the number of feature selection m from 2 shows
a degrading AUC-ROC measure for this class as well.

The efficiency of the proposed FS scheme is shown
in Figures 11 and 12. The performance is compared
with those of the MIFS, MIFS-U, mRMR, NMIES, I-NMIFS,

and exhaustive search algorithm. The exhaustive search
algorithm uses all combinations of features in the feature
pool to assess the performance of the classifier and then
selects the best combination among all. The total accu-
racy obtained from the conventional SVM classifier is
used as evaluation criteria. Datasets 1 and 2 are utilized
in Figures 11 and 12, respectively.
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TaBLE 7: Maximum total accuracies (%) of respective FS with the number of features selected for all classes.
FS scheme Dataset 1 Dataset 2
Number of selected features Accuracy (%) Number of selected features Accuracy (%)
MIFS 12 95.34 13 89.98
MIFS-U 11 95.88 12 90.23
mRMR 10 96.00 11 90.02
NMIFS 10 96.55 10 90.92
I-NMIFS 9 97.01 10 91.00
Proposed 9 97.77 10 91.10
Exhaustive 8 98.02 10 91.98
TABLE 8: Features selected using the proposed feature selection algorithm for each class.

Class Normal Erratic Drift Hardover Spike Stuck

CF FC FF Sign KV FC
Selected features

FC STD Mean RMS SFFT Mean

While selecting the first feature, all the abovementioned
schemes have similar criteria of selecting a feature, that is,
the measure of mutual information of the candidate feature
with the target class. This results in a selection of the same
feature by all FS schemes, hence giving comparable perfor-
mance, as shown in both figures. To select the next features,
the criteria of all FS schemes are almost the same, except
for the proposed FS scheme. These features rely on both
mutual information and redundancy measures, that is,
assessing the mutual information of the candidate feature
with the target class as well as the redundancy with the
already-selected feature. This technique may sometime result
in losing a good discriminating feature due to a high redun-
dancy with the already-selected feature. Therefore, these
schemes follow a similar trend of increase in the accuracy
of the classifier with the increase in the number of the
selected features. Furthermore, the selection of the next
feature depends highly on the nature of the currently
selected feature. It is possible that one of the already-
selected features is not a good choice for the target class
and it may result in losing a good feature in hand due to a
high-redundancy factor. However, the figures show that the
proposed FS scheme is able to achieve a good performance
by selecting only the 2 most discriminating features per class
from the feature pool. Furthermore, including all 18 features
in the input to the classifier results in a similar performance
irrespective of the FS scheme.

Furthermore, Table 7 shows the optimal accuracy
obtained by the classifier with a given total number of
features selected by different FS schemes. The results show
that the proposed scheme can achieve the results almost
comparable to the exhaustive search algorithm with the need
of the lowest number of features compared to other tech-
niques. For dataset 1, the proposed scheme can achieve opti-
mal results by selecting only 9 features from the given feature
pool. Similarly, 10 features are selected by the proposed FS
scheme to obtain optimal results in the case of dataset 2.

The two features selected for each class by the proposed
FS scheme are given in Table 8. To show the efficiency of

the proposed feature selection algorithm, the scatter plots of
all samples are shown in Figure 13 in the selected feature
spaces. The red squares represent the data elements of the
class for which the respective features are selected. The black
circles illustrate the data points of the remaining classes in
the same feature space. For instance, the two features selected
for the normal class are crest factor (CF) and center
frequency (FC). Therefore, the red squares represent the data
samples of the normal class in Figure 13(a) in the CF-versus-
FC feature space, whereas the black circles represent the data
elements of all the remaining classes in this subfigure. A
similar trend is followed in the all subfigures.

To observe the feature spaces CF-versus-FC and FC-
versus-mean, the scatter plots are redrawn in Figures 14
and 15 with the data elements from normal, stuck, and
spike fault classes only. The CF and FC features are
selected targeting the normal class. Therefore, most of data
elements of the normal class can be distinguished from the
nearest classes, that is, spike and stuck fault classes, as shown
in Figure 14. Similarly, the FC-versus-mean feature space tar-
gets the stuck fault class, and thus the data from the stuck
fault class are easily discriminated from the normal and spike
fault classes as compared to the CF-versus-FC space, as
illustrated in Figure 15. This figure shows the efficiency of
the proposed feature space graphically.

A value of m=2 is used to obtain the results of
experiments 4 and 5.

4.4.4. Experiment 4: Fault Diagnosis with Feature Selection
Using Dataset 1. This experiment is performed applying
the proposed FS scheme in the classification methodology
and using dataset 1. The performance of the proposed
diversified-input (DI-) SVM model is compared with those
of the conventional SVM, NN, and KNN classifiers.

The accuracy results of this experiment for all four
classifiers are given in Table 9. The proposed DI-SVM
achieves a 100% accuracy for erratic, drift, and hardover fault
classes. The accuracy of classifying normal, spike, and stuck
classes is slightly lower with 98.33%, 98.88%, and 99.44%,
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resulting in a total accuracy of 99.44% for DI-SVM. The
conventional model of SVM is next on the list to perform
efficiently achieving a total accuracy of 97.87%. The NN
and KNN classifiers perform comparatively worse with a
total accuracy of 94% and 85%, respectively.

Table 10 shows the AUC-ROC measures of the four
classifiers for the same dataset. The individual AUC-ROC
of each class is obtained from the ROC curve attained with
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FIGURE 15: Scatter plots of normal, spike, and stuck fault samples in
the FC-versus-mean feature space.

the respective class trained as a positive class and the
remaining classes trained as a set of negative classes. These
results also show that the proposed DI-SVM model out-
performs the conventional SVM, NN, and KNN classifiers.

To analyze the effect of the proposed FS scheme and the
proposed DI-SVM model, the accuracy of the conventional
SVM without applying the FS scheme, the conventional
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TABLE 9: Accuracies (%) of classifiers obtained in experiment 4.
Classifier Normal Erratic Drift Hardover Spike Stuck Total
DI-SVM 98.33 100.00 100.00 100.00 98.88 99.44 99.44
SVM 93.61 99.16 99.72 99.72 97.22 97.77 97.87
NN 98.61 98.33 98.05 93.33 88.61 90.27 94.53
KNN 83.33 92.77 74.72 83.33 98.05 83.33 85.92
TaBLE 10: AUC-ROC of classifiers obtained in experiment 4.
Classifier Normal Erratic Drift Hardover Spike Stuck
DI-SVM 0.9995 1.0000 1.0000 1.0000 1.0000 0.9997
SVM 0.9994 1.0000 1.0000 1.0000 1.0000 0.9990
NN 0.9697 0.8100 0.6067 0.5966 0.8000 0.9897
KNN 0.9967 1.0000 1.0000 1.0000 1.0000 0.9832
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FIGURE 16: Accuracy comparison of the conventional SVM without FS, SVM with ES, and proposed DI-SVM schemes with the dataset of

fixed fault insertion points.

SVM with applying the FS scheme, and the proposed DI-
SVM model with ES applied using m=2 is shown in
Figure 16. The figure shows that the FS scheme successfully
improves the performance of the conventional SVM classifier
in classifying all classes. Furthermore, utilizing SVM in the
proposed DI-SVM model is able to further improve the
classifier’s performance.

4.4.5. Experiment 5: Fault Diagnosis with Feature Selection
Using Dataset 2. Experiment 5 is a repetition of experiment
4 with a difference in the dataset. In this experiment, dataset
2 is utilized to assess the performance of the proposed FS
scheme and the classifiers. As shown in Table 11, the DI-
SVM is successful in outperforming the counter three
classifiers in classifying the classes in dataset 2 as well.
However, the total accuracy is reduced to 93% in this case
from 99% in the previous experiment. A similar trend of
reduction in accuracy is observed for all classifiers. The
intuitive reason is that dataset 2 with a variable fault

TaBLE 11: Accuracies (%) of classifiers obtained in experiment 5.

Classifier Normal Erratic Drift Hardover Spike Stuck Total

DI-SVM 8222 99.16 9332 98.05 99.17 9221 93.89

SVM 73.89 9583 9221 9582  98.32 89.71 91.10
NN 88.32  88.60 94.71 89.71 91.10 94.72 91.19
KNN 61.38 8221 76.39 79.17 81.39 83.32 77.30

TaBLE 12: AUC-ROC of classifiers obtained in experiment 5.

Classifier Normal Erratic Drift Hardover Spike  Stuck

DI-SVM  0.9767 0.9925 0.9383  1.0000 0.9996 0.8820
SVM 09766 0.9829 0.8997  0.8948 0.9663 0.8676
NN 0.9223 0.7933 0.5845  0.6077  0.8103 0.8820
KNN 0.9422  0.9565 0.9913  1.0000  0.9983 0.9269
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FIGURE 17: Accuracy comparison of the conventional SVM without FS, SVM with FS and proposed DI-SVM schemes with the dataset of

variable fault insertion points.

insertion point put a higher challenge in the classification of
samples as compared to the classification of samples in
dataset 1 with a fixed fault insertion point.

The AUC-ROC:s of this experiment are given in Table 12.
Once again, the DI-SVM is successful in achieving the
optimal AUC-ROC measures for all classes.

For experiment 5, the accuracy comparison of the
conventional SVM without applying the FS scheme, the
conventional SVM with the FS scheme, and the proposed
DI-SVM model with ES applied using m =2 is shown in
Figure 17. The figure also strengthens our claim that the
proposed DI-SVM model outperforms the conventional
SVM model.

5. Discussion

The MI-based FS schemes select features for a given target
class based on the measure of MI of the candidate feature
with a target class and the mutual redundancy with
already-selected features, irrespective of nontarget classes.
The proposed FS algorithm considers the MI of a feature
on both target and nontarget classes to select the best combi-
nation of features discriminating the target class from non-
target classes. As this feature selection scheme is regarded
as a filter-based feature selection, the features are selected
independently of the classifier performance and the nature
of raw signals. Therefore, it is safe to claim that the proposed
FS algorithm will efficiently select exclusive most relevant
features for a target class among the pooled features in any
application. However, it should be noted that the efficiency
of the classifier highly depends on the nature of features in
the feature pool used to characterize the signal. Using the
most characterizing set of features will increase the efficiency
of the system and vice versa. From the results of our work, it
can be concluded that taking into account the measurement
of relevance of the candidate feature with a target class
as well as with a nontarget class can help in selecting
exclusive discriminating features.

Furthermore, in a conventional model of applying SVMs
for multiclass classification, the features selected for each

class are concatenated to train all SVMs. Intuitively, reducing
the dimension of input observations leads to improved
performance of SVMs given that the features are selected
properly. Keeping this in mind, we reduced the dimension
of the input vector of all SVMs by inputting diverse feature
combinations selected for different classes. This means that
the feature combination chosen for targeting the ¢ class
is input to the ¢ SVM, particularly, trained with the data
in which the observations of the ¢! class are labeled as a
positive class and vice versa. In this way, the dimension
of the input vectors is reduced to simplify the optimization
of the classifier. Moreover, similar feature combinations
might be selected for more than one class if this combina-
tion is the most discriminating feature combination for
each class.

Our previous work [3] proved from experimental results
that increasing the size of a raw signal, that is, increasing
the number of data elements per one raw signal of the
sensor output, and increasing the size of the training data-
set (increasing the number of training samples) increase
the accuracy of the classifier. Therefore, the purpose of
selecting a small size for training and testing sets is to
observe the lower bound performance of the proposed
fault diagnosis methodology.

6. Conclusions

To select the discriminating feature combinations targeting
each class, we propose a feature selection scheme that takes
into account the measure of relevance of the feature with
both target and nontarget classes. The relevance of two vari-
ables is characterized by the measure of mutual information
between them. The set of m features having the maximum
mutual information on the target class and the minimum
mutual information on the nontarget classes is chosen for a
target class. The results show that this technique can achieve
good results as compared to other feature selection schemes
that take mutual redundancy measure between the selected
features in addition to relevance with a target class.



20

Furthermore, a DI-SVM model is proposed to improve
the performance of the classifier. Each SVM is trained with
a single feature combination selected, specifically, for a single
target class, unlike the conventional SVM model of delivering
all combinations to all SVMs. This approach reduces the
complexity of classifier optimization by minimizing the
dimensions of the input vectors. The performance of the
classifier was analyzed using two different datasets: (1) with
a constant fault insertion point and (2) with a variable fault
insertion point. A series of 5 experiments were performed
to analyze the performance of the proposed fault diagnosis
methodology. The evaluation metrics including the accuracy,
the ROC, and the AUC-ROC show the efficiency of the pro-
posed FS scheme and proposed DI-SVM model. A further
comparison of the performances shows the efficiency of the
proposed DI-SVM over the conventional model of SVM-,
NN-, and KNN-based classifiers in multiclass sensor fault
classification problems.
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