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A multi-objective linear programming model for scheduling part families and 1 

designing a group layout in cellular manufacturing systems 2 

 3 

Abstract 4 

Different industries compete to attract customers in different ways. In the field of production, 5 
group  technology (GT) is defined by identifying and grouping similar parts based on their 6 
similarities in design and production. Cellular manufacturing (CM) is an application of GT 7 
to reconfigure the factory and job shop design. A manufacturing cell is a group of 8 
independent machines with distinct functions put together to produce a family of parts. 9 
Designing a cellular manufacturing system involves three major decisions: cell formation 10 
(CF), group layout (GL), and group scheduling (GS). Although these decisions are 11 
interrelated and can affect each other, they have been considered separately or sequentially 12 
in previous research. In this paper, CF, GL, and GS decisions are considered simultaneously. 13 
Accordingly, a multi-objective linear programming (MOLP) model is proposed to optimize 14 
weighted completion time, transportation cost, and machine idle time for a multi-product 15 
system. Finally, the model will be solved using the 𝜀𝜀-constraint method, representing 16 
different scales solutions for decision-making. The proposed model is NP-hard. Therefore, a 17 
multi-objective genetic algorithm (MOGA) has been presented to solve it since GAMS 18 
software is unable to find optimal solutions for large-scale problems.  19 

 20 

Keywords: group technology, cell formation, group scheduling, group layout, cellular 21 
manufacturing system, multi-objective linear programming model 22 

 23 

1- Introduction  24 

Group technology (GT) is a production system that allows companies to minimize work in 25 
progress, ordering time, and costs while producing a variety of products. By combining different 26 
equipment and machines into a group or cell, the entire responsibility for producing a set of parts 27 
can be delegated to a particular group. Cell manufacturing (CM) is one of the most important 28 
applications of GT used to reconfigure factory and job shop design. Cellular manufacturing 29 
systems (CMS) include identifying the family of parts and cells of machines so that intracellular 30 
transportation is minimized and the use of machines within a cell is maximized (Chang, Wu, & 31 
Wu, 2013). CMS is one of the most important tools to improve flexibility in any production 32 
planning (Aryanezhad, Aliabadi, & Tavakkoli-Moghaddam, 2011). It shortens manufacturing lead 33 
times, restricts intercellular movements to a significant extent, and reduces setup time.  34 
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CM aims to maintain the advantages of other methods using classifications of machines 1 
and parts. A production line system is a method in which products move sequentially along the 2 
line. Although this method lacks production flexibility as it produces only one product by a product 3 
manufacturing system and machines on a specific path, materials scheduling and control are easy. 4 
Figure 1 shows an overview of the product line system.  5 

 6 

 7 

Figure 1: Layout of the product line system 8 

On the other hand, there are job shop production systems with features that are in many 9 
ways the opposite of production line systems. The job shop production system has a low 10 
production rate and high flexibility. Material control and scheduling are problematic because, after 11 
processing on one machine, parts may move a long distance to the next machine. Figure 2 shows 12 
a typical layout of the job shop production system. 13 

 14 
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 1 

Figure 2: Overview of job shop production system 2 

 A third type of production system is cellular manufacturing system. CMS is used when 3 
both production volume and product variety are at a medium level. This is more economical than 4 
the other two systems. In addition, it improves the material flow and timing of the job shop 5 
production system and the flexibility of the production line system. An overview of the cell 6 
production system is shown in Figure 3. 7 
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 1 

Figure 3: Layout of a cellular manufacturing system 2 

Formation, layout, and scheduling of cells are three essential steps to consider when 3 
designing a CMS (Wu, Chu, Wang, & Yue, 2007). Cell formation (CF) comprises recognizing 4 
machine cells and part families to minimize the total cost of parts' intercellular movement. Group 5 
layout (GL) addresses the issues of determining the cell layout in the floor plan and the machine 6 
layout within each cell. The most widespread goal for GL is to minimize transportation costs 7 
(Hassan, 1995). Finally, cell management deals with design issues such as group scheduling (GS), 8 
which schedules individual parts and families of parts within each cell (Wu, Chu, Wang, & Yue, 9 
2007). The communication between these three decisions plays a vital role in CMS design. CF 10 
directly depends on the cost of transporting the parts determined, based on the cell and machine 11 
layouts. Additionally, when the cell size becomes smaller, intercellular movements increase, while 12 
larger sizes complicate cell management and scheduling. Thus, transportation time is affected by 13 
the cells' layout and the machines in the cells. Accordingly, in the recent years, several studies have 14 
proposed integration of two or three of these decisions. The integrated problem has usually been formulated 15 
as a non-linear model (Alireza Goli, Tirkolaee, & Aydın, 2021; Jufeng Wang, Liu, & Zhou, 2021). Solving 16 
these problems is more complicated than linear models. 17 

This paper aims to provide a multi-objective linear programming (MOLP) model to 18 
resolve cell formation, group scheduling, and group layout issues, optimizing the objective 19 
functions of completion time, machine idle time (efficiency), and transportation time of parts, by 20 
considering the maximum and minimum cell constraints and maximum machines per cell. 21 

The remainder of this paper is organized as follows. Section 2 provides the literature 22 
review. The problem is defined and formulated in Section 3. Section 4 explains the proposed exact 23 
solution method and metaheuristic algorithm. In Section 5, the performance of the 𝜀𝜀-constraint and 24 
the NSGA-II algorithm are assessed through solving numerical examples from the literature, and 25 
the results are presented and discussed. In section 6, important parameters are identified, and 26 
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sensitivity analysis is performed to validate the model. Finally, Section 7 draws conclusions and 1 
future study directions. 2 

2- Review of current literature  3 

The GL decision has been addressed in previous literature, but most researchers have focused on 4 
CF and GS problems sequentially and separately. Since the first step in designing a CMS is 5 
forming cells, there is no need for a prior solution to the other two decisions (Wei & Gaither, 6 
1990). However, most researchers have supposed that the CF solution can address the GS problems 7 
(Elmi, Solimanpur, Topaloglu, & Elmi, 2011; Solimanpur & Elmi, 2013; Zuberek, 1996). 8 
Recently, CF, GL, and GS decisions have been considered simultaneously in several studies. The 9 
integration of these decisions has been demonstrated to improve CMS design and operational 10 
performance. 11 

In some studies, CF has been considered separately. Wei and Gaither (1990) studied the 12 
problem of cell formation wherein the goal is minimizing the density in the cells of machines with 13 
long waiting lines. Vin, De Lit, and Delchambre (2005) then investigated cell formation with the 14 
aim of part traffic using a genetic grouping algorithm (GGA). They designed hybrid cell 15 
production systems in two resource-constrained environments. The problem is divided into three 16 
stages: first, the identification of part demand and demand diversity using Pareto analysis; second, 17 
machinery grouping; and last, labor allocation. They also proposed a goal programming model for 18 
this problem. Later, Paydar and Saidi-Mehrabad (2013) investigated cell formation to maximize 19 
the effect of grouping. They evaluated a linear programming model of deficit development and the 20 
effectiveness of this model, by considering two tests from the literature review. Later still, 21 
Mehdizadeh et al. (2020) proposed a nonlinear programming model to integrate CF and production 22 
planning problems in a dynamic cellular manufacturing system, where resources for setting up 23 
cells are limited. The formation of machine-part families is a major task in CMS. 24 

The issue of integrating CF and GL decisions has been addressed in several studies. In the 25 
beginning, researchers focused on solving this problem using mathematical concepts. Rajagopalan 26 
and Batra (1975) tackled cell formation and transportation issues between cells using graph theory. 27 
Later, the emergence of metaheuristic methods is seen in De Lit, Falkenauer, and Delchambre 28 
(2000) and Brown and Sumichrast (2001). In their research, cell formation and part family 29 
formation are investigated to minimize the traffic of items. They used the grouping genetic 30 
algorithm (GGA) to solve their model. Subsequently, Uddin and Shanker (2002) explained 31 
generalized groups wherein each part has one or more process routes. The goal here is to minimize 32 
the number of visits of different cells and movement between cells. Jun Wang (2003) then 33 
examined cell formation by looking at the location of cells and used a heuristic method to solve 34 
the problem. 35 

Since 2003, mathematical models have been presented due to a rise in competitiveness and 36 
thus interest in CMS. Cao and Chen (2004) proposed a mixed nonlinear mathematical model that 37 
has optimized cell formation and cell setup in a sequential metaheuristic method. Virtual cellular 38 
manufacturing can be a solution for CMS and functional layout system problems concurrently. 39 



6 
 

Therefore, Arora, Haleem, Kumar, and Khan (2020) have more recently discussed various models 1 
of the formation of virtual cells and factors that can affect the efficiency of production systems. A 2 
fuzzy multi-objective mathematical model for a CMS under dynamic conditions has just been 3 
presented by Mohtashami, Alinezhad, and Niknamfar (2020). The optimal layout design in each 4 
production period can be determined in their model.  5 

The group scheduling (GS) problem has traditionally been solved in the second step after 6 
solving the CF problem. Chandrasekharan and Rajagopalan (1993) targeted exceptional elements 7 
and intercellular movement and have used multi-dimensional scaling (MDS) for the solution. 8 
Tavakkoli-Moghaddam et al. (2008) presented a GS problem for manufacturing cells, where parts 9 
can access other cells. Two evolutionary algorithms, one genetic algorithm (GA), and the other 10 
memetic algorithm (MA) have been presented and examined in obtaining the makespan and 11 
objective function value. Then, Reza Tavakkoli-Moghaddam, Javadian, Khorrami, and Gholipour-12 
Kanani (2010) dealt with intracellular scheduling to determine the sequence of parts within 13 
production cells. However, in intercellular programming, a sequence of cells has been obtained. 14 
Their study developed a novel mathematical model for the multi-criteria GS problem in a CMS. 15 
Ghezavati and Saidi-Mehrabad (2010) presented a mathematical model for cell manufacturing 16 
with group planning in an uncertain space. This model has optimized CF and GS simultaneously 17 
and has minimized the total expected cost, including maximum tardiness cost among all parts, 18 
subcontracting cost for distinctive elements, and resource cost. A fuzzy Mixed Integer Linear 19 
Programming (MILP) model has more recently been presented by A. Goli, Tirkolaee, and Aydin 20 
(2021), designed for CF problems, including scheduling the parts within cells in a CMS. J. S. 21 
Neufeld, F. F. Teucher, and U. Buscher (2020) found certain characteristics that mark out cellular 22 
scheduling distinctiveness. Furthermore, they introduced a novel cell-based objective, namely total 23 
cell makespan.  24 

Among the research on cell manufacturing issues, we have carefully examined the research 25 
done on cell formation, group layout, and group scheduling. A mathematical model that integrates 26 
these three decisions and develops a hierarchical genetic algorithm (HGA) was provided by Wu, 27 
Chu, Wang, Yue, and Engineering (2007) to solve the integrated cell design problem. Their model 28 
offers better solutions than the sequential one and better performance of the procedures using the 29 
proposed hierarchical operators. In their model, they optimize the completion time and consider 30 
cell formation and layout of machines in the constraint structure. Arkat, Farahani, and Hosseini 31 
(2012) investigated the integrated design of CM systems by presenting two mathematical models. 32 
The first combines the cellular design with CF to specify the best cell configuration and cell design 33 
to minimize total transportation costs. The second also considers cellular planning to reduce time. 34 
Arkat, Farahani, and Ahmadizar (2012) proposed a mathematical model for simultaneously 35 
identifying cell formation, cell design, and sequencing operations, to minimize the total cost of 36 
transporting parts and minimizing makespan concurrently. The proposed multi-objective genetic 37 
algorithm (MOGA) solved the model by finding Pareto optimal solutions. Forghani and Fatemi 38 
Ghomi (2020) solved the integration of these three decisions in cellular manufacturing systems, 39 
by considering alternative processing routes to minimize cycle time and total cost. A mathematical 40 
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model has recently been presented to investigate the integrated CF, GL, and GS in a CMS by 1 
Arkat, Rahimi, and Farughi (2021). Their objective is to handle the arrival of a new job as a 2 
disturbance to the system. Table 1 overviews several papers about CM. 3 

 4 

Table 1: Comparison among scholarly papers related to CMS 5 

Papers 
Decisions Objective function Solving approach Product 

number Method 
CF GL GS Completion 

time 
Transportati
on cost Machinery Sequential Concurrent Single Multi 

(Chandrasekh
aran & 
Rajagopalan, 
1993) 

          

non-metric 
Multi-
Dimensional 
Scaling (MDS). 

(Tsai, Chu, & 
Barta, 1997)           

Fuzzy 
Mixed-Integer 
Programming 
(FMIP) 

(Wu, Chu, 
Wang, & Yue, 
2007) 

          

Hierarchical 
Genetic 
Algorithm 
(HGA) 

(R Tavakkoli-
Moghaddam, 
Gholipour-
Kanani, & 
Cheraghaliza
deh, 2008) 

          

Genetic 
Algorithm (GA) 
and Memetic 
Algorithm 
(MA) 

(Ghezavati & 
Saidi-
Mehrabad, 
2010) 

          

Genetic 
Algorithm (GA) 
and Simulated 
Annealing (SA) 
algorithm 

(Mahdavi, 
Paydar, 
Solimanpur, 
& Saidi-
Mehrabad, 
2010) 

          Exact solution 
by LINGO 

)Arkat, 
Farahani, & 
Hosseini, 
2012 ( 

          GA 

)Arkat, 
Farahani, & 
Ahmadizar, 
2012 ( 

          

Multi-
Objective 
Genetic 
Algorithm 
(MOGA) 
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)Bayram & 
Şahin, 2016(           

Genetic 
Algorithm (GA) 
and Simulated 
Annealing (SA) 
Algorithm 

)Rahimi, 
Arkat, & 
Farughi, 
2020 ( 

          

GA and Ant 
Lion Optimizer 
(ALO) 
algorithm 

)Shafiee-Gol, 
Kia, 
Tavakkoli-
Moghaddam, 
Kazemi, & 
Kamran, 
2021 ( 

          

CPLEX and 
Simulated 
Annealing (SA) 
algorithm 

This paper           ε-constraint 
and NSGA-II 

 1 

Investigating the available resources in the field of CMS reveals that works considering 2 
the three decisions of CF, GL, and GS are limited. Some of the shortcomings in the existing studies 3 
are discussed below: 4 

1. Previous research into CMS has often examined the completion time and transportation of 5 
parts (Arkat, Hosseinabadi Farahani, & Hosseini, 2012; Arkat et al., 2021). However, given 6 
competition, optimizing machinery costs can mean greater profitability for companies. In 7 
this study, the idle time of machines in production systems is examined and optimized. 8 

2. In the reviewed articles, CMS has been considered for the production of parts (Alimian, 9 
Ghezavati, & Tavakkoli-Moghaddam, 2020; Shafiee-Gol et al., 2021). However, products 10 
can contain one or multiple parts. In our model, the manufacturing system is intended to 11 
produce several products, and each product can be composed of one or more parts. 12 

3. Completion time in previous research is often considered to be the sum, average, or 13 
maximum completion time of parts, and there was no difference among parts (J. S. Neufeld, 14 
F. Teucher, & U. Buscher, 2020). However, the multi-product approach in this research 15 
considers the completion time as the weighted average of the products' completion time, 16 
which can be determined according to the product share of parts, revenue, and production 17 
system costs.  18 

4. In the reviewed papers, the dimensions of machines and floor plans are neglected in 19 
modeling. To simplify the problem, researchers have applied two approaches. Some 20 
assume that the intercellular layout is pre-specified (Ebrahimi, Kia, & Komijan, 2016; Janis 21 
S Neufeld et al., 2020). Others assume the layout of the machine to be a location, with the 22 
physical dimensions of the machines not considered (Khamlichi, Oufaska, Zouadi, & 23 
Dkiouak, 2020; Shafiee-Gol et al., 2021). However, in this model, the longitudinal and 24 
transverse dimensions of machines are considered together with their continuous location 25 
within the floor plan of a manufacturing system. 26 
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5. In previous research, each part operation is performed on a specific machine (Arkat, 1 
Farahani, & Ahmadizar, 2012; Liu, Wang, Leung, & Li, 2016; Shafiee-Gol et al., 2021). 2 
Yet in this model, machines can perform specific operations according to their capabilities, 3 
and each part is assigned to one of the machines to operate, which is superior in terms of 4 
cost and time. 5 

To overcome the abovementioned shortcomings, this paper develops a mathematical model 6 
to provide a formulation of CM design that considers cell formation, group layout, and group 7 
scheduling. In our model, the manufacturing system must produce several products, whilst 8 
minimizing total completion time, transportation cost, and machine idle time between operations. 9 
To validate and compare the results, two methods of the exact solution and metaheuristic solution 10 
are used to solve this model. GAMS software is used for the exact solution by the 𝜀𝜀-constraint 11 
method. In addition, a non-dominated sorting genetic algorithm II (NSGA-II) with MATLAB 12 
software is used for the metaheuristic solution. Then, we validate our model by comparing the 13 
results of the NSGA-II and 𝜀𝜀-constraint methods. Since CM is an NP-hard problem, NSGA-II is 14 
used to solve the model in large-scale problems.  15 

3- Methodology 16 

3-1 Problem description 17 

Cell manufacturing systems (CMS) are an important application of group technology (GT). Cell 18 
manufacturing (CM) involves processing similar parts into a specific machine group or production 19 
process. Therefore, it is usually best to assign a cell to a family of parts, each of which is preferably 20 
produced completely within that cell, and the cells in a CMS have minimal interaction. The current 21 
model aims to aid decisions on cell formation, group layout, and group scheduling, so as to 22 
minimize total completion time, transportation cost, and machine idle time between operations.  23 

Assumptions of the model were as listed below: 24 

• A CMS encompasses several products, each of which consists of one or more parts. 25 
• Each part requires one or more operations in a specific sequence. 26 
• A CMS has machines that each can perform one or more operations. 27 
• The dimensions of the general design of the manufacturing system and the dimensions 28 

required for each machine are specified. 29 
• The number of cells required is known. 30 
• The maximum and minimum number of machines inside a cell are known (with at least 31 

one machine). 32 
• The cost of intracellular and intercellular transportation is a function of their transportation 33 

time, which itself is a function of distance. 34 
• Cells have rectangular dimensions. 35 
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3-2 Nomenclature 1 

3-2-1 Indices and sets 2 

𝑖𝑖: product type i = 1, 2, …, G 3 
𝑗𝑗: part type  𝑗𝑗 = 1, 2, … ,𝑃𝑃𝑖𝑖 4 
𝑘𝑘: cell type k = 1, 2, …, C 5 
𝑙𝑙,𝑢𝑢, 𝑣𝑣: machine type  𝑙𝑙,𝑢𝑢, 𝑣𝑣 =1, 2, …, m 6 
𝑜𝑜: operation type   𝑜𝑜 = 1, … ,𝑁𝑁𝑖𝑖𝑖𝑖 7 

3-2-2 Parameters 8 

𝐺𝐺: number of products 9 

𝑃𝑃𝑖𝑖: number of parts of product i 10 

𝐶𝐶: number of cells to be performed 11 

𝑚𝑚: number of machines 12 

𝑁𝑁𝑖𝑖𝑖𝑖: number of operations of part j of product i 13 

𝑅𝑅: maximum number of machines allowed in each cell 14 

𝐻𝐻: horizontal dimension of the floor plan 15 

𝑉𝑉: vertical dimension of the floor plan 16 

𝐻𝐻𝑙𝑙: horizontal dimension required by machine 𝑙𝑙 17 

𝑉𝑉𝑙𝑙: vertical dimension required by machine 𝑙𝑙 18 

𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖: processing time of operation 𝑜𝑜 on part 𝑗𝑗 of product 𝑖𝑖 19 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖: intercellular transfer unit cost for part 𝑗𝑗 of product 𝑖𝑖 20 

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖: intracellular transfer unit cost for part 𝑗𝑗 of product 𝑖𝑖 21 

𝐴𝐴𝑖𝑖𝑖𝑖: intercellular unit conversion of distance to time for part 𝑗𝑗 of product 𝑖𝑖 22 

𝐸𝐸𝑖𝑖𝑖𝑖: intracellular unit conversion of distance to time for part 𝑗𝑗 of product 𝑖𝑖 23 

𝑀𝑀: an appropriately large number 24 

𝛼𝛼𝑖𝑖: the profitability ratio of product 𝑖𝑖 25 

𝑈́𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 1, if operation 𝑜𝑜 of part 𝑗𝑗 should be processed on machine 𝑙𝑙 for product 𝑖𝑖, and 0 otherwise 26 

3-2-3 Decision variables 27 

𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖: completion time of operation 𝑜𝑜 on part 𝑗𝑗 of product 𝑖𝑖 28 

𝑔𝑔(𝑖𝑖𝑖𝑖): completion time of part 𝑗𝑗 of product 𝑖𝑖 29 
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𝑔𝑔(𝑖𝑖): completion time of product 𝑖𝑖 1 

𝑥𝑥𝑙𝑙: horizontal distance between the center of machine 𝑙𝑙 and the vertical reference line 2 

𝑦𝑦𝑙𝑙: vertical distance between the center of machine 𝑙𝑙 and the horizontal reference line 3 

𝐶𝐶𝑖𝑖𝑖𝑖(𝑜𝑜,𝑜́𝑜): intra- or intercellular transportation cost for part 𝑗𝑗 of product 𝑖𝑖 between operations 𝑜𝑜 and 𝑜́𝑜 4 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑜𝑜𝑜́𝑜): intercellular transportation time for part 𝑗𝑗 of product 𝑖𝑖 between operations 𝑜𝑜 and 𝑜́𝑜 5 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑜𝑜𝑜́𝑜): intracellular transportation time for part 𝑗𝑗 of product 𝑖𝑖 between operations 𝑜𝑜 and 𝑜́𝑜 6 

𝑢𝑢𝑢𝑢𝑙𝑙: idle time of machine 𝑙𝑙 7 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖: 1, if operation 𝑜𝑜 on part 𝑗𝑗 of product 𝑖𝑖 should be processed on machine 𝑙𝑙, and 0 otherwise. 8 

𝑤𝑤𝚤́𝚤𝚥́𝚥𝑜́𝑜
𝑖𝑖𝑖𝑖𝑖𝑖: 1, if operation 𝑜𝑜 of part 𝑗𝑗 of product 𝑖𝑖 precedes operation 𝑜́𝑜 of part 𝑗𝑗′ of product i′, and 0 otherwise 9 

𝑧𝑧𝑙𝑙𝑙𝑙: 1, if machine 𝑙𝑙 is assigned to cell 𝑘𝑘,  and 0 otherwise 10 

𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙: 1, if 𝑥𝑥𝑙𝑙 < 𝑥𝑥𝑣𝑣 < 𝑥𝑥𝑢𝑢 or  𝑥𝑥𝑢𝑢 < 𝑥𝑥𝑣𝑣 < 𝑥𝑥𝑙𝑙, and 0 otherwise 11 

𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙: 1, if 𝑦𝑦𝑙𝑙 < 𝑦𝑦𝑣𝑣 < 𝑦𝑦𝑢𝑢 or  𝑦𝑦𝑢𝑢 < 𝑦𝑦𝑣𝑣 < 𝑦𝑦𝑙𝑙, and 0 otherwise 12 

 13 

 14 

3-3 Mathematical model 15 

𝑀𝑀𝑀𝑀𝑀𝑀∑ 𝛼𝛼𝑖𝑖𝑔𝑔(𝑖𝑖)
𝐺𝐺
𝑖𝑖=1                                                                                                         (1)           16 

𝑀𝑀𝑀𝑀𝑀𝑀∑ ∑ ∑ 𝐶𝐶𝑖𝑖𝑖𝑖(𝑜𝑜,𝑜𝑜+1)
𝑁𝑁𝑗𝑗−1
𝑜𝑜=1

𝑃𝑃𝑖𝑖
𝑗𝑗=1

𝐺𝐺
𝑖𝑖=1                                                                                                                                  (2) 17 

𝑀𝑀𝑀𝑀𝑀𝑀∑ 𝑢𝑢𝑢𝑢𝑙𝑙𝑚𝑚
𝑙𝑙=1                                                                                                                                     (3) 18 

S.t. 19 

∑ 𝑧𝑧𝑙𝑙𝑙𝑙𝐶𝐶
𝑘𝑘=1 = 1                                                                                                                           𝑙𝑙 = 1, … ,𝑚𝑚              (4) 20 

∑ 𝑧𝑧𝑙𝑙𝑙𝑙𝑚𝑚
𝑙𝑙=1 ≤ 𝑅𝑅                                                                                                                           𝑘𝑘 = 1, … ,𝐶𝐶              (5) 21 

∑ 𝑧𝑧𝑙𝑙𝑙𝑙𝑚𝑚
𝑙𝑙=1 ≥ 1                                                                                                                           𝑘𝑘 = 1, … ,𝐶𝐶               (6) 22 

|𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑢𝑢| ≥ 𝐻𝐻𝑙𝑙+𝐻𝐻𝑢𝑢
2

                                                                               𝑢𝑢 = 𝑙𝑙 + 1, … ,𝑚𝑚    𝑙𝑙 = 1, … ,𝑚𝑚− 1         (7) 23 

|𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑢𝑢| ≥ 𝑉𝑉𝑙𝑙+𝑉𝑉𝑢𝑢
2

                                                                                𝑢𝑢 = 𝑙𝑙 + 1, … ,𝑚𝑚   𝑙𝑙 = 1, … ,𝑚𝑚 − 1           (8) 24 

(𝑥𝑥𝑣𝑣 − 𝑥𝑥𝑙𝑙)(𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑣𝑣) < 𝑀𝑀(𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙)                                                                                                        ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣        (9) 25 

−(𝑥𝑥𝑣𝑣 − 𝑥𝑥𝑙𝑙)(𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑣𝑣) ≤ 𝑀𝑀(1 − 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙)                                                                                          ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣        (10) 26 
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(𝑦𝑦𝑣𝑣 − 𝑦𝑦𝑙𝑙)(𝑦𝑦𝑢𝑢 − 𝑦𝑦𝑣𝑣) < 𝑀𝑀(𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙)                                                                                                   ∀𝑙𝑙,𝑢𝑢,𝑣𝑣        (11) 1 

−(𝑦𝑦𝑣𝑣 − 𝑦𝑦𝑙𝑙)(𝑦𝑦𝑢𝑢 − 𝑦𝑦𝑣𝑣) ≤ 𝑀𝑀(1 − 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙)                                                                                           ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣        (12)        2 

𝑧𝑧𝑙𝑙𝑙𝑙 + 𝑧𝑧𝑢𝑢𝑢𝑢 + 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙 − 3 ≤ 𝑧𝑧𝑣𝑣𝑣𝑣                                                                                             ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣, 𝑘𝑘       (13) 3 

𝐶𝐶𝑖𝑖𝑖𝑖(𝑜𝑜𝑜́𝑜) = 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑜𝑜𝑜́𝑜) + 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑜𝑜𝑜́𝑜)                                                        ∀𝑖𝑖, 𝑗𝑗       o = 1, … ,𝑁𝑁𝑗𝑗 − 1   ó = o + 1     (14) 4 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑜𝑜𝑜́𝑜) = 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑜́𝑜𝑢𝑢𝑧𝑧𝑙𝑙𝑙𝑙𝑧𝑧𝑢𝑢𝑢𝑢(|𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑢𝑢| + |𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑢𝑢|)𝐴𝐴𝑖𝑖𝑖𝑖                        ∀𝑖𝑖, 𝑗𝑗    o = 1, … ,𝑁𝑁𝑗𝑗 − 1   ó = o + 1     (15) 5 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑜𝑜𝑜́𝑜) = 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑜́𝑜𝑢𝑢𝑧𝑧𝑙𝑙𝑙𝑙(1− 𝑧𝑧𝑢𝑢𝑢𝑢)(|𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑢𝑢| + |𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑢𝑢|)𝐸𝐸𝑖𝑖𝑖𝑖             ∀𝑖𝑖, 𝑗𝑗   o = 1, … ,𝑁𝑁𝑗𝑗 − 1   ó = o + 1    (16) 6 

𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑔𝑔𝑖𝑖𝑖𝑖𝑜́𝑜 ≥ 𝑡𝑡𝑖𝑖𝑖𝑖𝑜́𝑜 + 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑜𝑜𝑜́𝑜) + 𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑜𝑜𝑜́𝑜)                                                                                             ∀𝑖𝑖, 𝑗𝑗, 𝑜𝑜, ó       (17) 7 

𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑔𝑔𝚤́𝚤𝚥́𝚥𝑜́𝑜 + 𝑀𝑀𝑤𝑤𝚤́𝚤𝚥́𝚥𝑜́𝑜
𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖                                                                                                          ∀𝑖𝑖, 𝑗𝑗, 𝚤́𝚤, 𝚥́𝚥      (𝑜𝑜, ó) ∈ 𝑆𝑆𝑙𝑙       (18) 8 

𝑔𝑔𝚤́𝚤𝚥́𝚥𝑜́𝑜 − 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑀𝑀�1 −𝑤𝑤𝚤́𝚤𝚥́𝚥𝑜́𝑜
𝑖𝑖𝑖𝑖𝑖𝑖� ≥ 𝑡𝑡𝚤́𝚤𝚥́𝚥𝑜́𝑜                                                                               ∀𝑖𝑖, 𝑗𝑗, 𝚤́𝚤, 𝚥́𝚥      (𝑜𝑜, ó) ∈ 𝑆𝑆𝑙𝑙      (19) 9 

𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖                                                                                                                            ∀𝑖𝑖, 𝑗𝑗,𝑜𝑜      (20) 10 

𝑔𝑔(𝑖𝑖𝑖𝑖) ≥ 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖                                                                                                                          ∀𝑖𝑖, 𝑗𝑗,𝑜𝑜       (21) 11 

𝑔𝑔(𝑖𝑖) ≥ 𝑔𝑔(𝑖𝑖𝑖𝑖)                                                                                                                             ∀𝑖𝑖, 𝑗𝑗        (22) 12 

𝑈𝑈𝑙𝑙 ≥ 𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                                                                                                   ∀𝑖𝑖, 𝑗𝑗, 𝑜𝑜, 𝑙𝑙        (23) 13 

𝑥𝑥𝑙𝑙 ≤ 𝐻𝐻 − ℎ𝑙𝑙
2

                                                                                                                           𝑙𝑙 = 1, … ,𝑚𝑚         (24) 14 

𝑥𝑥𝑙𝑙 ≥
ℎ𝑙𝑙
2

                                                                                                                               𝑙𝑙 = 1, … ,𝑚𝑚         (25) 15 

𝑦𝑦𝑙𝑙 ≤ 𝑉𝑉 − 𝑣𝑣𝑙𝑙
2

                                                                                                                      𝑙𝑙 = 1, … ,𝑚𝑚         (26) 16 

𝑦𝑦𝑙𝑙 ≥
𝑣𝑣𝑙𝑙
2

                                                                                                                               𝑙𝑙 = 1, … ,𝑚𝑚         (27) 17 

∑ 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚
𝑙𝑙=1 = 1                                                                                                                              ∀𝑖𝑖, 𝑗𝑗, 𝑜𝑜         (28) 18 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑈́𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                                                                                                                               ∀𝑖𝑖, 𝑗𝑗,𝑜𝑜, 𝑙𝑙          (29) 19 

𝑢𝑢𝑢𝑢𝑙𝑙 = 𝑈𝑈𝑙𝑙 − ∑ ∑ ∑ 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑖𝑖𝑖𝑖
𝑜𝑜

𝑃𝑃𝑖𝑖
𝑗𝑗

𝐺𝐺
𝑖𝑖                                                                                                               (30) 20 

𝑧𝑧𝑙𝑙𝑙𝑙 ,𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙,𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙 ,𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑤𝑤𝚤́𝚤𝚥́𝚥𝑜́𝑜
𝑖𝑖𝑖𝑖𝑖𝑖 = 0 or 1                                                                                                                  (31) 21 

The purposes of the equations were as follows: 22 

• Equations (1), (2), and (3) were the objective functions, which, respectively, minimized the 23 
total product completion times, total transportation cost of parts, and the idle time of 24 
machines.  25 

Equation (4) ensures that every machine is assigned to only one cell. Equation (5) ensures 26 
that no more than R machines are assigned to each cell. Equation (6) enforced that at least 27 
one machine was assigned to each cell. The required space of machines was considered 28 
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rectangular, and x and y were its centre.  Constraints (7) and (8) imposed the required 1 
dimensions of the machines. Constraints (9) to (13) stopped cells from overlapping and 2 
forced them to be rectangular, and if the vertical and horizontal coordinates of a machine 3 
were between two machines of a cell, then the machine must be part of that cell.   4 

Transportation costs were calculated by Equation (14) according to time and type of 5 
transportation (intercellular and intracellular). Depending on the coordinates of the 6 
machines and the sequence of operations on the machine, Equations (15) and (16) 7 
calculated intercellular and intracellular transportation times for part 𝑗𝑗 between operations 8 
o and o ́.    9 

The processing of each part on machines is ensured by constraint (17) according to the 10 
priority of the operations. Constraints (18) and (19) imposed that at a time unit only one 11 
part could be processed by each machine. Constraint (20) made sure that the processing 12 
time of operation o of part j of product i was less than or equal to its completion time and 13 
constraint (21) ensured that the completion time of each operation must be less than or 14 
equal to the total completion time. The makespan was at least the completion time of each 15 
part was ensured by Equation (22).  Equation (23) limited the completion time of machine 16 
operations. Constraints (24) to (27) forced machines to be located within the boundaries of 17 
the floor plan. Equation (28) ensured each operation was performed on only one machine. 18 
Equation (29) forced operations to be assigned to machines where such operations were 19 
feasible. Equation (30) calculated the idle time of each machine.  20 

• Equation (31) specified that the decision variables are binary. 21 

When 𝑥𝑥𝑙𝑙 ≤ 𝑥𝑥𝑣𝑣 ≤ 𝑥𝑥𝑢𝑢 or 𝑥𝑥𝑢𝑢 ≤ 𝑥𝑥𝑣𝑣 ≤ 𝑥𝑥𝑙𝑙 , constraints (9) and (10) forced 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 to equal 1. 22 
Similarly, when 𝑦𝑦𝑙𝑙 ≤ 𝑦𝑦𝑣𝑣 ≤ 𝑦𝑦𝑢𝑢 or 𝑦𝑦𝑢𝑢 ≤ 𝑦𝑦𝑣𝑣 ≤ 𝑦𝑦𝑙𝑙, constraints (11) and (12) forced 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙 to equal 1. 23 
Using equation (10), if 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 = 1 and 𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙 = 1 and machines 𝑙𝑙 and 𝑢𝑢 were assigned to cell 𝑘𝑘, then 24 
machine 𝑣𝑣 should be in cell 𝑘𝑘. Hence, machines were in rectangular spaces of non-overlapping 25 
cells. 26 

3-4 Linearization 27 

In this section, some nonlinear equations are linearized. There are some absolute terms in 28 
Eqs. 7,8 and 15,16 and the product of decision variables in Eqs. 9-12 and Eq. 15,16 that causes 29 
nonlinearity. We can eliminate the absolute terms in Eq. 7 and 8 by changing them to the 30 
following four equations:  31 

𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑢𝑢 ≥
𝐻𝐻𝑙𝑙+𝐻𝐻𝑢𝑢

2
                                                                                𝑢𝑢 = 𝑙𝑙 + 1, … ,𝑚𝑚    𝑙𝑙 = 1, … ,𝑚𝑚 − 1         (32) 32 

 𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑢𝑢 ≤ −(𝐻𝐻𝑙𝑙+𝐻𝐻𝑢𝑢
2

)                                                                        𝑢𝑢 = 𝑙𝑙 + 1, … ,𝑚𝑚    𝑙𝑙 = 1, … ,𝑚𝑚 − 1         (33) 33 

𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑢𝑢 ≥
𝑉𝑉𝑙𝑙+𝑉𝑉𝑢𝑢
2

                                                                            𝑢𝑢 = 𝑙𝑙 + 1, … ,𝑚𝑚    𝑙𝑙 = 1, … ,𝑚𝑚 − 1         (34) 34 
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 𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑢𝑢 ≤ −(𝑉𝑉𝑙𝑙+𝑉𝑉𝑢𝑢
2

)                                                                        𝑢𝑢 = 𝑙𝑙 + 1, … ,𝑚𝑚    𝑙𝑙 = 1, … ,𝑚𝑚− 1         (35) 1 

Since machines have a rectangular dimension, Eqs. 32-35 forced the required dimensions of the 2 
machines. 3 
In this section we use the linearization method that Arkat, Hosseinabadi Farahani, et al. (2012) 4 
used for their paper. Eqs 9 and 10 forced pluv to equal 1 when terms (xv−xl) and (xu−xv) have the 5 
same signs (both are negative or positive) and 0 otherwise. bvl is a binary variable which is equal 6 
to 1 if (xv−xl) is positive and 0 otherwise, Eqs. 9 and 10 can be converted into the following 7 
equations: 8 

(𝑥𝑥𝑣𝑣 − 𝑥𝑥𝑙𝑙) < 𝑀𝑀(𝑏𝑏𝑣𝑣𝑣𝑣)                                                                                                                                ∀𝑙𝑙, 𝑣𝑣        (36) 9 

−(𝑥𝑥𝑣𝑣 − 𝑥𝑥𝑙𝑙) ≤ 𝑀𝑀(1 − 𝑏𝑏𝑣𝑣𝑣𝑣)                                                                                          ∀𝑙𝑙, 𝑣𝑣        (37) 10 

(𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑣𝑣) < 𝑀𝑀(𝑏𝑏𝑢𝑢𝑢𝑢)                                                                                                        ∀𝑢𝑢, 𝑣𝑣        (38) 11 

−(𝑥𝑥𝑢𝑢 − 𝑥𝑥𝑣𝑣) ≤ 𝑀𝑀(1 − 𝑏𝑏𝑢𝑢𝑢𝑢)                                                                                          ∀𝑢𝑢, 𝑣𝑣        (39) 12 

𝑏𝑏𝑣𝑣𝑣𝑣 + 𝑏𝑏𝑢𝑢𝑢𝑢 − 1 ≤ 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙                                                                                             ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣,𝑘𝑘       (40) 13 

−𝑏𝑏𝑣𝑣𝑣𝑣 − 𝑏𝑏𝑢𝑢𝑢𝑢 + 1 ≤ 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙                                                                                             ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣, 𝑘𝑘       (41) 14 

𝑏𝑏𝑣𝑣𝑣𝑣 − 𝑏𝑏𝑢𝑢𝑢𝑢 + 1 ≥ 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙                                                                                             ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣,𝑘𝑘       (42) 15 

−𝑏𝑏𝑣𝑣𝑣𝑣 + 𝑏𝑏𝑢𝑢𝑢𝑢 + 1 ≥ 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙                                                                                             ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣, 𝑘𝑘       (43) 16 

Equations 40-43 ensured that 𝑝𝑝𝑙𝑙𝑙𝑙𝑙𝑙 is equal to 1 when 𝑏𝑏𝑣𝑣𝑣𝑣 and 𝑏𝑏𝑢𝑢𝑢𝑢 are either both 1 or both 0 and 17 
otherwise is equal to 0. 18 
The linearization procedure of equations 11 and 12 is similar as was done with Eqs. 9 and 10. 19 
At last, Eq. 15 is transformed with the following equation: 20 
 21 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖(𝑜𝑜𝑜́𝑜) = 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑈𝑈𝑖𝑖𝑖𝑖𝑜́𝑜𝑢𝑢𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴𝑖𝑖𝑖𝑖                        ∀𝑖𝑖, 𝑗𝑗    o = 1, … ,𝑁𝑁𝑗𝑗 − 1   ó = o + 1     (44) 22 

and following equations are added to the constraints of the model: 23 
 24 

𝑧𝑧𝑙𝑙𝑙𝑙 + 𝑧𝑧𝑢𝑢𝑢𝑢 − 2 ≥ M(1 − 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙)                                                                                             ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣, 𝑘𝑘       (45) 25 

𝑧𝑧𝑙𝑙𝑙𝑙 + 𝑧𝑧𝑢𝑢𝑢𝑢 − 1 ≤ M𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙                                                                                             ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣, 𝑘𝑘       (46) 26 

𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 ≥ (𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑢𝑢) + (𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑢𝑢) + M(1 − 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙)                                                            ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣, 𝑘𝑘       (47) 27 

𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 ≥ (𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑢𝑢) − (𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑢𝑢) + M(1 − 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙)                                                            ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣, 𝑘𝑘       (48) 28 

𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 ≥ −(𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑢𝑢) + (𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑢𝑢) + M(1 − 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙)                                                            ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣, 𝑘𝑘       (49) 29 

𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 ≥ −(𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑢𝑢)− (𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑢𝑢) + M(1 − 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙)                                                            ∀𝑙𝑙,𝑢𝑢, 𝑣𝑣, 𝑘𝑘       (50) 30 

where 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 is  a binary variable that equals to 1 when 𝑧𝑧𝑙𝑙𝑙𝑙 and 𝑧𝑧𝑢𝑢𝑢𝑢 both are equal to 1 and 31 
otherwise equals to 0. When 𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 equals 1, Eqs. 45-50 ensure that 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 ≥ |𝑥𝑥𝑙𝑙 − 𝑥𝑥𝑢𝑢| + |𝑦𝑦𝑙𝑙 − 𝑦𝑦𝑢𝑢|. 32 
Similar ways should be performed for Eq. 16.  33 
 34 
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4- Solution methodology 1 

  2 

4-1 NSGA-II algorithm 3 

The non-dominated sorting genetic algorithm (NSGA) method is a common method for several 4 
objective function problems based on genetic algorithms. The main criticisms of the NSGA 5 
approach are its lack of sophistication and high computational complexity of non-dominated 6 
sorting. These limitations have been addressed in an improved version of NSGA, called NSGA-II 7 
(Deb, Pratap, Agarwal, & Meyarivan, 2002). This method has attracted a lot of attention in recent 8 
years (Akhmet, Hare, & Lucet, 2022; El Yaagoubi, Charhbili, Boukachour, & El Hilali Alaoui, 9 
2022).  The implementation steps of the NSGA-II algorithm were as follows:  10 

1- Generate a random initial answer with a population of size i = 1…, pop size, and set k = 1 11 
(k = the number of NSGA-II algorithm repetitions). 12 

2- Arrange the solutions based on their domination and divide them into fronts. A smaller 13 
number of fronts means more solutions of that front have dominated a larger number of 14 
other solutions. To do this, the following steps were performed for each of the solutions, 15 
such as p: 16 

2.1- Consider 𝑆𝑆𝑃𝑃 as a set of solutions that solution p dominates and consider 𝑆𝑆𝑃𝑃 = ∅ 17 

2.2- Consider 𝑁𝑁𝑃𝑃 as the number of solutions that dominate solution p and consider 𝑁𝑁𝑃𝑃 = ∅ 18 

2.3- For each member of the population n=1…, pop size  such as q and p do the following 19 
steps: 20 

2.3.1- If p dominates q, then add q to the set 𝑆𝑆𝑃𝑃. 21 

2.3.2- If q dominates p, then increment the domination counter of p (𝑁𝑁𝑃𝑃). 22 

3- If 𝑁𝑁𝑃𝑃 = ∅, p belongs to front f1, in other words, f1 = f1U(p).  23 
4- Continue all the following steps until the number of solutions in front i is not zero (𝑓𝑓𝑖𝑖 ≠ ∅).  24 

4.1- Define 𝑄𝑄 as the set of solutions in front i + 1 and consider it equal to zero (𝑄𝑄 = ∅). 25 
Then do the following steps for each solution p in front 𝑓𝑓𝑖𝑖. 26 
4.2- For each solution such as q in the set 𝑆𝑆𝑃𝑃 in front 𝑓𝑓𝑖𝑖, follow these steps. (It should be 27 
noted that, 𝑆𝑆𝑃𝑃 is a set of solutions wherein solution p dominates in the previous step). 28 

4.2.1- 𝑁𝑁𝑞𝑞=  𝑁𝑁𝑞𝑞-1. This indicates how many times solution q has been dominated. 29 
4.2.2- If 𝑁𝑁𝑞𝑞 = ∅,  q belongs to front 𝑓𝑓𝑖𝑖+1, and then Q= QU(q). 30 

4.3- Add a unit to i (i = i + 1). 31 
5- After fronting the solutions based on the different domination levels, to create the next 32 

generation, several of them should be selected. In this paper, the binary method was used 33 
to determine the solutions. For this purpose, the first two solutions were randomly selected 34 
and compared; the better of the two was added to the store. The following two criteria 35 
determined the better answers: 36 
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5.1- Rank priority: In this priority, the answers with a lower rank or lower front were 1 
selected because the solutions in these fronts can dominate most of the other solutions. 2 
5.2- Otherwise, if both solutions were in the same front, then use the criterion crowding 3 
distance (CD), which is explained as: 4 

5.2.1- For each front 𝑓𝑓𝑖𝑖, consider ni  as the number of solutions of that front. 5 
5.2.2- Define di  as the distance between the solutions of the fronts and set the 6 
distance between all solutions as zero (𝑓𝑓𝑖𝑖(𝑑𝑑𝑖𝑖) = 0). 7 
5.2.3- For each solution, such as j in front 𝑓𝑓𝑖𝑖, consider each of the objective 8 
functions of the problem such as m, and perform the following steps: 9 

5.2.3.1- On the front 𝑓𝑓𝑖𝑖, sort all the solutions based on m.  10 
5.2.3.2- After sorting the solutions, set 𝐼𝐼(𝑑𝑑1) = 𝐼𝐼(𝑑𝑑𝑛𝑛) = ∞ where I(𝑑𝑑𝑖𝑖) is the 11 
CD of front i. This is because there is no other solution next to the solutions 12 
to cover it. For solutions 2 to n-1, 𝐼𝐼(𝑑𝑑𝑘𝑘) is determined based on the following 13 
equations: 14 
 15 
𝐶𝐶𝐶𝐶𝐾𝐾 = 𝐼𝐼(𝑑𝑑𝑘𝑘)1 + ⋯+ 𝐼𝐼(𝑑𝑑𝑘𝑘)𝑚𝑚                                                                 (32) 16 
 17 

𝐼𝐼(𝑑𝑑𝑘𝑘).𝑚𝑚 = 𝐼𝐼(𝑘𝑘+1).𝑚𝑚−𝐼𝐼(𝑘𝑘−1).𝑚𝑚
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚                                                                          (33) 18 

 19 
In Equation (32), the 𝐼𝐼(𝑑𝑑𝑘𝑘)𝑚𝑚 refers to mth objective function, and to 20 
calculate the total CD, 𝐼𝐼(𝑑𝑑𝑘𝑘) must be calculated separately, which is 21 
specified in Equation (33). Figure 4 shows how to determine the CD in 𝑓𝑓𝑖𝑖. 22 

 23 

Figure 4: Calculating crowding distance (CD) 24 

 25 

5.2.3.3- After calculating the CD, the solution with the greater CD is 26 
selected. 27 
 28 
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6- After the previous step, a pool was created called the selected population. Then genetic 1 
operators were utilized to develop the offspring population. The genetic operators used in 2 
this paper were crossover and mutation operators. See Figure 5. 3 

 4 

Figure 5: Crossover and mutation operators 5 

7- After determining the offspring population of Pt, this population combined with the parent 6 
population (Qt) (Pt U Qt). Each pool had a capacity of n, and some of the solutions that had 7 
combined had to be removed. This was done using the following steps to reach size n. 8 
7.1- First, front the solutions according to the method described in step 2. 9 
7.2- Determine the crowding distance of each solution in its front. 10 
7.3- Start from the 𝑓𝑓𝑖𝑖 front and select its solutions according to the CD and drop them into 11 
the new population pool (K + 1). Continue this step until population pool (K + 1) reaches 12 
n. see Figure 6. 13 

8- After creating the population (K + 1), the next step was 2, the specified steps were repeated.  14 
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 1 

Figure 6: NSGA-II procedure. 2 

4-2 ɛ-constraint method 3 

The ɛ-constraint method (K. J. B. Miettinen, Massachusetts, 1999; Vira, Haimes, & 4 
Engineering, 1983) is the best-known approach for solving multi-objective problems, 5 
according to (Ehrgott & Gandibleux, 2003). This method reformulates the multi-objective 6 
optimisation problem by keeping one of the objectives while the rest of the objectives are 7 
restricted within user-specified values. In practice, because of the high number of subproblems 8 
and the difficulty to establish an efficient variation scheme, this approach has mostly been 9 
integrated within heuristic and interactive schemes. The Pareto optimal solutions can be 10 
created by the ε-constraint method (Bérubé, Gendreau, & Potvin, 2009). In brief, Pareto 11 
optimal solution is defined as a set of 'non-inferior' solutions in the objective space defining a 12 
boundary beyond which none of the objectives can be improved without sacrificing at least 13 
one of the other objectives (K. Miettinen, 2012). 14 

min𝑓𝑓1(𝑥𝑥)                                                             ∀𝑥𝑥 ∈ 𝑋𝑋 15 

𝑓𝑓2(𝑥𝑥) ≤ ε2 16 

… 17 

𝑓𝑓𝑛𝑛(𝑥𝑥) ≤ ε𝑛𝑛 18 

The ɛ-constraint method consists of 5 steps:  19 

1- Consider one of the objective functions (T) as the main objective function. 20 
2- Solve the model based on T and obtain the optimal values. 21 
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3- Obtain several values for 𝜀𝜀2, … , 𝜀𝜀𝑛𝑛 and divide the interval between the two optimal values 1 
into a determined number.  2 

4- Each time, solve the problem with the primary objective function with any of the values 3 
𝜀𝜀2, … , 𝜀𝜀𝑛𝑛. 4 

5- Report the Pareto answers found.  5 

5- Numerical solution  6 

The model is solved using GAMS and MATLAB in a personal computer with an Intel 7 
Core i5 2.40 GHz CPU and 4 GB RAM to find a nondominated solution (Pareto optimal 8 
solution).  In multi-objective optimization, a solution is nondominated if it outperforms any other 9 
solution on at least one criterion (Cheng, Janiak, & Kovalyov, 1998). For instance, solution S1 10 
dominates solution S2 if all of S1’s objective values are better than the corresponding objective 11 
values of solution S2 and solution S1 is dominated by solution S3 if all of S3’s objective values 12 
are better than the corresponding objective values of S1 (Guschinsky, Kovalyov, Rozin, Brauner, 13 
& Research, 2021; Mahesh, Nallagownden, & Elamvazuthi, 2016). This dominance rule could 14 
be formulated as follows: 15 
𝑓𝑓𝑖𝑖(𝑦𝑦) ≤ 𝑓𝑓𝑖𝑖(𝑧𝑧)                                                    ∀𝑖𝑖 ∈ {1,2, … , 𝑛𝑛} 16 

𝑓𝑓𝑖𝑖(𝑦𝑦) < 𝑓𝑓𝑖𝑖(𝑧𝑧)                                                    ∃𝑖𝑖 ∈ {1,2, … , 𝑛𝑛} 17 

 The data used in this study were hypothetical data to solve the problem and also evaluate 18 
the performance of the proposed NSGA-II. The main parameters of the model were the number of 19 
cells, machines, products, parts, and operations, which determine the scales of the model. These 20 
parameters for different scales were as specified in Table 2.  21 

Table 2: Main parameters of the model 22 

Parameter  Small-scale Medium-scale Large-scale 

Number of cells 2 2 3 

Number of machines 3 4 6 

Number of products 2 3 4 

Number of parts 4 6 8 

Number of operations 8 13 20 

  23 
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5-1 Small scale solution using the ɛ-constraint method 1 

The general parameters of the model were the maximum number of machines allowed in 2 
each cell and the dimensions of the floor plan. These parameters were shown in Table 3. 3 

Table 3: General parameters of the model 4 

Parameter Value 

Maximum number of machines 
allowed in each cell 3 

Horizontal dimension of the floor 
plan 8 

Vertical dimension of the floor plan 8 

 5 

In the model, three machines were considered. Each had a horizontal and vertical 6 
dimension to locate it on the floor plan. The parameters were as set out in Table 4. 7 

Table 4: Dimensions of each machine 8 

Parameter Machine 
1 

Machine 
2 

Machine 
3 

Horizontal dimension 
of machine 1.2 1.6 1.5 

Vertical dimension of 
machine 1.5 2 1.5 

 9 

The importance factor of a product is a factor that is determined by the policies and value-10 
added of the product for the company. This coefficient can be determined according to demand, 11 
profit, and utility, for the production system.  Since the policies of each company can be different, 12 
the type of this parameter is general and is not precisely defined. Table 5 sets out the products 13 
importance factors. 14 

Table 5: Products importance factor 15 

Parameter Product 1 Product 2 

Importance factor 1.2 1.5 

 16 
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The parts in the cell production system are processed on different machines. After finishing 1 
the operation on one machine, a part is moved to the next. Moving parts between machines is 2 
costly and time-consuming, depending on the type and size of the part and different movement 3 
types according to the number of machines in each cell. As a result, a coefficient for the time and 4 
cost of intercellular transfer for each part can be determined. The parameters used in solving the 5 
model are shown in Table 6.  6 

Table 6: Coefficient for the time and cost of intracellular and intercellular transfer for each part 7 

Parameter Part 1 Part 2 Part 3 Part 4 

Intercellular transfer 
cost coefficient 1.5 2 1 1.2 

Intracellular transfer 
cost coefficient 3 4 2 1.2 

Intercellular transfer 
time coefficient 5 7 7 6 

Intracellular transfer 
time coefficient 12 14 14 10 

        8 

In this problem, some specific operations are carried out on each machine. More 9 
specifically, it is assumed that operations 3, and 4 are done on machine 1, operations 2,6, and 7 10 
are performed on machine 2 and operations 1,4, and 8 are done on machine 3. Moreover, it is also 11 
assumed that two operations are performed on each part. The processing time of each operation is 12 
shown in Table 7. 13 

Table 7: Time of operations 14 

      
Operati
on 

Operati
on 1 

Operati
on 2 

Operati
on 3 

Operati
on 4 

Operati
on 5 

Operati
on 6 

Operati
on 7 

Operati
on 8 

Part 1 10 12 0 0 0 0 0 0 

Part 2 0 0 8 15 0 0 0 0 

Part 3 0 0 0 0 11 20 0 0 

Part 4 0 0 0 0 0 0 7 10 

                15 

In this section, the input parameters of the model were specified. Accordingly, the problem 16 
was solved by the Epsilon-constraint method using GAMS software. Table 8 illustrates the results. 17 
In a multi-objective optimization problem, there is no specific solution that optimizes 18 
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simultaneously all the objectives. Without any subjective preference, there may be an infinite 1 
number of Pareto optimal solutions that can be equally good. Decision makers (DM) can have 2 
different goals when studying these problems. The objective may be a priority that satisfies one 3 
objective or the trade-offs in satisfying the different objectives (Grimme et al., 2021). For example, 4 
in the small scale solution, if the decision maker's priority is minimizing the machine idle time, 5 
solution numbers 1, 6, 11, and 16 should be selected (see Table 8). For selecting one of these 6 
solutions, the next priority between completion time and transportation cost leads to their choice. 7 
Since there are 3 objective functions in our case there are six ways to choose the ideal Pareto 8 
optimal solution. 9 

Table 8: Values of objective functions for small scale with the exact solution method 10 

Solution 
number 

Completion 
time 

Transportation 
cost 

Machine idle 
time 

1 224.7 300.4358 81.3 

2 224.7 300.4358 82.675 

3 212.7 300.4358 84.05 

4 212.7 300.4358 85.425 

5 212.7 300.4358 86.8 

6 207.9 319.9115 81.3 

7 207.9 319.9115 82.675 

8 204.42 319.9115 84.05 

9 198.9 319.9115 85.425 

10 198.9 319.9115 86.8 

11 207.9 339.3873 81.3 

12 207.9 339.3873 82.675 

13 204.42 339.3873 84.05 

14 198.9 339.3873 85.425 

15 198.9 339.3873 86.8 

16 194.34 358.863 81.3 

17 194.34 358.863 82.675 

18 194.34 358.863 84.05 

19 191.4 358.863 85.425 
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20 188.6 358.863 86.8 

 1 

5-2 Medium-scale solution from the ɛ-constraint method 2 

The values of the objective functions obtained from the ɛ-constraint method are shown in 3 
Table 9.  4 

Table 9: Values of objective functions for medium scale with the exact solution method 5 

Solution 
number 

Completion 
time 

Transportation 
cost 

Machine idle 
time 

1 167 482 95 

2 167 482 101.5 

3 167 482 108 

4 167 512.5 95 

5 167 512.5 101.5 

6 167 512.5 108 

7 167 543 95 

8 167 543 101.5 

9 164 543 108 

10 167 573.5 95 

11 161 573.5 101.5 

12 161 573.5 108 

13 183 604 88.5 

14 167 604 95 

15 157 604 101.5 

16 154 604 108 
 6 

5-3 Different scales solution using meta-heuristic method (NSGA-II) 7 

Some parameters need to be set while running the algorithms. The parameters used in this 8 
method were:  9 
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1- Maximum repetition = 800 1 
2- Population = 80 2 
3- Percentage of crossover operator = 0.8 3 
4- Percentage of mutation operator = 0.3 4 

The problem was solved with the above parameters on various scales in MATLAB software. The 5 
results were as shown in Figures 7, 8, and 9. 6 

 7 

Figure 7: Small-scale meta-heuristic solution 8 

 9 
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 1 

Figure 8: Medium-scale meta-heuristic solution 2 

 3 

 4 

 5 

Figure 9: Large-scale meta-heuristic solution 6 

Moreover, the performance of the proposed NSGA-II should be evaluated. For this reason, the 7 
small-scale problem is solved and compared with three other metaheuristic algorithms.  These 8 
algorithms are Scatter search (SS), Tabu search (TS), and Simulated annealing (SA). Firstly, a 9 
brief description of these algorithm is presented and then the results are compared.  10 
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5-4 Scatter search (SS) 1 

This algorithm was first presented by Glover (1977) as an extension of mathematical formulation 2 
for combinatorial optimization problems. Scatter search originated from earlier strategies for 3 
combining constraints and decision rules. Its objective is enabling a solution procedure based on 4 
the combined elements to achieve better solutions than one based only on the original elements 5 
(Glover, Laguna, & Martí, 2003). Its framework is flexible, allowing the development of 6 
implementations with varying degrees of sophistication (Martı́, Corberán, & Peiró, 2016).  7 

A detailed description of SS is presented in Algorithm 2. The main parameters are the 𝑃𝑃 (main 8 
population), 𝑃𝑃𝑃𝑃 (reference set), 𝑁𝑁𝐷𝐷 (non-dominated set), 𝑛𝑛𝑒𝑒 (evaluations number), initial 9 
temperature (𝑇𝑇𝑖𝑖), cooling rate (𝑇𝑇𝑐𝑐𝑐𝑐), and temperature threshold (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). The solution process starts 10 
with generating the initial population of P, and the external archive of non-dominated solutions 11 
(ND). These solutions are then sorted according to Pareto-dominance ranking, in a way that P[1] 12 
is the solution dominating more solutions in the population, while 𝑃𝑃[𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠] is the worst regarding 13 
this criterion. After initializing the population set, the PR should be created, which is comprised 14 
of the best 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2⁄  solutions of P in PR and 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2⁄  solutions of PR with the greatest 15 
Euclidean distance from other solutions in PR. Then, the non-dominated solutions (ND) should 16 
be sorted out from the solutions included in PR, obtaining the first Pareto frontier. Next, a certain 17 
number of solutions of PR, Z, are selected and passed to crossover function introduced in 18 
NSGAII algorithm to generate new solutions. Each combination gives a trial solution as a result. 19 
The domination of each new combination is checked with the solutions in ND. If the trial 20 
solution is not dominated by those previously included in ND, the none dominated solutions list 21 
is updated. The process is repeated until no improvement has been achieved for any new trail 22 
solution or the number of iterations/evaluations (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) exceeds 𝑛𝑛𝑒𝑒. 23 

Algorithm 2 Scatter search 24 

Inputs: 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑇𝑇𝑖𝑖, 𝑇𝑇𝑐𝑐𝑐𝑐, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑛𝑛𝑒𝑒; 25 
𝑃𝑃 ←  ∅;    𝑃𝑃𝑃𝑃 ←  ∅;   𝑁𝑁𝑁𝑁 ←  ∅;   𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ←  0;  26 
For (𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  1 𝑡𝑡𝑡𝑡 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 27 
      𝑃𝑃[𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] ← Generate a random solution; 28 
      𝑁𝑁𝑁𝑁 ←  Determine the non-dominated solutions; 29 
Sort the solutions of P according the objective function; 30 
For (𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1to 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2⁄ ) 31 
      𝑃𝑃𝑃𝑃[𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] ← 𝑃𝑃[𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]; 32 
Sort the solutions of P according their Euclidean distance to the solutions included in PR; 33 
For (𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐= (𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2⁄ ) + 1 to 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 34 
     𝑃𝑃𝑃𝑃[𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] ← 𝑃𝑃[𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − (𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2⁄ )]; 35 
do 36 
     new_solutions ←FALSE; 37 
     NewSubSets ← Randomly chose the pairs of solutions ; 38 
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     do 1 
          Select the next subset Z in NewSubSets; 2 
          trial ← Crossover(Z); 3 
          trial2 ← Mutation(trial); 4 
          ND ← Determine the non-dominated solutions; 5 
          If (trial2 dominates the solutions in ND) then 6 
               Update ND according trial2; 7 
               new_solutions ←TRUE; 8 
          Delete Z from NewSubSets; 9 
          For (𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 to 𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 10 
               If (trial2 ≺ 𝑃𝑃𝑃𝑃[𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]) then 11 
                    𝑃𝑃𝑃𝑃[𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] ← trial2; 12 
     while (NewSubSets ≠ Ø); 13 
while ((new_solutions = TRUE) AND (𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 <𝑛𝑛𝑒𝑒)); 14 
 15 

5-5 Tabu search (TS) 16 

Tabu search (TS) is a metaheuristic local search method which is utilized for mathematical 17 
optimization. TS was developed by Glover (1989) as a motivation for mechanics of human 18 
memory (Malczewski, 2018). Tabu search is an effective method for overcoming local optimality 19 
trapping. It redirects the search to keep exploring the feasible region even after a local optimum is 20 
found, and it seeks to avoid returning to the same local optimum by employing a search 21 
memorizing mechanism. The algorithm selects the best objective value for creating the seed for 22 
the next generation (Banerjee, Singh, Sahana, & Nath, 2022). 23 

TS has been used in many single objective optimization problems. Nevertheless, the multi 24 
objective variants of TS are simple, general and tractable which show a good performance at 25 
identifying a wide Pareto front for different problems. The multi-objective tabu search algorithm 26 
used for solving the problem is described below. 27 

Step 0.  Initialization 28 
Set the tabu list and the ND solutions as empty. Generate the initial population randomly 29 
with pop number of solutions, and determine ND list and the current solution. 30 

Step 1. Select the objective 31 
Active a single objective to become primary using a multinomial probability mass function. 32 

Step 2. Search the neighborhood 33 
Based on the current solution generate a neighboring population of size pop. The non-tabu 34 
that has the best objective function value, or the tabu solution which dominates any solution 35 
in the ND should be chosen as the best candidate solution. 36 

Step 3. Update the ND solutions list 37 
Compare each candidate solution with the current ND solutions list and replace the old 38 
dominated solutions from ND with new dominating candidates. Add a candidate solution 39 
to the ND solutions list, if it is not dominated by any current ND solution. 40 

Step 4. Update the tabu list 41 

https://www.sciencedirect.com/topics/computer-science/metaheuristics
https://www.sciencedirect.com/topics/computer-science/local-search-method
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Update the tabu list according to the best candidate solution determined in Step 2. 1 
Step 5. Diversification 2 

Check the last moves in step 4, and if the ND list has not been updated, one of the ND 3 
solutions found should be randomly selected as the new solution. Afterwards, the tabu list 4 
should be reset and the search restarts.  5 

5-6 Simulated annealing (SA) 6 

Simulated annealing is a method for solving optimization problems, which models the physical 7 
process of heating a material and then slowly decreasing the temperature to minimize defects and 8 
the system energy. Particles may freely move at high temperatures, while by decreasing the 9 
temperature, they are more restricted due to the excessive required energy. Throughout the 10 
simulation according to the real practice of the annealing process, the primary goal is to 11 
minimize the energy function, E(x), of the state x, introducing a controlling parameter T as the 12 
computational temperature. At each iteration of the simulated annealing algorithm a new sample 13 
point is randomly generated, considering the equilibrium distribution 𝜋𝜋T (x) ∝ exp{E(x)/T}. As T 14 
become smaller the probability mass of 𝜋𝜋T exclusively focuses  on the neighboring region of the 15 
global minimum of E, so that any new point from 𝜋𝜋T is more likely to place at the minimum of 16 
E. 17 

Generally, moving from the current state 𝑥𝑥 is examined by Metropolis-Hastings criteria, which 18 
considers an acceptance chance for the new state 𝑥𝑥′ as: 19 

𝐴𝐴 = min(1, exp {−
𝛿𝛿𝛿𝛿(𝑥𝑥′, 𝑥𝑥)

𝑇𝑇
}) 20 

where  21 

𝛿𝛿𝛿𝛿(𝑥𝑥′, 𝑥𝑥) = 𝐸𝐸(𝑥𝑥 ′) −  𝐸𝐸(𝑥𝑥) 22 

The perturbations from x to x′ which decrease the energy are always accepted. However, at high 23 
values of T the perturbations increasing the energy are likely to be accepted regarding the value 24 
of 𝐴𝐴. With the proceeding of the algorithm, the temperature systematically decreases, imposing 25 
the algorithm to reduce the extent of its search for converging to a minimum.  26 

In single objective problems the energy function E(x), is meant to measure of the quality of any 27 
solution x. However, the desired solutions in the multi-objective problems are only defined in 28 
relation to each other. In this paper a multi-objective SA algorithm is presented to deal the group 29 
layout problem. At each iteration of the algorithm, one epoch consisting of Lk solutions is drawn 30 
with a fixed temperature Tk. The computational temperature decreases by a proportion of 𝛼𝛼 in 31 
the next epoch. Each new solution is a mutation of the current state and is accepted with 32 
probability given by (5), as shown in lines 4-8. The algorithm terminates once the temperature is 33 
decreased enough. 34 

Algorithm 3 Simulated annealing 35 

Inputs: 36 
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𝐿𝐿𝑘𝑘               Sequence of epoch durations 1 

𝑥𝑥                 Initial solution 2 

1: for 𝑘𝑘: = 1, … ,𝑝𝑝𝑝𝑝𝑝𝑝 3 
2:      for 𝑖𝑖: = 1, … , 𝐿𝐿𝑘𝑘 4 
3:         for x′: = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥) 5 
4:          𝛿𝛿𝛿𝛿: = 𝐸𝐸(𝑥𝑥′) −  𝐸𝐸(𝑥𝑥) 6 
5:         u: = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(0,1) 7 
6:         if u< min(1, exp {−  𝛿𝛿𝛿𝛿 𝑇𝑇𝑘𝑘⁄ }) 8 
7:             x: = x′ 9 
8:         end 10 
9:       end 11 
10:       𝑇𝑇𝑘𝑘+1 ≔ 𝑇𝑇𝑘𝑘 × 𝛼𝛼  12 
11:    end 13 

During the optimization procedure, the true Pareto front is surely unavailable. Therefore, an 14 
estimate of the Pareto front is proposed using the set of mutually non-dominating solutions found 15 
thus far in the annealing. Let 𝐹𝐹�𝑥𝑥be the elements of 𝐹𝐹� that dominate x: 16 

𝐹𝐹�𝑥𝑥 = {𝑦𝑦 ∈ 𝐹𝐹�  ǀ 𝑦𝑦 ≺ 𝑥𝑥} 17 

so that an energy difference between 𝑥𝑥 and 𝑥𝑥′ would be: 18 

𝛿𝛿𝛿𝛿(𝑥𝑥′, 𝑥𝑥) =
1

|𝐹𝐹�|
(�𝐹𝐹�𝑥𝑥� − |𝐹𝐹�𝑥𝑥′|) 19 

Division by |𝐹𝐹�| secures 𝛿𝛿𝛿𝛿 against fluctuations in the number of non-dominating solutions at 20 
each iteration. Thus, the energy difference between any two of non-dominating solutions is zero.  21 

The problem is solved in all scales with implementing four algorithms in MATLAB and run on a 22 
PC with Intel Core i5 2.40 GHz CPU and 4 GB RAM. One of the Pareto optimal solutions and 23 
the solving time are shown in Table 10.  24 

TABLE 25 

Evaluating performance of the proposed NSGA-II 26 

Since there is not a specific optimal solution in multi objective problems, three performance 27 
measures are used to compare the proposed NSGA II with three other algorithms over 10 times 28 
run. The performance measures are the average distance between the pareto optimal solutions, 29 
average number of Pareto solutions and the solving time. The first measure is obtained using the 30 
following equation:  31 
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𝛿𝛿𝑗𝑗 = argmin𝑖𝑖∈𝐻𝐻

⎝

⎛���
𝑓𝑓𝑖𝑖𝑘𝑘 − 𝑓𝑓𝑗𝑗∗𝑘𝑘

𝑓𝑓𝑗𝑗∗𝑘𝑘
�
2

𝑘𝑘
⎠

⎞ 1 

 2 

𝐸𝐸𝐸𝐸 = max
𝑘𝑘∈𝑂𝑂,𝑗𝑗∈𝐸𝐸

��
𝑓𝑓𝛿𝛿𝑗𝑗
𝑘𝑘 − 𝑓𝑓𝑗𝑗∗𝑘𝑘

𝑓𝑓𝑗𝑗∗1
�� 3 

where E is the solutions of optimal pareto reported by 𝜖𝜖-constrint method, H is the solutions of 4 
best pareto, reported by a given algorithm, O is the set of all objective functions, 𝑓𝑓𝑗𝑗∗𝑘𝑘 is the 𝑘𝑘-th 5 

objective value of solution 𝑗𝑗 in the optimal pareto front, 𝑓𝑓𝑖𝑖𝑘𝑘 is the 𝑘𝑘-th objective value of solution 6 
𝑖𝑖 in the pareto front presented by the algorithm, 𝛿𝛿𝑗𝑗 is the index of the solution in 𝐻𝐻 with the 7 
minimum Euclidean distance from solution 𝑗𝑗 ∈ 𝐸𝐸, and ED is the external distance of the pareto 8 
front provided by the algorithm from the optimal pareto.  It can be concluded that an algorithm 9 
with the lowest percentage of ED is the best option for solving the multi-objective problem.   10 

  11 

TABLE 12 

 13 

5-4 Computational results  14 

While the exact solution of the mathematical model was done on a small and medium scale, 15 
the multi-objective genetic algorithm (NSGA-II) was used to validate and solve the model on a 16 
large scale because, in this case, the CM was an NP-hard problem. Comparison of the two solutions 17 
showed that the exact solution method performed better on small and medium scales. In addition, 18 
solving by the ɛ-constraint method increased the solution time. Table 10 shows a side-by-side 19 
comparison of the results. We should note that the Pareto-optimal solutions of the ɛ-constraint 20 
method in this table are based on the minimum solving time amongst other solutions in order to 21 
demonstrate that the meta-heuristic method took less time for solving than the best time of another 22 
method.   23 

Table 10: Comparison of solution methods 24 

Method 

Exact solution 
(ɛ-constraint method) 

Meta-heuristic method 
(NSGA-II) 

Completion 
time 

Transportation 
cost 

Machine 
idle time 

Solving 
time 
(Second) 

Completion 
time 

Transportation 
cost 

Machine 
idle time 

Solving 
time 
(Second) 
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Small-
scale 188.970 387.700 84.900 3108 190.25 363.71 97.224 2748 

Medium-
scale 165.625 546.81 100.69 5872 178.12 620 92.16 3135 

Large-
scale 
(NP-hard 
problem) 

- - - - 710 1300 575 3852 

 1 

To validate the model, the results from GAMS software were compared with the results from 2 
MATLAB software. Since the two were very close to one another, it can be concluded that the 3 
solution of the model is valid.  4 

In this section the details of the data on small scale problem are reset to test the proposed 5 
approach for solving the model. As presented in the Table 11, there are nine different instances 6 
according to dimension of machines and floor plan, importance factor, intercellular transfer cost 7 
coefficient, intracellular transfer time coefficient, and operation time. In general, the results that 8 
are shown in the table 12 are one of the Pareto optimal solutions of the search. The results of the 9 
e-constraint method and NSGA-II method could be compared and it can be seen that they are 10 
close enough to each other, therefore, it can be concluded that our model is valid.  11 
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Table 11: The input data for test instances. 1 

 2 

Table 12: Results of test instances 3 

Solution  Exact solution 

(ɛ-constraint method) 

Meta-heuristic method 

(NSGA-II) 

no Completion 
time 

Transportation 
cost 

Machine 
idle time 

Solving 
time 
(Second) 

Completion 
time 

Transportation 
cost 

Machine 
idle 
time 

Solving 
time 
(Second) 

1  4403.000 5654.400 1252.000 3280 6364 5460 1717 2556.06 

2 5086.100 5326.600 1357.000 3805 5242 5697 1584 2793.63 

Insta
nce Parameters of each instance 

no 

Horizontal 
dimension 
of 
machine 

Vertical 
dimension 
of machine 

Horiz
ontal 
dimen
sion 
of the 
floor 
plan 

Verti
cal 
dime
nsion 
of 
the 
floor 
plan 

Importa
nce 
factor 

Intercellular 
transfer cost 
coefficient 

Intracellul
ar transfer 
time 
coefficient 

Operation time 

 
Machine Machine 

 
  Product  Part Part Operation 

1 2 3 1 2 3   1 2 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 

1 10 12 14 15 20 17 
100 100 

1.
5 2.5 1.2 1.

4 2 2.
4 

2
0 

2
5 

3
0 

4
0 

1
1
0 

14
0 

1
2
4 

17
3 

1
8
2 

1
3
5 

17
9 

19
3 

2 20 23 15 20 19 25 
200 200 2.

3 1.7 2.5 2.
7 4 1.

9 
1
4 

1
1 

1
3 

1
7 

2
1
0 

28
0 

2
7
1 

23
6 

2
8
6 

2
9
4 

27
1 

25
0 

3 20 21 27 21 22 23 
500 500 1.

4 1.7 3.2 2.
7 

1
.
9 

4.
8 

1
9 

1
4 

3
0 

4
8 

3
2
0 

31
4 

3
9
8 

37
6 

3
7
2 

3
2
5 

31
7 

36
7 

4 17 20 16 19 21 18 
400 400 1.

7 1.8 1.7 2.
1 

2
.
7 

3.
5 

4
7 

4
6 

3
0 

2
5 

4
1
0 

46
7 

4
8
2 

43
1 

4
2
9 

4
6
0 

47
1 

45
3 

5 11 10 14 14 12 14 
600 600 1.

4 1.5 1.4 1.
5 

1
.
7 

4.
7 

3
0 

4
7 

2
5 

3
7 

5
0
1 

53
9 

5
9
7 

54
1 

5
2
0 

5
7
3 

58
1 

56
4 

6 17 20 24 18 22 25 
900 900 2.

2 2.5 1.5 1.
8 

2
.
1 

1.
7 

3
0 

2
7 

2
5 

3
5 

6
3
0 

67
1 

6
9
2 

68
3 

6
9
1 

6
4
8 

62
7 

66
1 

7 25 30 34 30 34 40 
200 200 3.

2 4 4.7 3.
9 

2
.
3 

1.
6 

2
5 

2
7 

2
9 

3
6 

7
1
5 

76
3 

7
8
1 

79
6 

7
7
4 

7
4
1 

72
5 

79
2 

8 60 40 30 40 45 60 
500 500 4.

1 5 2.5 3.
1 

2
.
8 

3.
6 

1
1 

3
0 

4
7 

4
1 

8
2
0 

83
7 

8
9
1 

86
3 

8
1
4 

8
7
3 

88
6 

86
4 

9 15 20 17 36 21 19 
900 900 4.

5 5.5 2.5 3.
1 

2
.
8 

3.
6 

1
1 

3
0 

4
7 

4
1 

9
1
4 

96
3 

9
7
4 

98
0 

9
3
1 

9
4
7 

98
2 

90
7 
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3 6176.700 12687.200 1954.000   3057 9468 14200 1798 2528.15 

4 9458.500   10802.855     2502.241   4124 9636 10270 3414 3027.87 

5 6193.900   6088.100   1339.000   3693 8561 8502 14430 2789.05 

6 13901.794     10859.513   2732.477   2956 14590 8487 4041 2452.89 

7 54130.400   16544.900   8231.000   2871 49660 14860 10630 2398.87 

8 46281.400   25254.000   4803.000   3169 50720 23310 6692 2508.79 

9 35228.500   9861.600   1890.000   3275 36870 8249 3121 2464.08 

 1 

To evaluate solving time of the exact solution method, we could reduce some variables and 2 
constraints and see the positive or negative effect on solving time. As we mentioned in explaining 3 
the e-constraints method, first we solve the model with the first objective function. Afterward, in 4 
the second step, solve the model by the second objective function by moving the first objective to 5 
constraints, and in the third step, move the first and the second objective function to constraints 6 
and solve the model with the third objective function.  Table 13 shows the time of these 3 steps by 7 
running the model on the small scale. It should be noted that percentages that mentioned in the last 8 
column show the effect (increase or decrease) of changes on solution time. 9 

Table 13: Comparison of solution time 10 

Method Time of first 
step (Second) 

Time of 
second step 
(Second) 

Time of 
third step 
(Second) 

Total (second) 

Current model 569 2180 359 3108 

Without product 
(i = 0) 

- 2180 1704 3884 (+24%) 

Removing 
Assigning 
machines to cells 
(z_lk = 0) 

124 290 85 499 (-83%) 

Removing 
capacity of each 
cell 
(constraints 5)  

571 2180 377 3128 (+0.6 %) 

Removing 
limitation for each 
cell 
(constraint 6) 

192 195 229 616 (-80%) 

Removing 
Operation on 

141 49 33 223 (-92%) 
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machines 
(constraint 29) 
 
Excluding 
shape of cells  
(constraints 9-12) 

23 54 28 105 (-96%) 

Excluding floor 
plan dimensions 
(constraints 24-27) 

582 1430 322 2334 (-25%) 

 1 

We can see removing a variable or constraint can have a negative effect on solution time. It can be 2 
justified that the variable or constraint can make the model simpler and eliminating them make the 3 
solving process more complicated.  4 

 5 

6- Sensitivity analysis  6 

To perform sensitivity analysis on the important parameters, first the parameters were identified, 7 
and then the analysis was undertaken. It was also examined whether, in case of any change of an 8 
input parameter, the model showed the expected performance or not. Sensitivity analysis is 9 
performed on several Pareto points and the percentages obtained are the average percentage 10 
change. 11 

6-1 Horizontal dimension parameter of the floor plan 12 

• Increasing this parameter did not change the value of the objective function. 13 
• Reducing this parameter from 8 to 4.3 did not change the objective function but falling 14 

below 4.3 rendered the problem unjustified. 15 

6-2 Parameter of vertical dimension of machines 16 

The average percentage of the objective functions varied when the vertical dimension of 17 
machines was changed, as shown in Table 14. 18 

Table 14: Average change of objective function from changing the vertical dimension of machines 19 

Change in the 
vertical dimension 
of machines  

Change in 
completion time 

Change in 
transportation cost 

Change in idle time 
of the machine 

20% 5.2% 12.9% Unjustified 

50% 9.7% 24.1% Unjustified 
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100% 10.3% 26% Unjustified 

-20% -5.2% -12.9% -26.6% 

-50% -9.7% -24.1% -48.3% 

-100% -10.3% -26% -54% 

 1 

6-3 The maximum number of allowed machines in the cell 2 

• Increasing this parameter did not change the value of the objective function. 3 
• Reducing this parameter from 3 to 2 did not change the objective function but falling below 4 

2 rendered the problem unjustified. 5 

6-4 Product importance factor 6 

The average percentage of the objective functions varied when the product importance factor 7 
was changed, as shown in Table 15. 8 

Table 15: Average change of objective functions from changing the importance factor of the products 9 

Change in the 
product importance 
factor 

Change in 
completion time 

Change in 
transportation cost 

Change in idle time 
of the machine 

20% 20% 0 0 

50% 50% 0 0 

100% 100% 0 0 

-20% -20% 0 0 

-50% -50% 0 0 

-100% -100% 0 0 

 10 

6-5 Intercellular transfer cost coefficient 11 

The average percentage of the objective functions varied when the intercellular transfer cost 12 
coefficient was changed, as shown in Table 16. 13 
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Table 16: Average change of objective functions from changing intercellular transfer cost coefficient 1 

Change in the 
intercellular 
transfer cost 
coefficient 

Change in 
completion time 

Change in 
transportation cost 

Change in idle time 
of the machine 

20% 0 15.3% 0 

50% 0 39.4% 0 

100% 0 88.9% 0 

-20% 0 -17.7% 0 

-50% 0 -43.8 0 

-100% 0 -92.4 0 

 2 

 The results derived from the sensitivity analysis revealed that, by changing different 3 
parameters, the model shows the expected behavior. Therefore, it can be concluded that the model 4 
works appropriately and accurately.  5 

7- Conclusion 6 

Due to the importance and interdependence of CF, GS, and GL problems in a CMS, a mathematical 7 
model has been presented to simultaneously approach these three decisions. The objective is to 8 
minimize total completion time, transportation cost, and machine idle time between operations. 9 
We have extended Arkat et al. (2012a) by adding machinery to the objective function and 10 
considering a multi-machine system that makes our model more practical.  11 

 Two methods have been developed to solve the model: the exact solution by the ɛ-12 
constraint method using GAMS software and a non-dominated sorting genetic algorithm II 13 
(NSGA-II) with MATLAB software for the metaheuristic solution. To examine the effectiveness 14 
of the integrated model, we have compared the results of the two methods. Although the 15 
comparison has indicated that the proposed exact solution method is superior to the NSGA-II, the 16 
metaheuristic algorithm can provide a near-optimal solution in a much shorter computational time 17 
and solve large-scale problems. In addition, by utilizing sensitivity analysis, the impacts of various 18 
model parameters on the system's behavior are investigated. This helps the manufacturer to detect 19 
the more sensitive parameters.  20 

 The proposed model may give rise to several potential research improvements:   21 

• In this study, moving parts are considered individually, but in the real world, small parts can 22 
usually be done in batches, which reduces transportation costs in this case. 23 
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• We consider that cells consist of different machines performing only production operations. In 1 
many companies, the manufactured parts are assembled inside the company and become the 2 
final product after completing the manufacturing process. In future studies, cells could also be 3 
considered for inspection and maintenance, which can also affect the movements and 4 
performance of the system. 5 

• In this research, machines are conceived to operate one piece at a time. However, with 6 
technological advances, companies and production units are increasingly having machines 7 
perform operations on several parts simultaneously. Considering the capacity of such machines 8 
may be worthy of exploration in the future. 9 

• The operation time on the parts in the model is considered definite. However, parts operation 10 
times on machines are usually uncertain. This may also provide for a fresh investigation. 11 

Uncategorized References 12 

Akhmet, A., Hare, W., & Lucet, Y. (2022). Bi-objective optimization for road vertical alignment design. 13 
Computers & Operations Research, 143, 105764. doi:https://doi.org/10.1016/j.cor.2022.105764 14 

Alimian, M., Ghezavati, V., & Tavakkoli-Moghaddam, R. (2020). New integration of preventive 15 
maintenance and production planning with cell formation and group scheduling for dynamic 16 
cellular manufacturing systems. Journal of Manufacturing Systems, 56, 341-358.  17 

Arkat, J., Farahani, M. H., & Ahmadizar, F. (2012). Multi-objective genetic algorithm for cell formation 18 
problem considering cellular layout and operations scheduling. International Journal of 19 
Computer Integrated Manufacturing, 25(7), 625-635.  20 

Arkat, J., Farahani, M. H., & Hosseini, L. (2012). Integrating cell formation with cellular layout and 21 
operations scheduling. The International Journal of Advanced Manufacturing Technology, 61(5-22 
8), 637-647.  23 

Arkat, J., Hosseinabadi Farahani, M., & Hosseini, L. (2012). Integrating cell formation with cellular layout 24 
and operations scheduling. The International Journal of Advanced Manufacturing Technology, 25 
61(5), 637-647. doi:10.1007/s00170-011-3733-4 26 

Arkat, J., Rahimi, V., & Farughi, H. (2021). Reactive Scheduling Addressing Unexpected Disturbance in 27 
Cellular Manufacturing Systems. International Journal of Engineering, 34(1), 162-170.  28 

Arora, P., Haleem, A., Kumar, H., & Khan, S. A. (2020). Recent Development in Virtual Cellular 29 
Manufacturing System. In Recent Advances in Mechanical Engineering (pp. 1-7): Springer. 30 

Aryanezhad, M., Aliabadi, J., & Tavakkoli-Moghaddam, R. (2011). A new approach for cell formation and 31 
scheduling with assembly operations and product structure. International Journal of Industrial 32 
Engineering Computations, 2(3), 533-546.  33 

Banerjee, A., Singh, D., Sahana, S., & Nath, I. (2022). Chapter 3 - Impacts of metaheuristic and swarm 34 
intelligence approach in optimization. In S. Mishra, H. K. Tripathy, P. K. Mallick, A. K. Sangaiah, & 35 
G.-S. Chae (Eds.), Cognitive Big Data Intelligence with a Metaheuristic Approach (pp. 71-99): 36 
Academic Press. 37 

Bayram, H., & Şahin, R. (2016). A comprehensive mathematical model for dynamic cellular 38 
manufacturing system design and Linear Programming embedded hybrid solution techniques. 39 
Computers & Industrial Engineering, 91, 10-29.  40 

Bérubé, J.-F., Gendreau, M., & Potvin, J.-Y. (2009). An exact ϵ-constraint method for bi-objective 41 
combinatorial optimization problems: Application to the Traveling Salesman Problem with 42 
Profits. European journal of operational research, 194(1), 39-50.  43 

Brown, E. C., & Sumichrast, R. T. (2001). CF-GGA: a grouping genetic algorithm for the cell formation 44 
problem. International Journal of Production Research, 39(16), 3651-3669.  45 

https://doi.org/10.1016/j.cor.2022.105764


38 
 

Cao, D., & Chen, M. (2004). Using penalty function and Tabu search to solve cell formation problems 1 
with fixed cell cost. Computers & Operations Research, 31(1), 21-37.  2 

Chandrasekharan, M., & Rajagopalan, R. (1993). A multidimensional scaling algorithm for group layout in 3 
cellular manufacturing. International journal of production economics, 32(1), 65-76.  4 

Chang, C.-C., Wu, T.-H., & Wu, C.-W. (2013). An efficient approach to determine cell formation, cell 5 
layout and intracellular machine sequence in cellular manufacturing systems. Computers & 6 
Industrial Engineering, 66(2), 438-450.  7 

Cheng, T. E., Janiak, A., & Kovalyov, M. Y. J. S. J. o. O. (1998). Bicriterion single machine scheduling with 8 
resource dependent processing times. 8(2), 617-630.  9 

De Lit, P., Falkenauer, E., & Delchambre, A. (2000). Grouping genetic algorithms: an efficient method to 10 
solve the cell formation problem. Mathematics and Computers in simulation, 51(3-4), 257-271.  11 

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic 12 
algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.  13 

Ebrahimi, A., Kia, R., & Komijan, A. R. (2016). Solving a mathematical model integrating unequal-area 14 
facilities layout and part scheduling in a cellular manufacturing system by a genetic algorithm. 15 
SpringerPlus, 5(1), 1-29.  16 

Ehrgott, M., & Gandibleux, X. (2003). Multiobjective combinatorial optimization—theory, methodology, 17 
and applications. In Multiple criteria optimization: State of the art annotated bibliographic 18 
surveys (pp. 369-444): Springer. 19 

El Yaagoubi, A., Charhbili, M., Boukachour, J., & El Hilali Alaoui, A. (2022). Multi-objective optimization of 20 
the 3D container stowage planning problem in a barge convoy system. Computers & Operations 21 
Research, 105796. doi:https://doi.org/10.1016/j.cor.2022.105796 22 

Elmi, A., Solimanpur, M., Topaloglu, S., & Elmi, A. (2011). A simulated annealing algorithm for the job 23 
shop cell scheduling problem with intercellular moves and reentrant parts. Computers & 24 
Industrial Engineering, 61(1), 171-178.  25 

Forghani, K., & Fatemi Ghomi, S. M. T. (2020). Joint cell formation, cell scheduling, and group layout 26 
problem in virtual and classical cellular manufacturing systems. Applied Soft Computing, 97, 27 
106719. doi:https://doi.org/10.1016/j.asoc.2020.106719 28 

Ghezavati, V., & Saidi-Mehrabad, M. (2010). Designing integrated cellular manufacturing systems with 29 
scheduling considering stochastic processing time. The International Journal of Advanced 30 
Manufacturing Technology, 48(5-8), 701-717.  31 

Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 32 
8(1), 156-166.  33 

Glover, F. (1989). Tabu search—part I. ORSA Journal on computing, 1(3), 190-206.  34 
Glover, F., Laguna, M., & Martí, R. (2003). Scatter search. In Advances in evolutionary computing (pp. 35 

519-537): Springer. 36 
Goli, A., Tirkolaee, E. B., & Aydin, N. S. (2021). Fuzzy Integrated Cell Formation and Production 37 

Scheduling considering Automated Guided Vehicles and Human Factors. IEEE Transactions on 38 
Fuzzy Systems, 1-1. doi:10.1109/TFUZZ.2021.3053838 39 

Goli, A., Tirkolaee, E. B., & Aydın, N. S. J. I. T. o. F. S. (2021). Fuzzy integrated cell formation and 40 
production scheduling considering automated guided vehicles and human factors. 29(12), 3686-41 
3695.  42 

Grimme, C., Kerschke, P., Aspar, P., Trautmann, H., Preuss, M., Deutz, A. H., . . . Emmerich, M. (2021). 43 
Peeking beyond peaks: Challenges and research potentials of continuous multimodal multi-44 
objective optimization. Computers & Operations Research, 136, 105489. 45 
doi:https://doi.org/10.1016/j.cor.2021.105489 46 

Guschinsky, N., Kovalyov, M. Y., Rozin, B., Brauner, N. J. C., & Research, O. (2021). Fleet and charging 47 
infrastructure decisions for fast-charging city electric bus service. 135, 105449.  48 

https://doi.org/10.1016/j.cor.2022.105796
https://doi.org/10.1016/j.asoc.2020.106719
https://doi.org/10.1016/j.cor.2021.105489


39 
 

Hassan, M. M. (1995). Layout design in group technology manufacturing. International journal of 1 
production economics, 38(2-3), 173-188.  2 

Khamlichi, H., Oufaska, K., Zouadi, T., & Dkiouak, R. (2020). A Hybrid GRASP Algorithm for an Integrated 3 
Production Planning and a Group Layout Design in a Dynamic Cellular Manufacturing System. 4 
IEEE Access, 8, 162809-162818.  5 

Kirkpatric, S. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680.  6 
Liu, C., Wang, J., Leung, J. Y.-T., & Li, K. (2016). Solving cell formation and task scheduling in cellular 7 

manufacturing system by discrete bacteria foraging algorithm. International Journal of 8 
Production Research, 54(3), 923-944.  9 

Mahdavi, I., Paydar, M., Solimanpur, M., & Saidi-Mehrabad, M. (2010). A mathematical model for 10 
integrating cell formation problem with machine layout. International Journal of Industrial 11 
Engineering & Production Research, 21(2), 61-70.  12 

Mahesh, K., Nallagownden, P., & Elamvazuthi, I. J. E. (2016). Advanced Pareto front non-dominated 13 
sorting multi-objective particle swarm optimization for optimal placement and sizing of 14 
distributed generation. 9(12), 982.  15 

Malczewski, J. (2018). 1.15 - Multicriteria Analysis. In B. Huang (Ed.), Comprehensive Geographic 16 
Information Systems (pp. 197-217). Oxford: Elsevier. 17 

Martı,́ R., Corberán, Á., & Peiró, J. (2016). Scatter Search. In R. Martí, P. Panos, & M. G. C. Resende (Eds.), 18 
Handbook of Heuristics (pp. 1-24). Cham: Springer International Publishing. 19 

Miettinen, K. (2012). Nonlinear multiobjective optimization (Vol. 12): Springer Science & Business Media. 20 
Miettinen, K. J. B., Massachusetts. (1999). Nonlinear multiobjective optimization kluwer academic 21 

publishers.  22 
Mohtashami, A., Alinezhad, A., & Niknamfar, A. H. (2020). A fuzzy multi-objective model for a cellular 23 

manufacturing system with layout designing in a dynamic condition. International Journal of 24 
Industrial and Systems Engineering, 34(4), 514-543.  25 

Neufeld, J. S., Teucher, F., & Buscher, U. (2020). Scheduling flowline manufacturing cells with inter-26 
cellular moves: non-permutation schedules and material flows in the cell scheduling problem. 27 
International Journal of Production Research, 58(21), 6568-6584.  28 

Neufeld, J. S., Teucher, F. F., & Buscher, U. (2020). Scheduling flowline manufacturing cells with inter-29 
cellular moves: non-permutation schedules and material flows in the cell scheduling problem. 30 
International Journal of Production Research, 58(21), 6568-6584. 31 
doi:10.1080/00207543.2019.1683251 32 

Paydar, M. M., & Saidi-Mehrabad, M. (2013). A hybrid genetic-variable neighborhood search algorithm 33 
for the cell formation problem based on grouping efficacy. Computers & Operations Research, 34 
40(4), 980-990.  35 

Rahimi, V., Arkat, J., & Farughi, H. (2020). A vibration damping optimization algorithm for the integrated 36 
problem of cell formation, cellular scheduling, and intercellular layout. Computers & Industrial 37 
Engineering, 143, 106439.  38 

Rajagopalan, R., & Batra, J. (1975). Design of cellular production systems a graph-theoretic approach. 39 
The International Journal of Production Research, 13(6), 567-579.  40 

Shafiee-Gol, S., Kia, R., Tavakkoli-Moghaddam, R., Kazemi, M., & Kamran, M. A. (2021). Integration of 41 
parts scheduling, MRP, production planning and generalized fixed-charge transportation 42 
planning in the design of a dynamic cellular manufacturing system. RAIRO: Recherche 43 
Opérationnelle, 55, 1875.  44 

Solimanpur, M., & Elmi, A. (2013). A tabu search approach for cell scheduling problem with makespan 45 
criterion. International journal of production economics, 141(2), 639-645.  46 



40 
 

Tavakkoli-Moghaddam, R., Gholipour-Kanani, Y., & Cheraghalizadeh, R. (2008). A genetic algorithm and 1 
memetic algorithm to sequencing and scheduling of cellular manufacturing systems. 2 
International Journal of Management Science and Engineering Management, 3(2), 119-130.  3 

Tavakkoli-Moghaddam, R., Javadian, N., Khorrami, A., & Gholipour-Kanani, Y. (2010). Design of a scatter 4 
search method for a novel multi-criteria group scheduling problem in a cellular manufacturing 5 
system. Expert Systems with Applications, 37(3), 2661-2669.  6 

Tsai, C.-C., Chu, C.-H., & Barta, T. A. (1997). Modeling and analysis of a manufacturing cell formation 7 
problem with fuzzy mixed-integer programming. IIE transactions, 29(7), 533-547.  8 

Uddin, M. K., & Shanker, K. (2002). Grouping of parts and machines in presence of alternative process 9 
routes by genetic algorithm. International journal of production economics, 76(3), 219-228.  10 

Vin, E., De Lit, P., & Delchambre, A. (2005). A multiple-objective grouping genetic algorithm for the cell 11 
formation problem with alternative routings. Journal of Intelligent Manufacturing, 16(2), 189-12 
205.  13 

Vira, C., Haimes, Y. Y. J. N.-H. S. i. S. S., & Engineering. (1983). Multiobjective decision making: theory 14 
and methodology. 62-109.  15 

Wang, J. (2003). Formation of machine cells and part families in cellular manufacturing systems using a 16 
linear assignment algorithm. Automatica, 39(9), 1607-1615.  17 

Wang, J., Liu, C., & Zhou, M. (2021). Multi-factory Cellular Manufacturing Cell Formation and Product 18 
Scheduling via Genetic Algorithm. Paper presented at the 2021 IEEE 17th International 19 
Conference on Automation Science and Engineering (CASE). 20 

Wei, J. C., & Gaither, N. (1990). An optimal model for cell formation decisions. Decision Sciences, 21(2), 21 
416-433.  22 

Wu, X., Chu, C.-H., Wang, Y., & Yue, D. (2007). Genetic algorithms for integrating cell formation with 23 
machine layout and scheduling. Computers & Industrial Engineering, 53(2), 277-289.  24 

Wu, X., Chu, C.-H., Wang, Y., Yue, D. J. C., & Engineering, I. (2007). Genetic algorithms for integrating cell 25 
formation with machine layout and scheduling. 53(2), 277-289.  26 

Zuberek, W. (1996). Optimal schedules of manufacturing cells-modeling and analysis using timed Petri 27 
nets. Paper presented at the Proceedings of IEEE International Symposium on Industrial 28 
Electronics. 29 

 30 


	1- Introduction
	2- Review of current literature
	3- Methodology
	3-1 Problem description
	3-2 Nomenclature
	3-3 Mathematical model
	3-4 Linearization

	4- Solution methodology
	4-1 NSGA-II algorithm
	4-2 ɛ-constraint method
	5- Numerical solution
	5-1 Small scale solution using the ɛ-constraint method
	5-2 Medium-scale solution from the ɛ-constraint method
	5-3 Different scales solution using meta-heuristic method (NSGA-II)
	Evaluating performance of the proposed NSGA-II
	5-4 Computational results

	6- Sensitivity analysis
	6-1 Horizontal dimension parameter of the floor plan
	6-2 Parameter of vertical dimension of machines
	6-3 The maximum number of allowed machines in the cell
	6-4 Product importance factor
	6-5 Intercellular transfer cost coefficient

	7- Conclusion

