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Abstract: This paper proposes a novel intrusion detection system (IDS), named RDTIDS,
for Internet-of-Things (IoT) networks. The RDTIDS combines different classifier approaches which
are based on decision tree and rules-based concepts, namely, REP Tree, JRip algorithm and Forest
PA. Specifically, the first and second method take as inputs features of the data set, and classify the
network traffic as Attack/Benign. The third classifier uses features of the initial data set in addition
to the outputs of the first and the second classifier as inputs. The experimental results obtained by
analyzing the proposed IDS using the CICIDS2017 dataset and BoT-IoT dataset, attest their superiority
in terms of accuracy, detection rate, false alarm rate and time overhead as compared to state of the art
existing schemes.
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1. Introduction

In recent years cyberattacks, especially those targeting systems that keep or process sensitive
information, are becoming more sophisticated. Critical National Infrastructures are the main targets
of cyber attacks since essential information or services depend on their systems and their protection
becomes a significant issue that is concerning both organizations and nations [1–3]. Attacks to such
critical systems include penetrations to their network and installation of malicious tools or programs
that can reveal sensitive data or alter the behavior of specific physical equipment. In order to tackle
this growing trend, academics and industry professionals are joining forces in an attempt to develop
novel systems and mechanisms that can defend their systems. Along with other preventive security
mechanisms, such as access control and authentication, intrusion detection systems (IDSs) are deployed
as a second line of defense. IDSs based on some specific rules or patterns of the normal behavior of the
system can distinguish between normal and malicious actions [4,5].

Many different taxonomies for IDSs have been proposed until now. Based on the classification
model they use, IDSs can be classified as rule-based, misuse detection and mixed systems. IDSs can
also be classified as real-time if they use continuous monitoring of the system or periodic or offline
if the detection happens in specific time instances or even offline using data that are collected and
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stored during a certain period of time. Moreover, when talking about Industrial Control Systems
(ICSs) that have specific requirements and characteristics novel taxonomies were recently proposed.
Authors in [6] proposed a classification of IDSs ICS that divides them into three new categories:
protocol analysis-based, traffic mining-based, and control process analysis-based.

Countermeasures are taken according to the information obtained regarding the detected attacks
from the detection systems. The better classification of the type of attack is provided, the more efficient
will the chosen countermeasures be and the less will they affect the proper operation of the system or
network. Moreover, if we do not detect the exact type of attack the countermeasures can have more
serious consequences than the attack itself in some cases. For this reason, our goal is to create an
intrusion detection model that correctly classifies each type of attack. In addition, our model must
provide a low false alarm rate and a high detection rate both for frequent and infrequent attacks while
on the same require low computing in order to perform classification. The latter characteristic is very
important when IDSs are deployed in industrial control systems that operate critical infrastructures
where correct and fast notification about cyber attacks is crucial [7]. This paper extends our work in [8]
in many ways. First, we integrate the proposed system for the internet of things networks. We have
present and critically analyze new related works that were published recently. We have redesigned
the proposed system, we have presented the integration of RDTIDs into a three-tier fog computing
architecture for IoT networks and have evaluated its performance against a Bot-IoT dataset.

The remainder of the paper is organized as follows. Section 2 discusses related work and places
the research within that of the wider community. Section 3 introduces the key concepts and the overall
architecture of the proposed system. Section 4 presents the experimentation setup, gives the simulation
parameters and describes the evaluation of the method. Section 5 concludes the paper.

2. Relevant Work

Table 1 lists representative related works on hybrid intrusion detection systems, including machine
learning and data mining methods. It also presents the security issue that each one of these methods
tries to address, along with the dataset that was used in order to evaluate their performance.

Aydin et al. [9] proposed a hybrid IDS by combining two approaches, namely, (1) packet
header anomaly detection (PHAD), and (2) network traffic anomaly detection (NETAD) with the
signature-based IDS Snort. Both PHAD and NETAD methods are anomaly-based IDSs. The aydın
et al.’s system is tested on IDEVAL data, which shows that the number of attacks detected increases
significantly using the proposed hybrid IDS as compared to signature-based systems. Wang et al. [10]
proposed an intrusion detection approach, named FC-ANN, based on artificial neural networks (ANN)
and fuzzy clustering. The FC-ANN approach uses three main modules, i.e., fuzzy clustering module,
ANN module, and fuzzy aggregation module. The fuzzy clustering module is used to partition a given
set of data into clusters. The ANN module is used to learn the pattern of every subset. The fuzzy
aggregation module is used to aggregate different ANN’s results and reduce any detection errors.
The FC-ANN approach was tested on the KDD CUP 1999 dataset and was proven to be efficient
against low-frequent attacks, i.e., R2L and U2R attacks.

Govindarajan and Chandrasekaran [11] proposed a neural-based hybrid IDS architecture using
two methods, namely, 1) multilayer perceptron neural network (MLP), and 2) radial basis function
neural network (RBF). The procedures of hybrid modeling using bagging classifiers are employed
in order to increase robustness, accuracy, and better overall generalization. Moreover, the UNM
Send-Mail Data is used in this study, which is based on an immune system developed at the University
of New Mexico. The performance of the proposed IDS in terms of accuracy was 98.88% and 94.31% for
normal as well as abnormal traffic respectively, which is better compared to the performance of the
classifiers that compose it.
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Table 1. Related works on hybrid intrusion detection systems.

Year Paper Machine Learning and Data Mining Methods Cyber Approach Data Used

2009 Aydin et al. [9] - Packet header anomaly detection
- Network traffic anomaly detection

Hybrid IDS, which combing anomaly-based IDSs IDEVAL

2010 Wang et al. [10] - Artificial neural networks
Fuzzy clustering

Hybrid IDS, which the fuzzy aggregation module
is employed to aggregate the results

KDD CUP 1999

2011 Govindarajan and
Chandrasekaran [11]

- Multilayer perceptron neural network
- Radial basis function neural network

Neural based hybrid IDS UNM Send-Mail Data

2012 Chung and
Wahid [12]

- Intelligent dynamic swarm
- Simplified swarm optimization

Hybrid IDS KDD CUP 1999

2013 Elbasiony et al. [13] - Random forests algorithm
- K-means clustering algorithm

Combining misuse and anomaly detection into a
hybrid framework

KDD CUP 1999

2014 Kim et al. [14] - C4.5 decision tree algorithm
- Support vector machine model

Combining misuse and anomaly detection into a
hybrid framework

NSL-KDD

2015 Lin et al. [15] - k-Nearest Neighbor (k-NN) classifier Combining cluster centers and nearest neighbors KDD CUP 1999

2016 Aslahi-Shahri et
al. [16]

- Support vector machine
- Genetic algorithm

Hybrid IDS KDD CUP 1999

2017 Kevric et al. [17] - Random tree
- C4.5 decision tree algorithm
- NBTree

Combining classifier model based on tree-based
algorithms

NSL-KDD

2017 Al-Yaseen et al. [18] - Support vector machine
- Extreme learning machine
- K-means clustering algorithm

Hybrid IDS KDD CUP 1999

2018 Ahmim et al. [19] - Repeated Incremental Pruning to Produce Error, Reduction (RIPPER), RBF Network
(RBFN), Ripple-down rule learner (Ridor), and Random Forests
- Naive Bayes (NB)

Combining probability predictions of a tree of
classifiers

KDD CUP 1999 +
NSL-KDD

2018 Aljawarneh et al. [20] J48, Meta Pagging, RandomTree, REPTree, AdaBoostM1, DecisionStump, and NaiveBayes Hybrid IDS, which combing anomaly-based IDSs NSL-KDD

2019 Ferrag et al. [21] Recurrent neural networks Hybrid IDS, which combing recurrent neural
networks with blockchain

CICIDS2017, Power System
dataset, and Bot-IoT

2019 Derhab et al. [22] Random subspace learning Hybrid IDS, which combing random subspace
learning with blockchain

Power System dataset

2019 Ferrag et al. [23] Deep learning techniques Hybrid IDS, which combing deep learning
techniques with blockchain

CSE-CIC-IDS2018 dataset

RDTIDS - REP Tree
- JRip algorithm
- Random Forest

Hybrid IDS, which combining classifier model
based on tree-based algorithms

CICIDS2017

IDEVAL: MIT Lincoln Laboratories network traffic data; KDD CUP 1999: The data set is based on DARPA 1998 TCP/IP data and has basic features captured by pcap (with about
4 million records of normal and attack traffic); UNM Send-Mail Data: The data set is based on an immune system developed at the University of New Mexico; NSL-KDD: A
modified version of KDD’99 data set, which it does not include redundant records in the train set; CICIDS2017: The dataset contains benign and the most up-to-date common attacks,
which resembles the true real-world data (PCAPs) developed at Canadian Institute for Cybersecurity (University of New Brunswick) [24].
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Chung and Wahid [12] approach the problem of decision rules generation by employing intelligent
dynamic swarm-based rough set (IDS-RS) for feature selection and simplified swarm optimization
with weighted local search (SSO–WLS) strategy for data classification. The study provides a full system
solution for improving the searching process in SSO rule mining by weighing three predetermined
constants. The experimental results on the KDD CUP 1999 dataset show that the proposed hybrid
network intrusion detection system using an intelligent dynamic swarm-based rough set shows a good
overall performance with 93.3% accuracy in an average of 20 runs.

Elbasiony et al. [13] presented a combination of misuse and anomaly detection into a hybrid
framework, which is based on two methods, namely, (1) random forests algorithm, and (2) K-means
clustering algorithm. Specifically, this framework employs the random forests algorithm in misuse
intrusion detection as well as the k-means clustering algorithm in anomaly detection. Due to correlated
variables in random forests, this framework has low model interpretability and performance loss.
Kim et al. [14] integrate a misuse detection model and an anomaly detection model in a decomposition
structure. This study uses the C4.5 decision tree algorithm and multiple one-class SVM models.
The experimental results on the NSL-KDD dataset show that the proposed hybrid intrusion detection
method is better than the conventional methods in terms of detection performance, training time,
and testing time.

Lin et al. [15] proposed a feature representation approach, named CANN, which combines cluster
centers and nearest neighbors. The CANN approach uses three steps, namely, (1) Extraction of cluster
centers and nearest neighbors, (2) Measurement and summing of the distance between all data, and (3)
Classifier training and testing, which is based on the k-NN algorithm. The experimental results on the
KDD CUP 1999 dataset show that CANN approach performs better than the k-NN and SVM classifiers.

Recently, a number of researchers have proposed the combination of classifiers in order to improve
the overall performance under the NSL-KDD dataset [17–20,24]. In [17], Kevric et al. proposed a
combined classifier approach using tree algorithms, namely, random tree, C4.5 decision tree algorithm,
and NBTree. In [18], Al-Yaseen et al. proposed a hybrid IDS that uses support vector machine,
extreme learning machine, and K-means clustering algorithm. The experimental results on the KDD
CUP 1999 dataset show that the proposed hybrid network intrusion detection system can improve the
overall performance and achieve an overall 95.75% accuracy.

In order to evaluate the performance of an IDS system, both KDD’99 and NSL-KDD datasets
are commonly used. Ahmim et al. [19] proposed an IDS system, named HCPTC-IDS, which is based
on combining probability predictions of a tree of classifiers. The HCPTC-IDS system is composed of
two layers, namely, 1) the first layer, which is a tree of classifiers, and 2) the second layer, which is a
final classifier that combines the different probability predictions of the first layer. The experiments
on KDD’99 and NSL-KDD show that the HCPTC-IDS system is more precise than other recently
proposed intrusion detection systems having accuracy equal to 96.27% for KDD’99 and 89.75% for
NSL-KDD. The authors in [16] presented an anomaly detection technique based on support vector
machine (SVM) and genetic algorithm (GA), in order to improve the performance of classification for
SVMs. The experimental results on the KDD CUP 1999 dataset show an outstanding true-positive
value of 0.973 that comes with a 0.017 false-positive value.

The blockchain technology [25] is combined with machine learning and data mining methods
for cyber security intrusion detection. Derhab et al. [22] proposed an intrusion detection system,
named RSL-KNN, against forged command attacks, which is based on the random subspace
learning approach and K-Nearest Neighbor (KNN) classifier. The RSL-KNN system is combined
with the blockchain technology for detecting in a short time any tampering with the OpenFlow
rule. Ferrag et al. [21] proposed a novel deep learning and blockchain-based energy framework,
called DeepCoin, smart grids. The DeepCoin framework uses two schemes, namely, a deep
learning-based scheme and a blockchain-based scheme. The deep learning-based scheme is used for
detecting network attacks based on recurrent neural networks, while the blockchain-based scheme is
used for detecting fraudulent transactions. Similarly to DeepCoin framework, Ferrag and Leandros [23]
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proposed an intrusion detection system combined with the blockchain-based delivery framework,
called DeliveryCoin, for drone-delivered services. Both DeepCoin and DeliveryCoin frameworks
demonstrated the efficiency of the deep learning techniques in cyber security intrusion detection.
For more detail about the deep learning techniques in cyber security intrusion detection, we refer the
reader to our recent studies in [26,27].

Most of the relevant works use the KDD and NSL-KDD datasets, which are outdated and of
very limited practical value for a modern IDS. Both benign and malicious network traffic has changed
significantly since 1999 when these datasets were produced and the results obtained using them are of
a limited value most of the times.

In order to overcome several shortcomings of previous proposed methods, like low detection
of rare attack, mis-classification of attacks and time overhead, we propose a novel Hybrid IDS,
which combines different classifier models, namely, REP Tree, JRip algorithm and Random Forest.
Besides, we use the CICIDS2017 dataset [24], which we split in training and testing datasets,
in order to evaluate their performance in detecting network intrusions and we compare it with other
machine learning methods proposed by previous researchers, including, WISARD [28], ForestPA [29],
J48 Consolidated [30], LIBSVM [31], FURIA [32], RandomForest, REPTree, MLP, NaiveBayes,
JRip and J48.

3. The Proposed Model

According to [33], data imbalance is one of the causes that degrades the performance of machine
learning algorithms in classifications. This is due to two major causes. First, the simple accuracy as
an objective function used in most classification tasks is inadequate when the classifier faces data
imbalance and the second comes from the distribution of the classes where the majority class is
likely to invade the territory of the minority class. In general, for the same data set, if the number of
classes increases, the sub-data set of each class decreases, leading to the decrease of the generalization
capability and the increase of classification errors and vice versa. The mis-classification is usually due
to the classification of attacks as normal behavior, or as another attack in the same or different category.

In order to minimize these classification errors and to increase the performance of intrusion
detection mechanism, we propose the hierarchical intrusion detection model illustrated in Figure 1.
The main feature of the RTDITS is that uses a binary and multi-class classifier in parallel,
that feed a third classifier, thus minimizing the effect of data imbalance to the final outcome.
Moreover, ensemble systems of classifiers are widely used for intrusion detection in networks
(maglaras2016combining). These aim to include mutually complementary individual classifiers,
which are characterized by high diversity in terms of classifier structure [34], internal parameters
or classifier inputs. As stated in [35], ensemble and meta-ensemble methods show a number of
advantages with regard to using a single model, i.e., they reduce the variance of the error, the bias,
and the dependence on a single dataset and work well in the case of unbalanced classes.

Our hierarchical model aims to correctly classify each attack, providing a low false alarm rate
and a high detection rate. It is composed of three classifiers. The first one uses the different features
of the data set as inputs, in order to classify each row as benign or malicious. The second one uses
different features of the data set as inputs for classifying each row as benign or one of the different
categories of attacks. The third classifier uses all the features of the initial data set in addition to the
outputs of the first and the second classifier as inputs, in order to classify each row of the data set as
benign or a specific type of attack. For the integration of RDTIDS system for IoT networks, we propose
a three-tier fog computing architecture, in which RDTIDS system is located in the fog computing layer,
as presented in Figure 2. The classifiers that are used are REP Tree [36] Jrip [37] and Forest PA [29].
Based on the values of the features, the classifier makes rules which are used in order to correctly
classify the data set.
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3.1. Operation Mode

The operation mode of RDTIDS system is composed of two steps: training and testing. During the
first step, we train the three classifiers that compose our hierarchical model. We start by training the
first and the second one and using the results from these two we train the third classifier. Initially,
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the training Data set is labelled as benign and specific type of Attack. To train the first classifier,
we modify the training data set, by labelling each row as “Attack” and “Benign”. Then, we normalize
the different features of the data set. After that, we perform the training of this classifier and as
result of this sub step, we get model 1. To train the second classifier, we modify the training data set,
by labelling the rows with specific attacks. Then, we normalize the different features of the data set.
After that, we perform the training of this classifier and as a result of this sub step, we get model 2.

In order to train the third classifier, we modify the training data set, where we add two columns,
the first one represents the classification results of model 1 for the rows of the training data set and the
second one represents the classification results of model 2 for the rows of the training data set. Then,
we normalize the different features of the data set. After that, we perform the training of this classifier
and as result of this sub step, we get model 3.

As illustrated in Figure 1, in order to test our hierarchical model, we process each row of the test
data set by model 1 and model 2, then we add the outputs of model 1 and model 2 to the features of
each row, and finally, we process the result rows by model 3 that classify it as benign or a specific type
of attack.

The whole procedure of transforming the dataset into information that can be read and interpreted
from our classifiers is call pre-processing and consists of two steps: the first involves mapping
symbolic-valued attributes to numeric-valued attributes and the second is implemented scaling.
The main advantage of scaling is to avoid attributes in greater numeric ranges dominating those in
smaller numeric ranges. Another advantage is to avoid numerical difficulties during the calculations.

4. Experimentation

In this section, we present in detail the Data Set used along with the Data pre-processing procedure.
We also give the performance metrics used in our experiments. Moreover, we present the structure of
our model. Finally, we provide a comparative study between our model and that of different classifiers.
The experiments are done on a Windows 10, 64 bits PC with 8 GB RAM and CPU Intel(R) I5 2.7 GHz.
Weka Data Mining Tools and MySQL RDBMS are used to implement our model.

4.1. Data Set and Data Pre-Processing

We use two new real traffic datasets, namely the CICIDS 2017 dataset [24] and the Bot-IoT
dataset [38] for the experiments. Tables 2 and 3 summarizes the statistics of attacks in Training
and Test in both datasets. Both datasets satisfy the eleven indispensable characteristics of a
valid IDS dataset, namely Anonymity, Attack Diversity, Complete Capture, Complete Interaction,
Complete Network Configuration, Available Protocols, Complete Traffic, Feature Set, Metadata,
Heterogeneity, and Labelling [39].

The BoT-IoT dataset contains more than 72,000,000 records devised on 74 files, each row having
46 features. We use the version proposed by Koroniotis et al. [40], which is a version of training and
testing with 5% of the entire dataset.

The CSV version of CICIDS 2017 contains 2,830,743 rows divided in 8 files, each row having 79
features. Each row of CICIDS 2017 is labelled as Benign or one of fourteen types of attack.

In order to create a training and test subset, we concatenate the 8 files in one file containing a
unique table that contains all benign and attacks rows. Then, we remove all rows that have the feature
“Flow Packets/s” equal to ‘Infinity’ or ‘NaN’. After that, we remove identical rows, namely Bwd PSH
Flags,Bwd URG Flags, Fwd Avg Bytes/Bulk, Fwd Avg Packets/Bulk, Fwd Avg Bulk/Rate, Bwd Avg
Bytes/Bulk, Bwd Avg Packets/Bulk, Bwd Avg Bulk/Rate and Fwd Avg Bytes/Bulk.

After the elimination of these features, we extract the training and test subsets based on the distribution
described in Table 2. In each subset we tried to include rows that contain all the attacks but the same row
cannot appear in both subsets. For the training subset, we select the first rows of each type. Then, for the
test subset, we select randomly some rows after the suppression of the training subset rows.
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Table 2. Attack Types in CICIDS 2017 dataset.

Category Total Total (-Rows with Lack Info) Training Test

BENIGN BENIGN 2,273,097 2,271,320 20,000 20,000

DOS

DDoS 128,027 128,025 2700 3300
DoS slowloris 5796 5796 1350 1650
DoS Slowhttptest 5499 5499 2171 1169
DoS Hulk 231,073 230,124 4500 5500
DoS GoldenEye 10,293 10,293 1300 700
Heartbleed 11 11 5 5

PortScan PortScan 158,930 158,804 3808 4192

Bot Bot 1966 1956 936 624

Brute-Force FTP-Patator 7938 7935 900 1100
SSH-Patator 5897 5897 900 1100

Web Attack
Web Attack-Brute Force 1507 1507 910 490
Web Attack-XSS 652 652 480 160
Web Attack-SQL Injection 21 21 16 4

Infiltration Infiltration 36 36 24 6

Total Attack 471,454 470,365 20,000 20,000

Total 2,830,743 2,827,876 40,000 40,000

Table 3. Attack Types in Bot-IoT dataset.

Category Attack Type Flow Count Training Test

BENIGN BENIGN 9543 7634 1909

Information gathering Service scanning 1,463,364 117,069 29,267
OS Fingerprinting 358,275 28,662 7166

DDoS attack
DDoS TCP 19,547,603 1,563,808 390,952
DDoS UDP 18,965,106 1,517,208 379,302

DDoS HTTP 19,771 1582 395

DoS attack
DoS TCP 12,315,997 985,280 246,320
DoS UDP 20,659,491 1,652,759 413,190

DoS HTTP 29,706 2376 594

Information
theft

Keylogging 1469 1175 294
Data theft 118 94 24

Total / 73,370,443 5,877,647 1,469,413

Finally, each value xi of the feature j is normalized based on the following equation:

xi(j) =
xi(j)− min(x(j))

max(x(j))− min(x(j))
(1)

4.2. Performance Metrics

IDS performance is evaluated based on its capability of classifying network traffic into a correct
type. Table 4, also known as confusion matrix, shows all the possible cases of classification.

To evaluate RDTIDS system, we used two groups of metrics. The first group includes specific
metrics: the detection rate (DR) of each type of attack and the true negative rate. The second one
includes global metrics: global detection rate, false alarm rate (FAR) and accuracy. The following
equations summarize how to calculate these metrics.

DRAttackType =
TPAttackType

TPAttackType + FNAttackType
(2)
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TNRBENIGN =
TNBENIGN

TNBENIGN + FPBENIGN
(3)

FAR =
FPBENIGN

TNBENIGN + FPBENIGN
(4)

DROverall =
∑ TPO f−Each−Attack−Type

∑ TPO f−Each−Attack−Type + ∑ FNO f−Each−Attack−Type
(5)

Accuracy =
∑ TPO f−Each−Attack−Type + TNBENIGN

∑ TPO f−Each−Attack−Type + ∑ FNO f−Each−Attack−Type + TNBENIGN + FPBENIGN
(6)

Table 4. Confusion Matrix.

Predicted Class

Negative Class Positive

Actual class Negative Class True negative (TN) False positive (FP)
Positive Class False negative (FN) True positive (TP)

4.3. Practical Structure of RDTIDS System

The RDTIDS system demands a pre-processing of data, different labelling of rows according to
the model that is used and creation of artificial features that are outputs of two of the classifiers used.
For training the first classifier we need to label the training data set based on the attacks classification
provided in Table 2 as “Attack” or “Benign”. For the second classifier, we label each attack as follows:
DDoS, DoS slowloris, DoS Slowhttptest, DoS Hulk, DoS GoldenEye, Heartbleed as “DoS”; FTP-Patator,
SSH-Patator as "Brute-Force"; Web Attack—Brute Force, Web Attack—XSS, Web Attack—SQL Injection
as “Web Attack”. Finally, in order to train the third classifier, we use the labeling used for the second
classifier. We also add the outputs of the trained classifier 1 and classifier 2 as new features.

The choice of the three classifiers that compose our hierarchical model is the most important
and critical step. To choose the best composition, that gives optimal performance, we tested several
combinations with different classifiers. The results for all those combinations are quite lengthy and
are not represented in this article. Following this demanding procedure, we opt for the following
configuration: classifier 1 is REP Tree [36]; classifier 2 is Jrip [37]; classifier 3 is Forest PA [29].

4.4. Comparative Study

To evaluate RDTIDS system, we compare it with some well known classifiers and some recent
ones namely J48, Jrip, Naive Bayes, MLP, REP Tree, Random Forest, FURIA [32], LIBSVM [31],
J48 Consolidated [30], Forest PA [29], WISARD [28]. In this comparative study we use the different
metrics detailed in Section 4.2, in addition to training and testing time.

Table 5 summarizes the performance of RDTIDS system compared to the other classifiers for
different attacks and Benign traffic. It shows that RDTIDS system gives the highest true negative
rate (TNR) with 98.855% and the higest detection rate (DR) for six attacks type namely DDoS with
99.879%, DoS slowloris with 97.758%, DoS Slowhttptest with 93.841%, DoS GoldenEye with 67.571%,
Heartbleed 100%, PortScan 99.881%, Infiltration 100%. Moreover, the RDTIDS system is very close to
the highest detection rate for two types of attacks namely FTP Patator with 99.636% and SSH Patator
with 99.909%. For the rest of the attacks types, the RDTIDS system gives an average performance
compared to the other models. Overall, RDTIDS system is the model that performs best for most of the
different attack types and it never has the lowest performance for any type of attack.

Figures 3–6 present the overall performance of RDTIDS and other classifiers in terms of false
alarm rate, global detection rate, accuracy, training and test time, respectively. In terms of detection
rate, RDTIDS gives the highest overall detection rate (DR Overall) with 94.475% and 95.175% in CICIDS
2017 dataset and Bot-IoT dataset, respectively. In terms of accuracy, RDTIDS gives the highest accuracy
with 96.665% and 96.995% in CICIDS 2017 dataset and Bot-IoT dataset, respectively. In terms of false
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alarm rate (FAR), RDTIDS gives the lowest false alarm rate with 1.145% and 1.120% in CICIDS 2017
dataset and Bot-IoT dataset, respectively. The training time of RDTIDS is 195.5 s and the test time is
2.27 s, which represents an acceptable training and test time for a hybrid hierarchical model especially
when compared to simple models such as MLP and SVM.
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Figure 3. Overall Performance of RDTIDS and other classifiers in terms of false alarm rate.
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Figure 4. Overall Performance of RDTIDS and other classifiers in terms of global detection rate.
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Table 5. Performance of RDTIDS system and other classifiers relative to the different attack type and Benign.

RDTIDS [28] [29] [30] [31] [32] Random Forest REP Tree MLP Naive Bayes Jrip J48
TNR (BENIGN) 98.855% 97.135% 96.450% 93.355% 94.870% 96.835% 98.120% 95.165% 92.650% 66.545% 95.530% 94.960%

DR DDoS 99.879% 54.697% 99.818% 93.212% 55.970% 99.758% 99.818% 99.788% 91.212% 93.879% 99.667% 99.788%
DR DoS slowloris 97.758% 78.909% 92.848% 95.030% 78.182% 93.758% 93.758% 92.727% 78.485% 82.667% 93.333% 93.879%

DR DoS Slowhttptest 93.841% 23.353% 86.826% 83.832% 76.561% 78.358% 81.352% 75.364% 88.537% 70.060% 85.543% 80.325%
DR DoS Hulk 96.782% 67.600% 93.945% 95.891% 73.709% 98.655% 95.164% 92.218% 86.891% 73.782% 97.364% 93.600%

DR DoS GoldenEye 67.571% 48.714% 67.571% 67.143% 57.571% 65.143% 67.571% 66.429% 65.429% 62.143% 63.857% 67.286%
DR Heartbleed 100% 80.000% 100% 80.000% 0.000% 40.000% 100% 100% 0.000% 80.000% 80.000% 100%

DR PortScan 99.881% 51.407% 99.594% 99.046% 48.521% 87.118% 99.881% 99.881% 48.521% 99.499% 99.881% 98.569%
DR Bot 46.474% 1.442% 48.718% 52.083% 0.000% 48.077% 49.679% 47.756% 51.282% 29.968% 46.474% 47.756%

DR FTP-Patator 99.636% 0.000% 99.727% 100% 0.000% 99.636% 99.727% 99.182% 99.000% 99.455% 99.545% 99.545%
DR SSH-Patator 99.909% 0.000% 100% 99.727% 0.000% 100% 99.818% 100% 99.727% 99.182% 100% 100%

DR Web Attack—Brute Force 73.265% 4.694% 73.469% 55.102% 80.816% 49.796% 70.408% 70.816% 90.408% 5.102% 61.837% 60.408%
DR Web Attack—XSS 30.625% 1.250% 34.375% 48.750% 0.000% 38.750% 37.500% 32.500% 1.875% 91.875% 38.125% 41.250%

DR Web Attack—SQL Injection 50.000% 0.000% 50.000% 100% 0.000% 50.000% 100% 50.000% 50.000% 100% 75.000% 50.000%
DR Infiltration 100% 50.000% 83.333% 100% 0.000% 83.333% 83.333% 83.333% 16.667% 83.333% 100% 66.667%

DR Service scanning 99.472% 54.697% 99.111% 92.211% 53.170% 99.158% 99.118% 99.188% 91.212% 93.172% 99.267% 94.718%
DR OS Fingerprinting 98.158% 79.109% 93.141% 94.111% 77.182% 94.7581% 94.751% 93.100% 79.185% 83.967% 94.381% 94.129%

DR DDoS TCP 95.841% 22.322% 87.727% 84.532% 77.869% 79.559% 82.454% 76.666% 89.937% 71.223% 86.599% 80.325%
DR DDoS UDP 98.655% 67.600% 93.945% 95.891% 73.709% 96.782% 96.466% 91.318% 84.441% 72.811% 95.119% 93.600%

DR DDoS HTTP 93.171% 47.914% 68.888% 68.242% 59.971% 65.143% 67.222% 67.666% 66.489% 63.243% 62.111% 61.236%
DR DoS TCP 100% 82.111% 100% 82.123% 2.000% 40.234% 92.123% 100% 3.000% 80.000% 82.123% 100%
DR DoS UDP 100% 55.007% 100% 100% 41.198% 86.119% 100% 99.991% 49.521% 98.422% 99.181% 98.111%

DR DoS HTTP 77.474% 1.442% 48.718% 49.083% 0.000% 49.012% 49.373% 47.756% 51.282% 29.968% 47.174% 46.156%
DR Keylogging 100% 0.000% 99.727% 100% 0.000% 99.145% 99.727% 98.182% 100% 99.855% 98.545% 98.145%
DR Data theft 100% 0.000% 100% 99.222% 0.000% 100% 99.718% 100% 99.927% 99.982% 99.187% 99.276%
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Figure 5. Overall Performance of RDTIDS and other classifiers in terms of accuracy.
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Figure 6. Overall Performance of RDTIDS and other classifiers in terms of training and test time.

5. Conclusions

In this paper, we proposed a hierarchical intrusion detection system based on the combination of
three different classifiers, namely REP Tree, JRip algorithm and Forest PA. The proposed model consists
of three classifiers, where two of them operate in parallel and feed the third one. The evaluation using
a real traffic data set ‘CICIDS2017’ and ‘BoT-IoT’ showed that our hierarchical model outperformed
different well known and recent machine learning models, giving the highest TNR and highest DR for
seven types of attacks. Overall, RDTIDS gives the highest DR with 94.475% and 95.175%, the highest
accuracy with 96.665% and 96.995%, and the lowest FAR with 1.145% and 1.120%.
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