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Abstract
Building on previous radar‐based human activity recognition (HAR), we expand the
micro‐Doppler signature to 6 domains and exploit each domain with a set of handcrafted
features derived from the literature and our patents. An adaptive thresholding method to
isolate the region of interest is employed, which is then applied in other domains. To
reduce the computational burden and accelerate the convergence to an optimal solution
for classification accuracy, a holistic approach to HAR optimisation is proposed using a
surrogate model‐assisted differential evolutionary algorithm (SADEA‐I) to jointly opti-
mise signal processing, adaptive thresholding and classification parameters for HAR. Two
distinct classification models are evaluated with holistic optimisation: SADEA‐I with
support vector machine classifiers (SVM) and SADEA‐I with AlexNet. They achieve an
accuracy of 89.41% and 93.54%, respectively. This is an improvement of ~11.3% for
SVM and ~2.7% for AlexNet when compared to the performance without SADEA‐I.
The effectiveness of our holistic approach is validated using the University of Glasgow
human radar signatures dataset. This proof of concept is significant for dimensionality
reduction and computational efficiency when facing a multiplication of radar represen-
tation domains/feature spaces and transmitting/receiving channels that could be indi-
vidually tuned in modern radar systems.
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1 | INTRODUCTION

Indoor human activity recognition (HAR) has grown signifi-
cantly in recent years and gained substantial interest in fields,
such as assisted living, smart homes and security [1]. Several
different sensing technologies, including wearable sensors,
video‐based systems, and radio frequency sensors [2], have
been presented. Wearable sensors, which require to be worn
constantly to be effective, can cause discomfort and have high
false alarm [3]. Video‐based systems, such as camera, can lead
to privacy invasion and disputes over image rights. It is also
vulnerable to lighting conditions [1]. Radio frequency sensing,
especially radar, can effectively complement conventional
technologies. Its contactless capabilities eliminate the need for
end‐users to wear, carry, or interact with any additional device,

which can increase user acceptance and compliance [4].
Furthermore, the absence of plain images or videos to be
recorded can help address potential privacy concerns. In
assisted living, radar sensors are being developed commercially
by companies, such as Vayyar, Xandar Kardian. Furthermore, it
is actively researched in academia [4, 5].

The traditional radar‐based HAR mainly focuses on the
Micro‐Doppler signature (MDS). The MDS allows the inves-
tigation of limb motion relative to the trunk, which constitutes
the main Doppler components. It is widely utilised in radar‐
based HAR since it provides salient features to distinguish
activities [6]. Considerable research in HAR focuses on MDS,
that is, the amplitude of MDS, also known as the spectrogram,
using both hand‐crafted features and deep learning models
[1, 4, 5, 7].
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In addition to the amplitude of MDS, several radar data
domains and techniques are available for HAR, such as range‐
time (RT), range‐Doppler, MDS, Radon, Cepstrogram,
Cyclostationarity [8], composite domains [9] and point clouds
[10]. This variety of domains multiplies the data representa-
tions further by considering the complex nature of the radar
matrices produced by signal processing giving rise to ampli-
tude, phase, real, and imaginary data. Meanwhile, various pre‐
processing parameters, such as different sizes of short‐time
Fourier Transforms on the range bins in slow time, different
windowing functions, different padding factors, etc., were also
proposed to classify different activities [11, 12]. Two papers
[13, 14] based on the TI MIMO radar use point clouds for real‐
time classification with a robot operating system (ROS)
framework. In [13], the authors extract point clouds of targets
using a constant false alarm rate filter and then generate the
micro‐Doppler signatures on a host computer before classifi-
cation with a convolutional neural network (CNN) achieving
over 90% accuracy with 6 classes. In [14], the authors use an
ROS framework in the 3D point clouds of 5 activities directly
for classification with a CNN to extract features for each frame
and a bi‐LSTM neural network across 60 frames to analyse the
temporal links between frames forward and backward
achieving 90.47%.

Table 1 lists a number of other papers using different
datasets, different signal processing parameters and classifi-
cation algorithms that were tuned manually. The obtained
performances are good, but they could be better. Identifying
the optimal radar data domains and their pre‐processing
parameters optimisation for a particular classification task
becomes an intractable problem for parametric sweeping as
well as exploring the most suitable combination of salient
features. Expanding on our previous results [26–28], we
propose a patented adaptive thresholding approach to
extract the region of interest (ROI) in multi‐domain MDS
with new hand‐crafted features. This method is intended to
delineate the ROI, that is, the targeted most relevant part of
the MDS, also referred to as a ‘mask’. Afterwards, the
‘mask’ is applied to other domains, such as a phase to
emphasise the ROI in those domains, hence generating
several new representations.

Optimising the pre‐processing parameters for thresholding,
MDS generation and the selection of the best representations to
maximise classification accuracy is a challenge for parametric
sweeping, since it is intractable for such problems with ever‐
expanding parameters to tune, which is computationally
expensive and time‐consuming. Furthermore, some off‐the‐
shelf modern optimisation techniques, such as differential

TABLE 1 Human activity recognition (HAR) review of radar data domain usage and performances.

Ref HW Classification algorithm # of classes Radar data domain Performance metrics Best performance

[10] FMCW MIMO PointNetþþ, LSTM 8 (easy) Cloud point Accuracy 96.6% for easy set

12 (complex) 95.1% for complex set

[15] FMCW SVM, KNN 6 Doppler‐time maps, CVD Accuracy 95.4% for HAR

[12] FMCW MIMO LSTM þ CNN 7 Doppler‐time maps Precision, recall,
F1‐score, accuracy

Precision: 98%

Recall: 98%

F1‐score: 98%

Acc = 98.28%

[16] FMCW LSTM 2 Raw radar data, range maps Accuracy 99.56%

[17] FMCW SAE 4 Doppler‐time maps, range maps. Accuracy 96.4%

[18] FMCW MIMO ANN 8 Doppler‐time maps, range maps. Accuracy 99.21%

[19] FMCW CNN 5 Doppler‐time maps, range maps. Accuracy 97.2%

[20] FMCW Bi‐LSTM 6 Doppler‐time maps Accuracy 96%

[21] FMCW KNN 6 Doppler‐time maps Accuracy 95.5%

[22] FMCW CFFN (CNN þ MLP) 6 Range‐Doppler surface, phase Accuracy 94%

[23] FMCW CNN (PointNet), LSTM 5 3D could point Accuracy 90%

[24] FMCW MB‐GAN 5 Doppler‐time maps Accuracy 89.83%

[24] FMCW CNN þ LSTM 6 Range‐Doppler maps Accuracy 98.02%

[25] FMCW CNN þ LSTM 6 Range‐Doppler map Accuracy Accuracy: 96.2%

Recall Recall: 96%

[13] FMCW MIMO CNN 6 Doppler time maps Accuracy 90.68%

[14] FMCW MIMO CNN þ Bi‐LSTM 5 Cloud points Accuracy 90.47%

Abbreviations: ANN, artificial neural network; CFFN, complex field‐based fusion network; CNN, convolutional neural network; HW, hardware; KNN, K nearest neighbour; LSTM, long
short term memory; MLP, multilayer perceptron; SAE, stacked auto‐encoder.
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evolution (DE) [29] and particle swarmoptimisation [30], are still
too expensive to utilise in this case.

This paper investigates a holistic HAR optimisation using
Surrogate Model‐Assisted DE Algorithm (surrogate model‐
assisted differential evolutionary algorithm (SADEA‐I)) [14,
26] in which the MDS domain is used as a proof of concept
before expanding this technique to a wider range of parameters
and other radar data domains to include the pre‐processing,
domain selection, feature selection, and machine learning/deep
learning joint optimisation. The specific contributions and
novelty, which distinguish this work from the current state of
the art, are summarised here:

� This is the first proof‐of‐concept of the efficient self‐tuning
joint‐optimisation of signal processing and machine learning
parameters using an Evolutionary Algorithm (EA). This is a
novel approach in HAR to optimise the classification ac-
curacy automatically to find the global maximum perfor-
mance in a fraction of the time required by an expert human
operator. This is based on SADEA‐I, as a machine learning‐
assisted EA, employed for the efficient joint optimisation of
the signal pre‐processing parameters and a combination of
radar representations to minimise the classification error
rate through an effective global search and performance
predictions to reduce the computational load.

� A novel signal processing approach is proposed incorpo-
rating with our patented techniques and exploiting complex
information. We introduce a radar‐based HAR information
processing method using adaptive thresholding that auto-
matically produces ROI for human MDS yielding 6 different
domains—Unfiltered MDS amplitude, Binary Mask, Masked
phase, Masked unwrapped phase, Masked spectrogram
(patent), Masked MDS complex matrix. To the best of our
knowledge, phase domain has been marginally explored for
radar‐based HAR.

� Our approach is validated using both statistical learning
based on extracted features and deep learning classifiers
with vision‐based algorithms. This serves to showcase the
potential of this self‐tuning joint‐optimisation technique to
enhance the performances of HAR architecture to obtain
the best performances.

The goal is not to automatically reach the general
maximum for HAR based on a set of tuning parameters, signal
processing, and machine learning outperforming an expert
operator. Note that this proof‐of‐concept may not be the best
of all performances in the literature, but the global maximum
for the given architecture, the EA is tuning. We combine both
expert knowledge and artificial intelligence by setting an ar-
chitecture for signal processing and classification as well as
leveraging EA to efficiently self‐tune the parameters jointly to
optimise performances.

This paper is structured as follows: Section 2 describes the
methods used in this investigation. Section 3 presents the result
of optimisation, and Section 4 draws conclusions.

2 | METHODOLOGY

Figure 1 provides a depiction of the complete methodology
employed in our algorithm. The process commences with the
raw data undergoing signal processing via the SADEA algo-
rithm, which assists in determining the parameters during the
signal processing stage. This procedure consequently leads to
the generation of varying radar representations with different
signal processing methodologies.

Subsequently, these radar domains are channelled either
towards a hand‐crafted feature extraction algorithm or directly
fed into neural networks for automatic feature extraction. The
hand‐crafted approach utilises expert knowledge in signal

F I GURE 1 Holistic human activity recognition (HAR) Optimisation from signal processing to classification with surrogate model‐assisted differential
evolutionary algorithm (SADEA‐I).
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processing to extract characteristic features from the radar
domains, whereas the neural network method allows for
automated learning and extraction of relevant features from
the raw data.

2.1 | Dataset

The experiments are conducted on the University of Glasgow
Radar Signature dataset [31, 32]. A total of 1754motionfileswere
captured from 72 individuals aged 21–98 years old. Data
acquisition was accomplished through a Frequency Modulated
Continuous Wave radar system, functioning at a frequency of
5.8 GHz. This system showcased a swift pulse repetition period
of 1 millisecond, a broad bandwidth of 400 MHz, and a capacity
to record 128 complex samples per sweep. The radar was con-
nected to a pair of Yagi antennas, employed for both the trans-
mitting and receiving of signals, demonstrating an appreciable
gain of approximately þ17 dBi. This dataset is summarised in
Table 2. Note that the dataset is not balanced as the older par-
ticipants did not perform the ‘fall’ task for their safety. The ac-
tivities were chosen to be challenging from the perspective of
recognition in the context of assisted living. Activities 4 and 5 are
particularly difficult to recognise from one another [5].

2.2 | Pre‐processing

The radar raw data is converted into an RT map using a
windowed Fast Fourier Transform. This window could be
Hamming or Rectangular. After obtaining the RT map, the
MDS is generated using a Short‐Time Fourier Transform with
a W s Hamming window and an F% overlapping factor on the
RTmap. The RTwindow, W and F are parameters tuned in the
following steps.

Previously in [33], we found that varying the length of time
of clip of MDS had an effect on the classification result. In this
experiment, the radar data would be clipped into pieces with
K s, and K is an optimisable parameter.

2.3 | Adaptive thresholding method

The proposed approach [26–28] can binarise the grayscale
MDS image using a specific threshold T. This method

adaptively focuses on the ROI by setting a threshold and then
adjusting it depending on the data included in the window
being analysed. The MDS amplitude image is first converted
into grayscale. Suppose that the grayscale image S contains N
pixels, and the value of each pixel is represented as I (x, y), then
the initial threshold μ could be expressed as Equation (1).

μ¼
1
N

X

Iðx;yÞ∈S

Iðx; yÞ ð1Þ

Based on the initial threshold value μ, the grayscale spec-
trogram image is divided into two portions: P1 and P2, where
P1 is the image region with a pixel value greater than μ and P2
is the image area with a pixel value less than μ. Then, a new
threshold T can be calculated as Equation (2).

T ¼
1
2

1
N1

X

Iðx;yÞ∈p1

Iðx; yÞ þ
1
N2

X

Iðx;yÞ∈p2

Iðx; yÞ

2

4

3

5 ð2Þ

where N1 and N2 are the number of pixels in part P1 and part
P2, respectively.

Following the acquisition of both μ and T, their difference
will be compared to a specific parameter: V. If the difference is
greater than V, then T will be substituted by μ to segment the
grayscale spectrogram image, and a new T will be determined
using Equation (2). The procedure is repeatedly performed
until the difference is less than V, thus maintaining as much
ROI as possible. To investigate the impacts of the adaptive
threshold, an additional offset Te is added to the calculated
threshold T to obtain the final value Tf (Equation (3)). Note
that both V and Te are parameters tuned at the optimisation
stage.

Tf ¼ T þ Te ð3Þ

The grayscale spectrogram image is binarised by the Tf and
the process can be phrased as in Equation (4).

bðx; yÞ ¼
1; Iðx; yÞ ≥ Tf
0; Iðx; yÞ < Tf

�

ð4Þ

where b (x, y) is the pixel value of the mask.
The binarised image, called ‘mask’, can be used for feature

extraction. The mask can also be applied to the other MDS
representations to acquire a ‘masked’ MDS domain as
Equation (5).

Mmasked inf ormation ¼Mmask �Mother domain ð5Þ

Figure 2 illustrates the domains used in this paper and the
process of calculating the domains. They are subsequently
named: Unfiltered MDS amplitude, Binary Mask, Masked
phase, Masked unwrapped phase, Masked spectrogram (pat-
ent), Masked MDS complex matrix, and labelled as MDS do-
mains 1–6, respectively.

TABLE 2 Summary of the dataset.

No. Activity description Number of samples Data length

A1 Walking back and forth 312 5s

A2 Sitting down on a chair 312 5s

A3 Standing up from a chair 311 5s

A4 Picking up an object 311 5s

A5 Drinking water 310 5s

A6 Fall 198 5s

4 - LI ET AL.
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2.4 | Features

User‐specified features can portray the data in a salient manner,
and it has been shown that it can outperform deep neural
network feature extraction while reducing the computational
load [34]. The features used in this paper are divided into two
groups. Group 1, also referred to as ‘patent features’,
comprising 68 in total, is applied to MDS domains 2–4. Two
categories are considered: the properties of the ROI and the
texture of the image. They are listed in Table 3 with the
application domains. Note that despite being analytically
defined, they vary from one MDS representation to the next.
Group 2, also known as ‘radar features’, is used for Domain 1
and 6. This includes 22 features listed in Table 4 with their
application domains.

The combination process of various representations is
shown in Equations (6) and (7). yN determines whether the
domainN (N ¼ 1; 2; 3; 4; 5; 6) is included (yN ¼ 1) or excluded
(yN ¼ 0) from the combination process where ∩ represents the
concatenation of features from different domains.

FdomainNyN ¼
FdomainN ; yN ¼ 1

∅; yN ¼ 0

�

ð6Þ

Fcombination ¼ Fdomain1y1 ∩ Fdomain2y2 ∩ … ∩ Fdomain6y6 ð7Þ

2.5 | Classification

Based on the features and combination process listed above, the
classification models are trained using a machine learning model
and a deep learning model, respectively, which are a quadratic
kernel support vector machine classifiers (SVM) [7] and an
AlexNet [35]. Support vector machine classifiers has been used
in [34] outperforming deep learning and Alexnet is a light
implementation of a deep network. These 2 classification
methods were chosen to demonstrate that the SADEA algo-
rithm can self‐tune the signal processing and radar data domain

selection with statistical learning and deep learning approaches
and gauge performances against deep learning algorithms.

The machine learning operates efficiently with relatively
fewer resources, thus our primary concern when selecting a
model is its performance. The SVM model can achieve the best
results in terms of our previous research. The option for
AlexNet in our project was driven by its straightforward
structure, facilitating easy understanding and implementation.
The performance is also robust, and its computational effi-
ciency attributed to its relatively smaller size. These features
make it as an ideal deep learning choice for us, that is, a
resource‐constrained environments.

For machine learning algorithm, a 10‐fold cross‐validation
method is used. For deep learning algorithm, an Adam

F I GURE 2 The process of obtaining micro‐Doppler signature (MDS)
domains.

TABLE 3 Patent features and their applicable domains.

ROI features
Feature
dimensions

Applicable
domains

Perimeter of ROI 1 � 1 Domains 2, 3, 4 and 5

Area of ROI 1 � 1

Centroid of ROI 1 � 2

Eccentricity of ROI 1 � 1

Orientation of ROI 1 � 1

Major and minor
axis length of ROI

1 � 2

Textural
features

Feature
dimensions

Local binary pattern
of image

1 � 59

Moment of image 1 � 1

The number of total features 68

Note: Bold values indicate the number of features.

TABLE 4 Spectrogram features and their applicable domains.

Radar
features

Feature
dimensions

Applicable
domains

Entropy of spectrogram 1 � 1 Domain 1 and
domain 6

Skewness of spectrogram 1 � 1

Kurtosis of spectrogram 1 � 1

Centroid of spectrogram
(mean and variance)

1 � 2

Bandwidth of spectrogram
(mean and variance)

1 � 2

Energy curve (mean and variance and
trapezoidal numerical integration)

1 � 3

Singular vector decomposition (mean and
variance of the
first three vectors of components)

1 � 12

The number of total features 22

Note: Bold values indicate the number of features.
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optimiser with a fixed learning rate of 0.001 was used. To
prevent it from the overfitting problem, both dropout and
early stopping approaches were employed.

The error rate and accuracy are measured as shown in
Equations (8) and (9). We take the error rate of each solution as
the fitness value. Note that all the error rates shown in this
paper are the average value of the validation over 10 folds, and
with this setting a solution, a lower fitness value is a better
solution.

Err ¼
False Positiveþ False Negative

Total number of data
ð8Þ

Accuracy¼ 1 − Err ð9Þ

2.6 | Optimisation problem formulation and
challenges

The 10‐fold classification error rate Px (t) serves as the mini-
misation objective. Mathematically, the minimisation problem
can be expressed as Equation (10),

min
x

PxðtÞ ð10Þ

where x is a set of parameters in the HAR system that defines
the system and t is the validation sample, which is randomly
chosen for every function evaluation.

At the optimisation stage, there are 12 parameters in total.
They are divided into two groups according to whether they
are continuous or not.

The first group parameter is discrete, including ‘Window’,
‘Mask’, ‘Masked phase’, ‘Masked unwrapped phase’, ‘Spectro-
gram’, ‘Masked spectrogram (patent)’, and ‘Masked spectro-
gram (radar)’. They have two options: 0 and 1. For ‘Window’,
0 means rectangular window and 1 means Hamming window.
For other six parameters, 0 means combination excludes it, and
1 means combination that includes it.

The second group parameter is continuous, including
overlapping factor F (ranging from 0.5 to 0.95), time window
length W (ranging from 100 to 1000), V (ranging from 0.01 to
1) and Te (ranging from −20 to 20) in the thresholding
method, and clipping time K (ranging from 1.5 to 5s). Note
that Te has to be integer and other parameter can be any value
in the range.

Parametric sweeping is a widely used method to find the set
of parameters x to optimise the classification accuracy. How-
ever, this method only works for small‐scale problems due to
its large computing overhead. For the targeted 12‐dimensional
problem with wide search ranges, where each function evalu-
ation costs 3 min in our workstation, the computing overhead
is still unaffordable even using modern intelligent optimisation
techniques, for example, DE algorithm [29], genetic algorithm
[36], and particle swarm optimisation [30]. Hence, obtaining
optimal global solutions efficiently becomes the central
challenge.

2.7 | The SADEA algorithm and parameter
settings

To the best of our knowledge, there are few off‐the‐shelf
methods to address the above challenge in the signal pro-
cessing field. The SADEA‐I [37, 38], usually applied to antenna
design optimisation, is adapted for HAR. Surrogate model‐
assisted differential evolutionary algorithm can obtain com-
parable optimisation ability with the DE algorithm, which
shows excellent optimisation ability, while reducing by a factor
5–10 the necessary number of function evaluations compared
to using the standard DE [13]. The flowchart of SADEA‐I is
illustrated in Figure 3. The adapted SADEA‐I algorithm for
HAR is summarised as follows.

� Step 1: Latin Hypercube Sampling is applied to generate NP
samples to form an initial database with NP exact function
evaluations.

� Step 2: The classification error rate is minimised until a
suitable x with the lowest classification error rate among
those in the database satisfy the preset error rate threshold
or the total optimisation time exceeds the preset threshold.

� Step 3: Obtain λ best sets of solutions as the parent pop-
ulation to form a child population by applying the DE
mutation and crossover operations [29].

� Step 4: For each child solution, obtain its training data by
collecting their nearest τ known samples from the database
and train Gaussian Process (GP) models [39]. Predict clas-
sification error rate and uncertainty for each child solution.

� Step 5: Prescreen the child population with the predicted
values and prediction uncertainty using the lower confidence
bound (LCB) method [40, 41] and obtain the estimated most
promising candidate solution. Carry out an exact function

F I GURE 3 Hierarchical structure of the solution algorithm.
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evaluation for it. The candidate solution and its function value
are appended to the database and go back to Step 2.

In this case, Gaussian Process models are trained to predict
and suggest the most promising candidate parameter set in each
iteration. Hence, it significantly reduces the number of exact
function evaluations needed for the search. TomakeGP andDE
work harmoniously, the surrogate model‐aware evolutionary
framework is used and more details can be found in [42].

The algorithm parameters are set following [37, 43]: NP is
set to be 50. Both mutation rate and crossover rate are set to be
0.8. λ is set to be the same as NP. The number of training
samples τ is also set to be 50 to train GP models. In LCB
prescreening, ω is set to be 2.

3 | RESULTS AND DISCUSSION

The entire AI‐driven holistic HAR system optimisation was
implemented using a workstation with an AMD Ryzen 9 3900X
12‐core processor (3.8 GHz) and an NVIDIAGeForce GT 710
GPU. In this study, binary parameters are treated as continuous
variables with values from 0 to 1 and rounded off to the nearest
integers. A reference design was based on our previous experi-
ment [28], produced by the adaptive thresholding method with
parameter sweeping on adaptive thresholding Te and feature
fusion of six domains. The reference performance in this
experiment is based on the human operator that achieved the
classification error rate—manually tuned results—[13], which is
based on the operator's domain knowledge.

3.1 | Support vector machine classifiers with
adaptive thresholding for surrogate model‐
assisted differential evolutionary algorithm

The optimisation convergence trend is shown in Figure 4. The
red dotted line represents the manual design result, where the
error rate is 21.98%. After 2000 function evaluations using
SADEA‐I, the system is optimised and achieves an error rate
from 16.50% to 10.59% in three independent optimisation
runs. Compared to the manually tuned reference system, the
holistic approach decreases the error rate by 5.48%–11.39%.

Table 5 illustrates the details of the optimal parameters and
combinations when the optimisation algorithm converges. The
result shows that for our human activity dataset, the error rate
reaches the minimum with the highest overlapping factor and
minimum time window length. In addition, the clipping time is
4.58 s and the adaptive thresholding parameters V and Te are
0.9166 and 3, respectively. These values were in line with the
general trend found in a parametric sweeping on the different
domains, which identified Te to be optimal between 0 and 5 of
the adaptive threshold value for V = 0.1 [11]. The effectiveness
and necessity of research on thresholding are demonstrated in
an improvement of ~11% using the SADEA‐I method in only
2000 function evaluations (3 min per evaluation). All MDS
representations were selected but Domain 1. Domain 1

(Unfiltered MDS Amplitude) is excluded from the most suit-
able combination, which identifies that the “raw” spectrogram
is not optimal and the research on adaptive thresholding and its
application in different MDS representations is essential as
they all contain salient information for classification although
more difficult to interpret visually.

3.2 | AlexNet with adaptive thresholding for
surrogate model‐assisted differential
evolutionary algorithm

For this experiment, the dataset was partitioned into three
subsets: training, validation, and testing, with a ratio of 7:2:1,
respectively. The performance of our experiment is evaluated
on the basis of the testing set results. In alignment with the
previous 10‐fold cross validation results, we also carry out this
experiment 10 times, considering the mean accuracy of itera-
tions as our final performance of the algorithm.

Figure 5 demonstrates the optimisation convergence trend
of SADEA‐I with AlexNet. It also presents the result of
manual design parameters on AlexNet. When combined with
AlexNet, the SADEA‐I is optimised in 700 function

F I GURE 4 Convergence trend of surrogate model‐assisted differential
evolutionary algorithm (SADEA‐I) with support vector machine classifiers
(SVM) and comparison with manual design results.

TABLE 5 Tuned parameters and selected domains.

Time
window
length

Overlapping
factor

Clipping
time

Difference
value V

154 ms 0.95 4.58s 0.9166

Adaptive thresholding
Type

FFT window
type

Selected domains
of radar

3 Hamming Domains 2–6
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evaluations, with averaged error rate decreased from 17.83% to
6.46%. Compared with manual design result with an error rate
of 9.14%, the holistic approach can yield a worse result with an
extra 8.69% error rate or decreased error rate by 2.68%.

Table 6 illustrates the details of convergence trend along
with the optimal parameters and combinations realised at the
point of convergence of the optimisation algorithm. The result
is slightly different from the previous findings. The Hamming
window continues to present the most effective option,
yielding superior accuracy. The time window length has esca-
lated to 390 ms. The adaptive thresholding parameters, V and
Te, are determined to be 0.8249 and −13, respectively. The V
changes to a minor but close value, while Te has exhibited
significant alteration. This result indicates the success of our
adaptive thresholding algorithm.

3.3 | Discussions

Compared with SADEA‐I and SVM results, SADEA‐1 with
AlexNet achieves further improvement of approximately 5%
over merely 700 function evaluations, which reduces more than
half of evaluations to convergence. All radar representations
were chosen, including domain I, which highlights the enhanced

interpretative capability provided by the AlexNet model. How-
ever, there is a significant change observed in the length of the
time window. This variance could potentially be attributed to the
influence of a higher frequency resolution, which results in a
more intricate graphical representation of the data. The finer
resolution provides an enriched data for the automatic extraction
of features within the deep learning model, thereby augmenting
its ability to identify distinctive patterns.

Table 7 concludes the comparison of statistics of SADEA
algorithms paired with different classifiers. For SADEA‐I with
SVM, the optimised error rate decreases from 16.50% to
10.59% with 2000 function evaluations, compared to 21.98%
from a human operator. This means that SADEA‐I with SVM
can boost the performance of our classification by 5.48%–
11.39% in 4 days compared to 3 months of manual tuning by
the human operator. The second method SADEA‐I with
AlexNet exhibits an error rate reduction from 17.83% to
6.46% with 700 function evaluations compared to 9.14% from
a human operator. We observe that the error rate with
SADEA‐I with AlexNet can reach a minimum error rate of
6.46%, which is 4.13% better than SADEA‐I with SVM.
However, the maximum error of SAEDEA‐I with SVM is
1.33% better than SADEA‐I with AlexNet. These statistics
indicate the efficacy of the SADEA‐I algorithm when inter-
faced with various classifiers. Deep learning models tend to be
more computationally intensive, but with SADEA, it appears
that the number of function evaluations are drastically reduced
by 2.85 times in this case. This suggests that the SADEA al-
gorithm boosts convergence towards optimal solutions more
efficiently when combined with the deep learning algorithm,
thus leading to potentially improved performance with fewer
evaluations. However, note that the error rate for SADEA‐I
with AlexNet is more volatile (11.37%) than with SVM
(5.91%). Moreover, SADEA‐I with SVM did not incorporate
feature selection to enhance performance at this stage. Feature
selection can reduce the overall complexity and improve the
performance when combined with the adaptive thresholding
method [34]. As we continue to refine our holistic techniques,
feature selection will be included for our future plan; however,
SADEA‐I could not handle these many variables to tune at
once. The next version of SADEA will be able to handle more
tuning parameters for further optimisation. We also compare
our results with different models using the same dataset [5] to
illustrate the potential improvements with our proposed
method. Table 8 shows that our methods can achieve good
accuracy with computationally light classification algorithms
and reach performances compared to deeper implementations.

F I GURE 5 Convergence trend of surrogate model‐assisted differential
evolutionary algorithm (SADEA‐I) with AlexNet and comparison with
manual design results.

TABLE 6 Tuned parameters and selected domains.

Time
window
length

Overlapping
factor

Clipping
time

Difference
value V

390 ms 0.87 5 s 0.8249

Adaptive thresholding
Type

FFT window
type

Selected domains
of radar

−13 Hamming Domains 1–5

TABLE 7 Statistics of the best function values obtained by SADEA
with different classifiers.

Method

Best
error
rate (%)

Worst
error
rate (%)

Human
error
rate (%)

Function
evaluations

SADEA‐I with SVM 10.59 16.50 21.98 2000

SADEA‐I with
AlexNet

6.46 17.83 9.14 700

Abbreviation: SADEA, surrogate‐model‐assisted differential evolution algorithm.
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This shows that our holistic approach could improve further
these architectures for HAR to optimise accuracy.

4 | CONCLUSION

In this study, SADEA‐I has been applied for the efficient holistic
optimisation of parameter tuning for signal data pre‐processing,
the radar representation selection, our patented adaptive
thresholding methods, and classifiers. We assessed the perfor-
mance of the holistic approach on the joint tuning of signal
processing, adaptive thresholding and classification for two
distinct classification models. The SVM classifier achieves an
accuracy up to 89.41% after 2000 function evaluations and the
AlexNet achieves an accuracy up to 93.54% after ~700 function
evaluations. Notably, both classifiers displayed superior perfor-
mance when contrasted with their counterparts that lacked
SADEA‐I algorithm. The accuracies can be improved by
11.30% and 2.68%, respectively. It also illustrates its strength on
time‐efficiency attributes. The results, which would conven-
tionally require months for parametric sweeping by a human
operator, are accomplished by SADEA‐I within a span of 84 h.

This proof‐of‐concept (POC) experiment on SADEA‐I
encompasses the whole FFT‐based signal processing chain
and the many representations of MDS. This POC is crucial as
we mentioned many more data representation domains that
can be fused for classification and optimising performances
with increasing dimensionality. Furthermore, the explosion of
civilian and military applications with MIMO radar and 6G
sensing will further increase dimensionality with multiple
channels that are all processed using a generic pre‐processing
chain and not tuned individually.

Building on this proof‐of‐concept, the model is being
refined to be incorporated as an optimiser to allow other re-
searchers to try it on their algorithms and data. We also intend
to expand this research to wider time‐frequency transforms
with SADEA‐I to further optimise the accuracy and to add
objective functions to consider the computational efficiency of
the different stages. In addition, this parametric search can be

extended to deep learning model. For instance, parameters,
such as the learning rate, which play a crucial role in how
quickly or slowly a model learns, can be optimised using similar
methods. By leveraging the method of parametric search, we
can systematically explore different parameters and select an
optimal value that allows for effective learning within a
reasonable amount of time.

Furthermore, as radar costs are going down, we should
tackle the remaining open challenges of target aspect angle
robustness in classification and fusion with other sensing
modalities to compensate with the shortcomings of individual
sensors. Radar is promising in the field of assisted living, but
challenges remain in terms of blind regions, obstruction in the
radar path and mutual interference when several radar systems
operate in the same vicinity.
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