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Abstract
Coral reefs worldwide are affected by increasing dissolved inorganic carbon (DIC) and

organic carbon (DOC) concentrations due to ocean acidification (OA) and coastal eutrophi-

cation. These two stressors can occur simultaneously, particularly in near-shore reef envi-

ronments with increasing anthropogenic pressure. However, experimental studies on how

elevated DIC and DOC interact are scarce and fundamental to understanding potential syn-

ergistic effects and foreseeing future changes in coral reef function. Using an open meso-

cosm experiment, the present study investigated the impact of elevated DIC (pHNBS: 8.2

and 7.8; pCO2: 377 and 1076 μatm) and DOC (added as 833 μmol L-1 of glucose) on calcifi-

cation and photosynthesis rates of two common calcifying green algae,Halimeda incrassata
and Udotea flabellum, in a shallow reef environment. Our results revealed that under ele-

vated DIC, algal photosynthesis decreased similarly for both species, but calcification was

more affected in H. incrassata, which also showed carbonate dissolution rates. Elevated

DOC reduced photosynthesis and calcification rates in H. incrassata, while in U. flabellum
photosynthesis was unaffected and thalus calcification was severely impaired. The com-

bined treatment showed an antagonistic effect of elevated DIC and DOC on the photosyn-

thesis and calcification rates of H. incrassata, and an additive effect in U. flabellum. We

conclude that the dominant sand dweller H. incrassata is more negatively affected by both

DIC and DOC enrichments, but that their impact could be mitigated when they occur simul-

taneously. In contrast, U. flabellum can be less affected in coastal eutrophic waters by
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elevated DIC, but its contribution to reef carbonate sediment production could be further

reduced. Accordingly, while the capacity of environmental eutrophication to exacerbate the

impact of OA on algal-derived carbonate sand production seems to be species-specific, sig-

nificant reductions can be expected under future OA scenarios, with important conse-

quences for beach erosion and coastal sediment dynamics.

Introduction
The rise of oceanic pCO2 caused by increasing CO2 concentrations in the atmosphere is leading
to significant changes in the ocean carbonate system, which are primarily reflected in an increase
in bicarbonate concentration and a decrease in seawater pH (ocean acidification- OA) [1, 2].
These changes also induce a significant decline in the saturation state of the different crystalliza-
tion forms of calcium carbonate in the marine environment, which will facilitate the dissolution
of existing calcium carbonate deposits and cause severe impacts on marine calcifiers. Many coral
reef habitats and their lagoons are particularly threatened by ocean acidification. Studies con-
ducted at natural low pH sites have shown that under OA the reef framework is less stable [3],
and reef accretion is compromised [4], as are the ecosystem services provided by the reef [5].

Local impacts associated with nutrient enrichment, pollution and overfishing have also
increased in the last decades, leading to so called “phase shifts” in many parts of the Caribbean
and coral reefs worldwide [6, 7]. One of the main drivers of “phase shifts” is related to inorganic
and organic nutrient inputs derived from untreated or poorly treated sewage. The impact of ele-
vated DOC concentrations on coral reef health is currently of major concern in coral reef research
[8–10], as elevated DOC has been associated with enhanced bacterial growth and other processes
that lead to oxygen depletion and the accumulation of toxic substances, and ultimately to an
increase in coral mortality [9, 11, 12]. High concentrations of DOC, predominantly in the form of
dissolved carbohydrates, can also enter the coral reef system in the form of exudates released by
the benthic community [13, 14]. Previous results have shown minimal or no significant differ-
ences in the DOC concentrations released by benthic calcifying algae (Halimeda opuntia) com-
pared to coral exudates (Porites lobata) [10, 15], although it has been postulated that bacterial
growth is primarily triggered by algal-derived DOC rather than DOC released by corals [10, 15].

The sandy bottom of Caribbean reef lagoons are commonly colonized by rhizophytic calcar-
eous green algae (Siphonales) of the genera Halimeda, Udotea, Penicillus and Rhipocephalus,
which are associated with the seagrass habitat builder Thalassia testudinum [16–18]. Calcare-
ous green algae produce an important fraction of coral reef carbonate production in the form
of calcareous sand, essential to support reef accretion [19–22]. Most of the studies that have
investigated the responses of marine macrophytes to OA and other local threats have focused
on species of the genus Halimeda, due to this genus is considered one of the most productive.
Limited attention has been given to other important reef calcifiers, such as species from the
genus Udotea, Penicillus, Rhipocephalus. For experimental studies focused on Halimeda spp., it
has been concluded that this genus displays a large species-specific variation to increasing levels
of dissolved inorganic carbon (DIC). Some species reduce their photosynthetic rates [23, 24],
while others have shown positive [25] or no effect on algal photosynthesis [26–28]. Similarly,
large inter-specific variation has been documented for the response of calcification ofHalimeda
spp. to DIC increases [24, 26–33] indicating that some species may be more tolerant to OA
than others. Altered skeletal structure of different Halimeda spp. in response to OA conditions
has also been reported [34, 35], being indicative of potential needle dissolution [29] and/or the
formation of more slender crystals during exposure to reduced pH [25]. Yet, alteration of skele-
tal structure may also affect the contribution of species from the genus Halimeda to sediment
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carbonate production under different OA scenarios, irrespective of the severity of the impact
detected on algal physiology.

In contrast to OA, nutrient enrichment enhances Halimeda spp. production and growth
[23, 36, 37], with the exception of phosphate enrichment, for which a large species-specific var-
iation has been also reported [36]. An analysis on the combined effect of inorganic nutrient
enrichment and reduced pH on Halimeda opuntia has shown decreased enhancement in algal
production under nutrient enrichment and reduced pH, relative to the estimated values for
ambient pH [38]. Meyer et al. [28] have recently shown the negative effects of increased DOC
concentration on the photosynthesis of twoHalimeda species from the Great Barrier Reef, H.
opuntia and H.macroloba, but no effect was found on algal calcification rates under illumina-
tion. These authors further investigated the combined effect of elevated DOC and DIC concen-
trations, and documented an adverse impact on thallus photosynthesis for both species, while
only H. opuntia showed a negative effect on dark calcification rates. These findings support the
large species-specific component of the response of marine algae to the combined effects of OA
and increased DOC, and the importance of increasing the number of this type of experimental
studies for other sites and species.

Halimeda incrassata (J. Ellis) J.V. Lamouroux and Udotea flabellum (J. Ellis & Solander) M.
Howe are two abundant rhizophytic species of the macrophyte community of shallow seagrass
habitats dominated by the species Thalassia testudinum. In the Puerto Morelos reef lagoon,
Mexican Caribbean, both species are among the most abundant calcareous algae. Estimates of
H. incrassata primary production for this lagoon (0.2–0.5 g dwt m-2 day-1) [22] are lower than
the reported values for seagrass leaf production (0.9–1.2 g dwt m-2 day-1) [39]. Interestingly,
annual carbonate production for H. incrassata from this area is in the same range or even
lower (between 0.5 and 1.0 kg CaCO3 m

-2 y-1) [22] than estimates of annual carbonate produc-
tion recently documented for the dominant seagrass T. testudinum (between 0.5 and 5.63 kg
CaCO3 m

-2 y-1) by Enríquez and Schubert [40]. To our knowledge, no estimates for Udotea
spp. annual carbonate production are yet available for this area or other locations. The only
study on the daily carbonate production of U. flabellum [41] has documented that this species
produces about 45% less carbonate per day than H. incrassata.

The Mexican Caribbean (Cancún and the Riviera Maya) has experienced a 4.3-fold popula-
tion increase during the period from 2000–2009 [18], which is associated with the rapid coastal
development of large tourist complexes. These changes have severely affected the reef habitat,
particularly the benthic macrophyte community associated with seagrass beds, which is shift-
ing towards an increased presence of fleshy macroalgae [18], and increased biomass of green
calcifiers [42]. To understand the combined effect of these local impacts with the predicted
negative effect of OA on marine calcifiers, this study investigated the direct and combined
effects of experimental increases in DIC and DOC on the physiological performance ofHali-
meda incrassata and Udotea flabellum. This multi-factorial study aims to analyze a more realis-
tic scenario that may be also very useful for other areas affected by similar coastal
eutrophication derived from different anthropogenic impacts. As calcareous macroalgae are
considered important contributors to reef carbonate budgets, this study can also contribute to
improve our understanding of future impacts caused by the combined effects of global and
local threats on reef accretion and the stability of the reef system.

Materials and Methods

Algal Collection and Maintenance
Several individuals of H. incrassata and U. flabellum were collected by SCUBA diving from the
Puerto Morelos reef lagoon, Mexican Caribbean (20° 52’ N, 86° 52’W), in March 2012 at 3–3.5
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m depth, and transported in mesh-covered ziplog bags to the mesocosm facilities of the Uni-
versidad Nacional Autónoma de México (UNAM). To minimize physiological variability
among replicates associated with age and photoacclimatory condition of the thallus, thalli of
similar size and position were selected for the experimental analysis: 5–7 apical segments for H.
incrassata, and U. flabellum individuals of 3–5 cm height.

The selected individuals were acclimated for 5 days to the experimental conditions by plac-
ing them in 50 L experimental tanks receiving filtered (~50 μm) ambient seawater (~28°C, pH
8.2) from the lagoon, with continuous flow of 1 L min-1. Irradiance levels at mesocosms were
adjusted using neutral density shade mesh to simulate light conditions at collection depth (51%
of surface irradiance, Es). Es was calculated using surface irradiance data and the down-welling
light attenuation coefficient of the reef lagoon estimated for the sampling period (February-
March 2012) of Kd = 0.2 m-1, which was similar to previous values reported [43]. Variation in
diurnal irradiance was continuously recorded throughout the experiment using a cosine-cor-
rected light sensor (LI-190SA; LI-COR, Lincoln, NE, USA) connected to a data logger (LI-
1400; LI-COR, Lincoln, NE, USA), located at the mesocosm system.

After the pre-acclimation period (5 days), initial measurements of photosynthesis, respira-
tion and calcification rates were performed (n = 6) as described below, and 12 individuals of
each species (n = 12) were randomly positioned into each tank.

Experimental Treatments
The experiment was conducted over 10 days in an open flow-through system, which consisted
of 12 tanks of 50 L each. To enhance water movement in the tanks and prevent carbon limita-
tion of algal photosynthesis, aquaria pumps (500 L h-1) were located in each tank and con-
nected to a rectangular PVC frame surrounding the tank with holes facing inward to create
homogenous flow conditions according to Cayabyab and Enríquez [44]. We used three repli-
cate tanks per treatment and placed tanks with the different treatment levels (ambient and
increased, see below) in alternating order.

The treatments comprised ambient and elevated pCO2 concentrations in order to simulate
OA changes in CO2 availability from 380 to 1000 μatm, respectively, as well as ambient and
increased DOC conditions (see Table 1). The increase in pCO2 concentration was achieved by
pH manipulation via CO2 gas injection by a potentiometric pH sensor controlled pH stat sys-
tem (IKS Aquaristic Products, Karlsbad, Germany). pH-reading by the pH-stat system was
continuous (every other second) to adjust pH levels in the system, and pH sensors were cali-
brated every other day according to values measured by a WTWMulti 3430 probe (WTW,
Weilheim, Germany). pH in the tanks was maintained at 8.2 for the control treatment, and
reduced to 7.8 for the high DIC treatments (see Table 1). The elevated pCO2 levels used here
were selected considering the Representative Concentration Pathways 8.5 (RCP8.5), which pre-
dicts a decrease of seawater pH between 7.7–7.8 [45].

Table 1. Variation in the experimental conditions. Values for the carbonate system parameters were calculated using CO2SYS with temperature, salinity,
total alkalinity (TA) and pHNBS as input parameters (n = 3). Additionally, the Biological Oxygen Demand (BOD) of the seawater in each treatment are given,
determined through oxygen consumption using dark incubations over 24 h and referring the estimated changes to the water volume of the incubation (n = 3).
Data represent mean ± SD (n = 6) and the results of a one-way ANOVA (p<0.05) performed to determine significant differences in BOD between treatments,
are indicated by different letters.

Treatment pH [NBS] DOC
(μmol L-1)

T°C Salinity (ppt) TA (μmol
kgSW-1)

pCO2 (μatm) HCO3 (μmolkg SW-1) ΩAr BOD (mg O2 L
-1 h-1)

Control 8.22 ±0.02 171 28.1±0.1 35.9 ±0.1 2414 ±8 377 ±27 1776 ±26 4.2 ±0.2 0.63 ±0.6a

High DIC 7.84 ±0.04 171 28.0±0.2 36 ±0.1 2409 ±6 1076 ±101 2097 ±24 2.0 ±0.1 1.03 ±0.3a

High DOC 8.19 ±0.03 550 28.1±0.2 35.9 ±0.1 2414 ±8 415 ±31 1811 ±31 4.0 ±0.2 1.35 ±0.3a

High DOC & DIC 7.82 ±0.02 550 28.0±0.1 36 ±0.1 2413 ±7 1135 ±55 2114 ±14 2.0 ±0.1 1.62 ±0.4a

doi:10.1371/journal.pone.0160268.t001
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DOC treatment levels were adjusted to concentrations described in previous studies on
coral communities, using glucose and lactose in high concentrations as DOC [8, 9, 46]. In this
study, the DOC treatment in the form of highly bioavailable DOC was achieved by additions of
833 μmol L-1 DOC (Glucose, D-Glucose, Sigma Aldrich) twice daily at 08:00 and 20:00 to each
of the six high-DOC treatment tanks, simulating sudden DOC enrichments events, common
in nature associated with strong rain. To quantify the resulting DOC treatment conditions,
DOC concentration were measured over a 12-hour cycle (Fig 1), showing an average DOC con-
centration of 550 μmol L-1 (Fig 1). Samples for TOC were filtered through 0.45 μmGFF filters
(Whatman), acidified with 150 μL fuming HCl and frozen at -20°C until analysis using a Shi-
madzu TOC-5000A (Shimadzu, USA).

Salinity and temperature were also monitored for each tank twice daily throughout the
experiment (WTWMultiprobe 3430), and total alkalinity (TA) every second day. Water sam-
ples from the tanks were filtered through 0.45 μmGFF filters and stored with a drop of chloro-
form at 4°C until TA analysis. These parameters, together with the pH values on the NBS scale
taken every two days with a multiprobe (WTW3430, Weilheim, Germany), were used to calcu-
late the carbonate system using the CO2SYS excel spreadsheet software, with the constants
fromMehrbach et al. [47] (Table 1).

Biological Oxygen Demand (BOD)
To evaluate potential enhancements in microbial respiration rates in seawater, BOD was mea-
sured at the end of the experiment. We incubated 150 mL of unfiltered seawater in Winkler
bottles for 24 h in the dark (n = 3), under constant temperature conditions (28°C). Oxygen
concentration (mg L-1 and % saturation), as well as salinity and temperature were also mea-
sured before and after incubations. O2 consumption rates in mg O2 L

-1 h-1 were calculated and
corrected for water volume and length of incubation.

Assessment of Maximum Photosynthetic Quantum Efficiency
Maximum photochemical efficiency of photosystem II—PSII (Fv/Fm) of experimental organ-
isms was measured every evening at 20:00 on the apical segments of the organisms, using a

Fig 1. DOC concentrations in the high DOC-treatments measured during a 12-hour cycle, from 8:00 a.
m. to 20:00 pm, after addition of 833 μmol L-1 DOC as glucose (indicated by an arrow). Filled-solid
circles represent the average of two sampling points (n = 2) of the high DOC-treatments, and the open-white
circle indicates the ambient DOC concentration in the non-DOC-enriched treatments.

doi:10.1371/journal.pone.0160268.g001
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Pulse Amplitude Modulated fluorometer (Diving-PAM, Walz, Germany). At this time, one
hour after sunset, algal thalli had already achieved the maximum Fv/Fm of the day, as all the
non-photochemical quenching processes were relaxed, and the maximum PSII recovery of the
day had been already reached (see [44, 48]).

Quantification of Photosynthesis, Respiration and Light Calcification
Rates
For physiological measurements, young 4–5 apical segments of H. incrassata thalli and the
uppermost 2 cm of U. flabellum thalli were selected (two organisms per tank and species) to
reduce the variation among replicates in the thallus physiological condition, due to age, photo-
acclimation, abundance of epiphytes and/or accumulation of damage. The segments were sepa-
rated from the parent plant at least 2 h before physiological determinations were started in
order to allow complete wound healing [49].

Before and at the end of the experiment, photosynthesis and calcification rates were simulta-
neously determined by incubating algal thalli for 30 min under a saturating light intensity of
500 μmol quanta m-2 s-1 (three times the Ek of the species, data not shown), in freshly filtered
seawater obtained from the respective treatment tanks. The incubation water (17 mL) was col-
lected at the beginning and at the end of the light incubation to determine the alkalinity
changes induced by algal activity (see below). The samples were incubated in darkness for
another 10–15 min to determine the post-illuminatory respiration rate (RL). Oxygen evolution
rates were measured polarographically in water-jacked chambers (DW3, Hansatech Instru-
ments Ltd., Norfolk, UK), using Clark-type O2 electrodes (Hansatech). A circulating bath with
a controlled temperature system (RTE-100/RTE 101LP; Neslab Instruments Inc., Portsmouth,
NH, USA) allowed maintenance of a constant temperature of 28°C (treatment temperature)
during the incubation. The electrodes were calibrated with air- and N2-saturated filtered sea-
water. Freshly filtered seawater (0.45 μm) from the respective treatment tank was used for the
incubations, with DIC and DOC concentrations corresponding to the treatment conditions
(see Table 1). Data were captured with a computer equipped with an analog/digital converter
using DATACAN V software (Sable Systems, Inc., Las Vegas, NV, USA). Gross photosynthesis
was calculated adding to the net photosynthesis determined in the incubations, the oxygen
consumption through post-illuminatory respiration.

Calcification rates were determined using the alkalinity anomaly principle based on the
ratio of two equivalents of total alkalinity for each mole of precipitated CaCO3 [50]. For alka-
linity measurements, a modified spectrophotometer procedure as described by [51] and [40]
was used. For quality control, a certified reference material of known total alkalinity (CRM,
Scripps Institution of Oceanography, USA) was used to calibrate the method.

Quantification of Algal Surface Area
For normalization of the measured metabolic rates, the surface area of each algal segment was
determined by scanning the thalli and analyzing the digital images using ImageJ software.

Statistical Analyses
Data were tested for normality using the Shapiro-Wilk test, and for equal variance using the
Levene median test. Analyses of variance (ANOVA) allowed for the determination of signifi-
cant differences (p<0.05) between the different descriptors used to characterize the physiologi-
cal response of the species. A one-way ANOVA was used to compare initial photosynthetic,
respiratory and calcifications rates; the calcification / photosynthesis ratio; and for the compar-
ison of BOD values between each treatment and the control. A t-student test was used to
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evaluate significant differences between initial and final Fv/Fm values with respect to the control
organisms. To analyze whether Fv/Fm, photosynthesis, respiration and calcification rates dif-
fered significantly between treatments, two-way-ANOVA tests were used, considering the DIC
and DOC treatments as fixed factors to test for direct effects, as well as the interaction (DIC x
DOC). For the comparison of differences between individuals and treatment combinations, a
Newman-Keuls Post-hoc test was used. The statistical analyses were conducted using Statistica
12.0.

Results
Halimeda incrassata showed significantly higher photosynthetic and calcification rates than
Udotea flabellum, with no difference in post-illuminatory respiratory rates (Table 2). These dif-
ferences were also reflected in their calcification to photosynthesis ratios. While H. incrassata
was able to precipitate 0.57 (±0.08) mol CaCO3 per mol O2 evolved in photosynthesis, U. flabel-
lum (ANOVA, p = 0.038) only precipitates 0.25 (±0.07) mol CaCO3 per mol O2 produced
(Table 2).

In addition, the two species showed contrasting responses to experimental DIC and DOC
treatments. The response of maximum photosynthetic rates was similar in both species, but
more pronounced than indicated by the Fv/Fm response. The variation in Fv/Fm was closely
related to the diurnal variation in solar radiation. Control organisms showed a similar pattern
of variation in both species, with a slight, but non-significant decline over time (t-test,
p = 0.528 for H. incrassata, p = 0.560 for U. flabellum) compared to initial values (Fig 2A and
2B). When comparing final Fv/Fm values, H. incrassata showed a significant decline in the
DOC treatments, under both ambient and elevated DIC concentrations (Fig 2C, Table 3),
while U. flabellum only showed a negative response of Fv/Fm under elevated DIC (Fig 2D,
Table 2). Significant reductions in Pmax were estimated for H. incrassata in all treatments,
when compared to control organisms. Pmax reductions ranged from -30% (elevated DIC) to
-43% (elevated DOC; Fig 2E), and showed a significant effect in the combined treatment
(Table 3). In contrast, U. flabellum experienced a significant reduction in Pmax under elevated
DIC compared to the control (high DIC: -33%; high DIC+high DOC: -21%), while elevated
DOC did not cause any effect on thallus photosynthesis (Fig 2F, Table 3). Thallus respiratory
rates were not affected by any experimental treatment in any species (Fig 2E and 2F).

The response of thallus calcification to the experimental treatments also showed large differ-
ences between species. While H. incrassata showed full suppression of thallus calcification and
even dissolution of CaCO3 after exposure to elevated DIC, thallus calcification was still positive
albeit significantly reduced in U. flabellum after exposure to the same treatment (-36% com-
pared to control; Fig 3). The opposite response was observed for elevated DOC, as we found a
significant decline in calcification rates ofH. incrassata (-68%) with respect to control organ-
isms (yet positive values), while no calcification but dissolution of CaCO3 (negative values) was
measured for U. flabellum (Fig 3). The inhibition of thallus calcification by elevated DOC

Table 2. Comparison of the initial values (day 0) of gross maximum photosynthetic rates (Pmax), post-
illumination respiration (RL), maximum calcification rates (Gmax), and the ratio of calcification:photo-
synthesis (Gmax:Pmax) ofHalimeda incrassata andUdotea flabellum. Data represent mean ± SE (n = 6)
and significant differences between species (one-way ANOVA, p<0.05) are indicated by different letters.

Metabolic rates Halimeda incrassata Udotea flabellum

Pmax 2.33±0.08a 1.56±0.06b

RL 0.39±0.02a 0.47±0.05a

Gmax 1.32±0.2a 0.40±0.16b

Gmax:Pmax 0.57±0.08a 0.25±0.07b

doi:10.1371/journal.pone.0160268.t002
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concentration was further exacerbated in U. flabellum in the combined treatment, due to the
addition of the negative effect of DIC (Fig 3B), as no significant interactive effect was found for
the response of thallus calcification in this species (Table 3). In contrast, the combined treat-
ment did not show any significant impact on H. incrassata calcification, notwithstanding the
significant negative direct effects of elevated DOC and DIC (Fig 3A). These findings support

Fig 2. Photosynthetic responses of H. incrassata (a, c, e) andU. flabellum (b, d, f) to the experimental DIC and DOC
treatments. (a, b) Daily variation in the maximum quantum efficiency of photosystem II (Fv/Fm) along the experiment and
the corresponding daily integrated values in light exposure in mol quanta m-2 day-1 (grey bars); (c, d) Fv/Fm for each
treatment at the end of the experiment; and (e, f) gross photosynthesis, Pmax, (light grey bars) and respiration, RL, (black
bars) rates at the end of the experiment. Data represent mean ± SE (n = 3) and significant differences between treatments
(ANOVA, Newman-Keuls, p<0.05) are indicated by different superscript letters.

doi:10.1371/journal.pone.0160268.g002

Table 3. Two-way ANOVA analyses performed to determine significant differences in the physiological responses of the apical segments ofHali-
meda incrassata andUdotea flabellum exposed to four experimental treatments: control, high DIC concentration, high DOC concentration, and
the combined treatment (n = 3 for each treatment). DIC and DOCwere considered fixed factors and DIC x DOC show the interaction between both
factors.

Response variable Species Source of variation DF SS MS F-value p-value

Maximum quantum yield (Fv/Fm) H. incrassata DIC 1 0.0005 0.0005 0.69 0.4275

DOC 1 0.0121 0.0121 16.36 0.0037*

DIC x DOC 1 0.0011 0.0011 1.45 0.2632

Residual 8 0.0059 0.0007

U. flabellum DIC 1 0.0104 0.0104 5.85 0.0419*

DOC 1 0.0006 0.0006 0.33 0.5790

DIC x DOC 1 0.0093 0.0093 5.21 0.0519

Residual 8 0.0142 0.0018

Gross H. incrassata DIC 1 0.162 0.162 6.267 0.0368*

Photosynthesis (Pmax) DOC 1 0.863 0.863 33.37 0.00042*

DIC x DOC 1 0.590 0.590 22.82 0.00140*

Residual 8 0.207 0.026

U. flabellum DIC 1 0.232 0.232 25.96 0.0009*

DOC 1 0.006 0.006 0.68 0.4349

DIC x DOC 1 0.027 0.027 2.99 0.1222

Residual 8 0.071 0.009

Respiration (RL) H. incrassata DIC 1 0.0043 0.0043 1.10 0.3253

DOC 1 0.0039 0.0039 0.98 0.3506

DIC x DOC 1 0.0048 0.0048 1.21 0.3034

Residual 8 0.0316 0.0039

U. flabellum DIC 1 0.0061 0.0061 1.14 0.3171

DOC 1 0.0016 0.0016 0.30 0.5987

DIC x DOC 1 0.0010 0.0010 0.19 0.6689

Residual 8 0.0425 0.0053

Light calcification (Gmax) H. incrassata DIC 1 1.16 1.16 23.33 0.0013*

DOC 1 0.495 0.495 9.98 0.0134*

DIC x DOC 1 4.38 4.38 88.28 0.000013*

Residual 8 0.397 0.0496

U. flabellum DIC 1 0.018 0.018 6.184 0.0378*

DOC 1 0.399 0.399 140.94 0.000002*

DIC x DOC 1 0.002 0.002 0.778 0.4034

Residual 8 0.023 0.0028

Significant results (p<0.05) are marked in bold and with an asterisk (*).

doi:10.1371/journal.pone.0160268.t003
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the antagonistic effect between elevated DIC and DOC and their combined effect on the calcifi-
cation process ofH. incrassata (Table 3).

Additionally to the physiological responses of the organisms, measurements of BOD for the
different treatment waters were performed to determine potential changes in bacterial respira-
tion. Although increased BOD was detected in the treatments with elevated DOC, these
changes were not significant (Table 1).

Discussion
Large differences between the two species investigated were found in photosynthesis and calci-
fication rates, in agreement with previous findings [41]. Our study further revealed significant
differences between Halimeda incrassata and Udotea flabellum in the calcification:photosyn-
thesis ratio (Gmax/Pmax), as H. incrassata was able to precipitate twice as much CaCO3 per mol
O2 evolved in photosynthesis than U. flabellum.

Elevated DIC and DOC treatments caused adverse impacts on the physiology of both spe-
cies, but significant differences were observed in the severity of this impact. For example, ele-
vated DIC resulted in a decline in Fv/Fm and photosynthesis rates in both species. However,
elevated DOC only caused a similar response in H. incrassata, as non-significant changes were
observed for the organisms of U. flabellum exposed to the similar treatment. Control organisms
did not show the progressive reduction in Fv/Fm observed for organisms exposed to DIC and
DOC enrichments throughout the experiment. This lack of change in Fv/Fm after an initial
reduction during the first four days, in spite of the maintenance of high light conditions for the
last five experimental days, indicates that experimental conditions were optimal for both spe-
cies and did not induce significant accumulation of photodamage (i.e., Fv/Fm decline), or posi-
tive Fv/Fm recovery due to light limitation. Thus, the observed reductions in Fv/Fm and thallus
photosynthesis of the organisms exposed to elevated DOC and/or DIC can be attributed to a
direct negative impact of these treatments on the photosynthetic process. Thallus photosynthe-
sis in U. flabellum showed a more robust response to elevated DOC, while H. incrassata was
equally sensitive to both organic and inorganic carbon enrichments. A similar negative impact
of elevated DIC on algal photosynthesis has been previously reported for other species from
the genus Halimeda [26, 29, 30], but the causes of this decline have not yet been elucidated.
Price et al. [26] suggested that the increase in dissolved CO2 under reduced seawater pH may
affect the expression of different carbon-concentrating mechanisms (CCMs), causing algal
photosynthesis to rely on passive CO2 diffusion, and thus becoming more susceptible to photo-
synthesis carbon limitation. The maintenance of high proton-H+ permeability of the plasma
membrane, for example, which is key for photosynthetic bicarbonate assimilation [52, 53],
declines at reduced external pH [54].

In addition to the impact of DIC on algal photosynthesis, we also found a negative effect of
elevated DIC on calcification rates of both species. Udotea flabellum showed a similar -30%
reduction in photosynthesis and calcification (-36%; Figs 2F and 3B), butH. incrassata experi-
enced larger declines in calcification (-155%) compared to a -30% reduction in photosynthesis
(Figs 3A and 2E). With respect to the response to elevated DOC concentration, a greater
impact was observed on H. incrassata photosynthesis and calcification rates when acting in iso-
lation. Negative effects of elevated DOC concentrations have been recently documented for the
photosynthesis rates of twoHalimeda species from the Great Barrier Reef [28]. In contrast to
our findings, calcification under illumination was not significantly affected by elevated DOC in
these species. Large differences for the response of thallus calcification to elevated DIC have
been already documented among Halimeda spp. [26, 29, 30], and this is the first time that simi-
lar inter-specific differences were also observed for the response to elevated DOC. Some
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authors have suggested that the large inter-specific component shown by the calcification pro-
cess in the genus Halimedamay rely on thallus morphology [26]. This genus displays large var-
iation in the internal anatomy of algal thallus, and these anatomical characteristics are good
proxies for species membership when compared to molecular data [55], what may support our
interpretation. However, more work is still needed to elucidate the potential implications of the
variation in thallus anatomy within theHalimeda genus on the species-specific sensitivity of
thallus calcification to environmental changes.

Photosynthesis and calcification rates are tightly coupled in calcareous siphonal algae. Photo-
synthesis promotes algal calcification by removing CO2 or bicarbonate from the calcification site,
which increases the local pH and, thus, facilitates CaCO3 precipitation [56]. Photosynthesis can
also support a high fraction of the energetic costs of the biomineralization process. Therefore, any
negative effect on the photosynthetic process would be reflected in a decline in algal calcification,
as recently shown for coralline algae [48]. Inter-specific differences in the calcification process
may explain the diversity of responses observed. For example, whileH. incrassata only calcifies in
the intercellular spaces, calcification inU. flabellum represents a transition between intercellular
and sheath mineralization (e.g. Penicillus, Rhipocephalus) [57]. The CaCO3 precipitation inH.
incrassata occurs in a semi-isolated space, where CO2 diffusion from the external environment
can cause a decrease in local pH, and thus a reduction in calcification rates. Therefore, a more effi-
cient isolation from surrounding seawater of the biomineralization site ofU. flabellum, allows car-
bonate precipitation to be less dependent on the external variation of DIC and, thus, better
suitable to be controlled by the physiology of the organism. The occurrence of a stronger control
over the CaO3 precipitation process by U. flabellum is supported by the findings of Ries [41].

Calcareous green algae are able to release DOC, but cannot incorporate organic carbon [58–
59]. Thus, although DOC decline in the enriched experimental treatments was primarily due to

Fig 3. Calcification (Gmax) response ofH. incrassata (a) andU. flabellum (b) to the experimental DIC and DOC treatments. Data represent
mean ± SE (n = 3) and significant differences between treatments (ANOVA, Newman-Keuls, p<0.05) are indicated by different letters.

doi:10.1371/journal.pone.0160268.g003
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water turnover rates in the tanks, part of this DOC enrichment could have likely been assimilated
by bacteria (Fig 1). Furthermore, the experimental addition of DOC in the form of glucose stimu-
lates microbial respiration and growth [60]. Such enhancement in bacterial activity explains the
lower O2 concentrations observed in DOC-treatments compared to control- and DIC-treat-
ments, as reported previously [46, 61]. Little information is available about the interaction
between these epibacterial communities and algal physiology, and the potential effects of envi-
ronmental changes on these communities and their interactions (i.e., [62–64]). It has been docu-
mented forHalimeda copiosa that the abundance of thallus surface-associated bacteria increases
under organic nutrient enrichments [65]. In addition to increases in bacterial abundance, shifts
in the bacterial community towards non-beneficial or even harmful bacteria have been suggested
to occur for corals under increasing DOC concentrations [8]. As no increases in algal respiratory
rates were observed in the DOC-treatments (Fig 2E and 2F), the negative responses on photosyn-
thetic and calcification rates were most likely related to alterations in the bacterial community
than in their abundance. Benthic reef algae have been shown to differ in the microbial communi-
ties associated with their tissue [66], therefore, part of the observed differences in the DOC
response ofH. incrassata andU. flabellummight be related to differences in the response of their
respective epibacterial communities to the experimental DOC enrichment, as well as species-spe-
cific effects on bacterial-algal interactions. The antagonistic effect found for the combined ele-
vated DIC and DOC treatment inH. incrassata, could also be due to a differential effect of each
factor on the bacterial-algal interactions. More studies focusing on the seaweed holobiont are
necessary to fully understand the relevance of these indirect effects on algal performance.

Ecological Perspective
According to our results, the DIC concentrations expected by the year 2100 [45] may signifi-
cantly reduce photosynthesis and carbonate production inH. incrassata, while U. flabellum
production may experience relative lower declines. However, when accompanied by increased
concentrations of high labile DOC, the impact of elevated DIC will be alleviated for H. incras-
sata but exacerbated for U. flabellum. Furthermore, the effect of DIC and DOC could be even
more severe when considering their impact at night on algal calcification, as has been docu-
mented for dark calcification rates that are also negatively affected inHalimeda spp. [28, 67].
Thus, considering the impacts both during the light and night on thallus calcification rates, the
net algal carbonate production can be reduced even further.

Potential sources of high labile DOC for this particular reef lagoon are the seagrass and
macroalgal beds themselves [59], human waste water discharge via groundwater [68, 69], and
storm events [70], which are all predicted to increase in the future providing more labile DOC
to this coastal ecosystem. For the carbon budget of the Puerto Morelos reef lagoon [71], this
DOC enrichment may lead to a significant reduction of the contribution of calcifying green
algae to the overall primary production and/or carbonate reef accretion. This impact will pro-
duce severe consequences on the macrophyte community, habitat structure, and ultimately, on
the organic carbon fluxes of the ecosystem due to altered contributions to labile DOC and POC
pools [59]. Significant reductions in carbonate sand production from algal derived sediments
can alter the volume of sand deposits in coastal tropical areas, with important consequences for
beach erosion and coastal sediment dynamics of reef environments. On the other hand, consid-
ering that seagrasses and fleshy algae may prosper under higher DIC conditions [72–74], and
that seagrasses can modulate the OA response of calcareous algae [75–77], a deeper under-
standing of the changes in the macrophyte community and on species interactions will be fun-
damental to enhance our capacity to foresee the severity of the impact of predicted
environmental changes on carbonate sand production by calcareous green algae.
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