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Capturing the conditions that introduce systematic variation in 

bike-sharing travel behavior using data mining techniques 
 

Abstract 

The potential of smart-card transactions within bike-sharing systems (BSS) is still to be 
explored. This research proposes an original offline data mining procedure that takes advantage 
of the quality of these data to analyze the bike usage casuistry within a sharing scheme. A 
difference is made between usage and travel behavior: the usage is described by the actual trip-
chaining gathered with every smart-card transaction and is directly influenced by the 
limitations of the BSS as a public renting service, whilst the travel behavior relates to the spatio-
temporal distribution, the travel time and trip purpose. The proposed approach is based on the 
hypothesis that there are systematic usage types which can be described through a set of 
conditions that permit to classify the rentals and reduce the heterogeneity in travel patterns. 
Hence, the proposed algorithm is a powerful tool to characterize the actual demand for bike-
sharing systems. Furthermore, the results show that its potential goes well beyond that since 
service deficiencies rapidly arise and their impacts can be measured in terms of demand. 
Consequently, this research contributes to the state of knowledge on cycling behavior within 
public systems and it is also a key instrument beneficial to both decision makers and operators 
assisting the demand analysis, the service redesign and its optimization.  

Keywords: bike-sharing systems; data mining; smart-card data; demand analysis; cycling; trip-
chaining 

  



1. Introduction 

Nowadays, promoting cycling is one of the most popular policies implemented by local 
governments to encourage greener mobility and make cities more liveable. In this context, bike-
sharing systems (BSS) have been launched in numerous urban areas as an alternative mode of 
transport and evidences exist that confirm their potential to encourage cycling (García-
Palomares, Gutiérrez, & Latorre, 2012; Pucher, Dill, & Handy, 2010).  

Mobility demand is generally considered a derived demand. However, this may not always be 
the case for cycling. The analysis and comparison of the demand of various worldwide systems 
provided by O’Brien, Cheshire, and Batty (2014) shows that BSS are not only demanded as a 
mode for transport but also as a recreational tool. Riding a bike for transport and cycling as an 
activity itself lead to different mobility patterns. In addition, Lathia, Ahmed, and Capra (2012) 
find that also occasional and registered BSS users behave differently.  

Recent studies on BSS rely on the great availability of data concerning smart-card transactions. 
Data made available by Intelligent Transport Systems (ITS) in general and by smart-card 
systems in particular have several advantages over data collected through traditional methods: 

• Data collection is not affected by the observer; 
• Large samples and often even entire populations are recorded and so the sampling bias 

is avoided; 
• It is an economical source of data compared to traditional sampling methods; 

However, a major limitation of ITS data is that it provides information on “how” and “when” 
but not on “why”, as explained by Lathia et al. (2012). 

This research proposes a new methodology to understand the demand for bike-sharing by 
analysing the actual use of the service as recorded by the ITS. An algorithm is presented which 
mines the data offline, with the aim of identifying and characterising specific mobility patterns. 
Knowledge about such patterns can assist in designing and managing BSS so that they can 
achieve their intended purpose. Consequently, the above-mentioned shortcoming of ITS data 
is a challenge and an additional motivation to our research rather than a limitation. In fact, our 
data mining technique has been developed precisely to overcome the lack of insights about the 
transportation needs to be satisfied with bike-sharing services and so to derive the greatest 
benefits from raw ITS datasets. At the same time, our research makes use of all the advantages 
of ITS data since the quantity and the quality of the automatic records allow to identify less 
usual and scarcely represented mobility patterns that may not have been captured from a limited 
sample of manually collected data.  

The contribution of the present research is derived from the novelty and potential of the 
methodology. The behavioral framework that is presented brings knowledge on the different 
usage types of a BSS and how its use is related to the travel patterns: most demanded terminals, 
travel time and time of day. The proposed algorithm identifies the usage conditions that 
introduce systematic variability in the travel behavior and that permit the classification of 
rentals. The analysis of each usage type confirms that they respond to different transportation 
needs. Furthermore, the results show that the users do not always behave as expected in a 
sharing service, providing insights on the aspects that provoke bike imbalance across terminals. 
Indirectly, the algorithm also identifies the conditions of the service supply that promote its use 
for transport and as a tool for recreation as well as its potential as a touristic attraction. 

The implementation of our methodology can bring about many benefits. Firstly, detailed 
understanding on mobility patterns like that provided by our data mining technique can inform 



on regulations of BSS to promote a responsible use. In fact, BSS bicycles are meant to be 
shared among users and so the time the same person can consecutively use the same bicycle is 
limited. However, sometimes it is possible to overcome the regulations without being charged 
for hampering sharing. The application of the data mining technique proposed in this research 
offers vital information to optimize the system in terms of the subscription policy and the 
location of terminals for the existing demand features. For instance, it can assist in deciding 
the location of new terminals depending on the type of demand to encourage, or in redesigning 
system attributes like the fare structure or the flat fee period. Finally, better understanding of 
mobility patterns (trip purpose, location of activities, time distribution) derived from our 
approach can be beneficial to urban transport and land use planning and management in 
general.  

We evaluate our data mining technique and illustrate its potential uses by applying the 
methodology to the TusBic bike-sharing system in Santander (Spain).  

The rest of the paper is organised as follows. The international literature is reviewed in section 
2 to provide an overview of the state of the art in the field of the analysis of the demand for 
bikeshare and based on ITS data. Our approach is presented in section 3, where we introduce 
the algorithm for data mining and illustrate its potential and benefits. The case study and the 
results are presented in section 4. Finally, limitations, conclusions and further work are 
discussed in section 5. 

2. State of the art in the field of BSS demand analysis  

The great amount of rich data provided by ITS has given momentum to the research on public 
transport. In particular, academics and practitioners have developed analyses, techniques and 
tools that can provide detailed information on the demand for transit systems. In general, these 
approaches apply trip-chaining concepts to the “footprints” left by the smartcards (and more 
recently by the bank cards) used to access the services to infer trip origin and destination, to 
observe travel patterns and to model traveler behavior. In the field of public transport demand 
analyses using ITS data, noteworthy are the contributions of Cortés, Gibson, Gschwender, 
Munizaga, and Zúñiga (2011), Gordon (2012), Munizaga and Palma (2012), Wang, Attanucci, 
and Wilson (2011), and Wilson, Zhao, and Rahbee (2009). 

Public and politicians progressively consider BSS as new mode of public transport. Useful 
reviews of the literature on BSSs are provided by García-Palomares et al. (2012) and Fishman, 
Washington, and Haworth (2013). DeMaio (2009) and Midgley (2011) review the bike-sharing 
schemes in relation to infrastructure and access to the service, as well as to business-
management model. The authors show that the most common type of bike-sharing scheme has 
emerged in the late 90’s and it is characterized by automatic, 24-hour provision of bikes at 
specific points across the city. The access is on a self-service basis requiring subscription and 
use of smartcards. Every time a bike is picked up or returned, the details of the transaction (e.g. 
user ID, bike ID, station location, time) are recorded, generating large amounts of automatic 
and rich bike mobility datasets. This source of information is applied for a variety of purposes 
in the transport research field (Froehlich, Neumann, & Oliver, 2008), and the number and the 
quality of algorithms and tools to analyze fully-automated BSS data are steadily increasing. 

O’Brien, Cheshire and Batty (2014) compare the bike movements in 38 BSS systems around 
the world, finding 6 dominant patterns. The study suggests a classification of the schemes 
considering the attributes of the demand and the features of the scheme infrastructure. The level 
of service of a BSS depends on the management and maintenance of the bikes. Therefore, the 
bike imbalance generated by asymmetrical demand is one of the most common problems in 
literature. The imbalance is linked both to the location of the docking stations in relation to the 



geography of the city served by the BSS (people tend to cycle downhill), and to the urban land 
use and daily activity patterns. Froehlich et al. (2008) study the availability of bicycles 
throughout the day, using a clustering method to understand the relationship between docking 
station locations and public bike mobility in Barcelona. They prove that the availability of 
bicycles at different times of the day is linked mainly to land use. The conclusion is confirmed 
by Vogel, Greiser, and Mattfeld (2011), who apply 3 clustering techniques to the case of Vienna 
BSS. Borgnat and Abry (2011) implement the same clustering technique to study the flows 
between the stations of the Vélo’v system in Lyon. Demand evolution, daily patterns and trip 
distance distributions are analyzed. The clustering method permits the authors to describe the 
mobility dynamics: trip purposes such as commuting, university and leisure are assumed from 
the distribution of time and space among each group of rentals. The same BSS is analyzed by 
Jensen, Rouquier, Ovtracht and Robardet (2010), who find that the demand for bikes doubles 
when the other public transport modes are on strike. 

The occasional studies that directly or indirectly focus on the impact of BSS on citizens’ 
mobility choices lead to diverse conclusions, possibly caused by different cycling culture and 
bike penetration. The uptake of bike-sharing is studied in the case of Hangzhou (China) by 
Shaheen, Zhang, Martin, and Guzman (2011). A survey including both members and non-
members shows that the demand for the BSS comes from a range of modes, including private 
cars and taxis, but also walking and transit. Interestingly, in Hangzhou BSS members have 
higher access to private cars than non-members. However, most studies generally conclude that 
it is difficult to induce a modal shift from private cars to shared bikes and that, when this 
happens, the change is small anyway (DeMaio, 2009; Fishman et al., 2013; Midgley, 2011). In 
line with this, Efthymiou, Antoniou, and Waddell (2013) estimate ordered logit models to 
assess the willingness to combine the use of cars and BSS. They find that bike-sharing is more 
attractive to people who currently walk.  

When the BSS infrastructure is successfully integrated within the public transport network, 
bicycles can be used to reach zones not covered by other mass public transport modes, thus 
fostering the possibility of multi-stage trips and providing an alternative to private cars. For 
instance, in Paris, the number of multimodal trips including the use of bicycles increased after 
the launch of the Vélib’ system (DeMaio, 2009). A positive synergy has also been proved 
between BSS and rail systems (Martens, 2004, 2007; Rietveld, 2000a, 2000b). Jäppinen, 
Toivonen, and Salonen (2013) offer an interesting contribution on the potential of BSS to 
enhance the overall public transport supply, showing that the provision of bike-share 
infrastructure has reduced travel time by more than 10% in Greater Helsinki.  

The rapidly expanding body of literature using transaction data to study BSS takes for granted 
that this kind of data cannot provide insights on trip purpose or user satisfaction. Investigations 
on these aspects are normally based on revealed or stated preference experiments. For instance, 
Bordagaray, Dell’Olio, Ibeas, Barreda, and Alonso (2014) study the perceived quality of 
service of the BSS in Santander by means of questionnaires. The possibility of using 
transactions data to infer the trip purpose is the challenge that motivates the approach presented 
in this paper.  

  



3. Types of use of bike-sharing systems 

We propose an algorithm to classify some of the trips of BSS users in well-defined usage types 
by mining datasets of automatically collected transaction information. Evaluating the incidence 
of each kind of usage type and  the related mobility patterns (origin and destination,  time and 
duration of the trips) can shed light on the actual use of the BSS and drive the operator in (re-) 
designing and managing it. The procedure considers different attributes of the smart-card 
transaction regarding a bike rental (in the following rental and trip are considered 
synonymous): user ID, bike ID, origin and destination stations, time-stamps of the collection 
and of the return. When the users carry out more than one trip per day, their behavior is 
evaluated by relating each trip to the previous and the following one made by the same user in 
the same day.   

The algorithm shown in Figure 1 evaluates the following conditions to classify the current 
rental: 

• The coincidence of the stations at origin and destination. If this is the case, the rental is 
classified as “round trip”, the first BSS usage type. 

• The existence of multiple rentals from the same user in the same day. If the user has 
rented only one bicycle during the day, his behavior cannot be classified and a new 
rental is considered. 

• The time elapsed between the return of a bike and the next rental of the day by the same 
user. If this dwell time (DT) exceeds a predetermined threshold (AT, activity threshold), 
it is assumed that the user has performed an activity different from travelling between 
the two bike rentals. 

• The sum of the durations of two subsequent trips (TT), when a rental begins 
immediately after the previous bike has been dropped off by the same user. BSSs 
generally permit the use of a bike with no extra cost within what it is called “flat fee 
interval” (FFI) that may not be enough, depending on the trip conditions and purpose. 
As a result, it is advised that the threshold ensures an accurate discrimination between 
the use of the bike for transport and a recreational ride. In literature, the maximum 
duration of a rental for transport purpose is assumed equal to 15-20 minutes, 
corresponding to a distance range of 2-5 to 7-8 kilometres (González, Melo-Riquelme, 
& Grange, 2015; Jensen et al., 2010; Midgley, 2011; Pucher & Buehler, 2008). Above 
this threshold, bikes are considered rented for leisure or physical exercise. Consistently, 
most BSS have a FFI of 30 minutes; however, Santander, the city that constitutes our 
case study permits a 60-minutes use without an extra charge, and so since it more than 
doubles the range assumed for transport, we assume a total travel time of 40 minutes in 
the illustrative application of the algorithm to distinguish a recreational demand for 
bikeshare from a rental for transport. 

• The symmetry of two subsequent trips. Symmetric trips are especially linked to 
commuting and other recurrent daily activities. In any case, whatever the activity at 
destination may be, it is important to detect symmetric trips because they correspond to 
a use of the bike as a transport means to get to where the main activity will take place. 

 



 
Figure 1. Algorithm to describe the usage behavioral framework within a BSS 

The implementation of the algorithm classifies bike rentals in 5 usage types. Our hypothesis is 
that each of these types is characterised by sufficiently homogeneous mobility patterns, 
whereas the trips that cannot be classified by the algorithm (isolated trips, not part of a 
sequence) do not follow any systematic pattern. A description of the 5 rental categories and a 
short discussion of how the study of their features can give useful insights on the system 
performance is provided below. 

 



Usage type 1: Round trips 

Round trips are those in which the origin coincides with the destination (o=d). These are the 
first identified in the algorithm (Figure 1). Round trips are expected to be associated mainly to 
recreational rides or to rides made for physical exercise. The corresponding trip may not have 
taken place at all if the BSS had not been available. However, some round trips may also be 
made to perform short activities (e.g. quick shopping), during which the bike is locked 
somewhere in the street. In some cases, the user may decide to pay an extra fee to carry out 
longer activities and park the bike in the street where no docking station is available. 

A precise characterisation of the round trips in terms of rental length and of land use of the 
zones served by the most demanded terminals can support decisions regarding the duration of 
the FFI, which should be decreased to discourage the recreational use of the shared bikes. The 
number and the spatial distribution of the round trips exceeding FFI may inform on the need 
for the relocation and/or the increase of the number of docking stations, so that bikes can be 
returned to a station during long activities, avoiding additional fees for the user and reducing 
bike idle time.  

Usage type 2: Rental time reset 

Some users requiring a bike for a longer period than the FFI may try to avoid extra fees by 
resetting the rental time, that is, by returning the bike and immediately renting a new one or 
even the same. This usage type is identified by the following conditions: 

[1] The dwell time between two subsequent trips in the same day is shorter than the activity 
threshold (DT<AT), i.e. no activity takes place between the two rentals. 

[2] The second bike (which may or may not be the same of the previous transaction) is 
rented at the same station where the one used in the previous trip is dropped off (j=k). 

[3] The overall travel time (considering the two rentals) is greater than the FFI (TTil > FFI).  

Condition [3] characterises a usage pattern not completely compatible with the sharing essence 
of the BSS, which is enforced (to a certain level) by levying extra fees for rental longer than 
the flat fee period. Note that the anxiety caused by the willingness to avoid extra fees could 
induce to reset the rental duration even when the ride would not be longer than the flat fee 
interval. A short first rental could also be due to need to change a faulty bike for a failure and 
not to the will of resetting the rental duration. However, the definition of a threshold of 
“shortness” requires further research.  

If the incidence of the rental time reset usage is deemed unacceptable, the BSS operator may 
decide to introduce a minimum interval between two rentals by the same user. An interesting 
sub-group of rentals are the “pseudo round trips”, i.e. rental time reset trips with the origin of 
the first rental coinciding with the destination of the second one. Pseudo round trips are 
expected to be typical of the recreational usage of the bikes. The analysis of the spatial patterns 
would provide further insights on the type of terminals that stimulate this type of use of the 
BSS: residential or recreational areas. 

Usage type 3: Bike substitution 

This is the case in which immediately after picking up a bike, the user realises that it is defective 
and so he returns it and rents a new one. Such a usage type is characterised by the following 
conditions: 

[1] The dwell time between two subsequent trips in the same day is shorter than the activity 
threshold (DT<AT).  



[2] The destination of the first trip is the origin of the second one (j=k); 
[3] The bike in the second transaction is different from that of the previous one (bikeij ≠ 

bikekl); 
[4] Different from condition [3] in the previous usage type, the cumulative duration of the 

two rentals is shorter than the flat fee interval (TTil < FFI).  

The first two conditions are the same characterising the usage type 2, the third is a sign that the 
user does not like the bicycle rented in the first trip and so it chooses a different one, whereas 
the fourth suggests that the intermediate stop is not linked to the attempt of avoiding the 
additional fees. Since the behavior is triggered by a random event like the rental of a faulty 
bike, the travel patterns characteristics of this usage type are expected to be less homogeneous 
than those of the other kinds of use. In any case, as long as the total travel time is not longer 
than the FFI, the data only permit to guarantee that a bike substitution has taken place under 
these circumstances. 

Bikes that are frequently involved in the first leg of this type of rentals should be checked as 
potentially defective. Trips with bike substitution can be identified by the methodology brought 
forward by Bordagaray, Fonzone, dell’Olio, and Ibeas (2014), which should be applied right 
before this algorithm. In the previous research, however, the assumed faulty bikes are returned 
to the system within the first 5 minutes of rental, right before the user rents a new bike at the 
same terminal. The first short rental is not assumed a trip itself and is thereby removed from 
the dataset. After the data undergo the previous detection, the algorithm in this research, detects 
the case when the bike has turned faulty on the way, while using it. The user experiences a bad 
performance of the bike and decides to change it for a different one (as established in condition 
[3] above). 

Usage type 4: Perfectly symmetrical mobility trips 

Symmetric trips (in which the destination of the first leg is the origin of the second one and 
vice versa) are typical of commuting mobility. Indeed, this characteristic is the key concept of 
the trip chaining approach widely used in the transport studies based on ITS data, as pointed 
out in the literature review in section 2. We make use of this feature to identify trips in which 
the bikes are presumably used as transport means. In this case, this the following conditions 
hold: 

[1] The dwell time between two subsequent trips in the same day is longer than the activity 
threshold (DT>AT). 

[2] The origin of the first trip is the destination of the second (i=l). 
[3] The destination of the first trip is the origin of the second (j=k). 

In this usage type, the use of the bike is ancillary to the activity carried out between the two 
rentals, including recreational activities. This implies that, in general, if there were no BSS, 
another transport mode (or a private bike) would be used. For this kind of use, existing literature 
finds travel times of 20 minutes on average.  

An analysis of the dwell time and the type of terminals demanded for this usage type would be 
insightful on the characterisation of the trip conditions that stimulate cycling mobility.  



Usage type 5: Non-perfectly symmetrical mobility trips 

Like the previous case, these trips imply an activity between the two rentals, but the second 
bike is picked up in a station different from that where the first bike is dropped off. This 
behavior is identified by the following conditions: 

[1] The dwell time between two subsequent trips in the same day is longer than the activity 
threshold (DT>AT).  

[2] The origin of the first trip is the destination of the second (i=l). 
[3] The destination of the first trip is different from the origin of the second (j≠k). 

In some cases, this usage pattern may be linked to the availability of spaces and bicycles. In 
fact, the asymmetry may suggest that it has not been possible to return the first bike at the 
desired terminal because of a lack of available spaces, or, alternatively, that the user has looked 
for a bike at the station where he left the bike previously but he could not find any. Of course, 
the asymmetry may be also due to the use of different transport means between the two rentals. 
The analysis of the spatial distribution (location, distance) of the return and pick-up terminals 
may help understand the dynamics underpinning this usage pattern, and providing for more 
capacity if needed. 

The set of the 5 usage patterns have been identified through different research steps. On the 
one hand, bike deficiencies and capacity problems were reported by users when asked in 
personal interviews carried out by Bordagaray et al. (2015). On the other hand, the occurrence 
of “tricky” behaviors and so the need to detect them have been identified in a simple analysis 
of the bike rental duration (Bordagaray et al., 2014). The algorithm has been implemented in 
Python. 

 

4. Application to TusBic BSS 

The smart-card transactions of the TusBic system in Santander have been used to validate the 
above described data mining methodology. The application to a real case study also permits to 
confirm our hypothesis that the heterogeneity of travel patterns is reduced within the rentals of 
the same usage type. 

4.1 Santander and TusBic 

Citizens face transport choices every day. Their decisions depend on the available alternatives 
and their relative utility. Demographics, urban shape, available modes and meteorology are 
recognized key issues in travel behavior, especially in the decisions about cycling. Therefore 
the characteristics of the city, of its mobility and of the BSS service must be analyzed before 
implementing the algorithm. This step is essential both to set the thresholds in the conditions 
evaluated in the data mining procedure, and to support the interpretation of the analysis of the 
various usage types.  

Urban context  

Santander is a medium-sized coastal city with 180,000 inhabitants in the north of Spain. It is 
characterised by a series of parallel hills and valleys running from northeast to southwest. The 
northern coast of Spain experiences rainy weather and mild temperatures typically ranging 
from 5 to 25-30ºC throughout the year.  

The hilly topography together with the fact that the city lays in a peninsula generates a mainly 
linear transport network (Figure 2) since the steep slopes make transport cross connections 



difficult. The bus network covers the entire area of the city, with a stop within 300 meters from 
any estate. All neighbourhoods are served by an average of 3-4 buses an hour in weekdays, 2-
3 at weekends. All the lines pass through the city center.  

BSS and bike lanes 

As suggested in the literature, the infrastructure dedicated to cycling plays a key role in 
promoting the use of bicycles  (Akar & Clifton, 2010; Dill & Carr, 2003; Dill, 2009; Pucher et 
al., 2010). As shown by Faghih-Imani, Eluru, El-Geneidy, Rabbat and Haq (2014), land use 
and facilities around the BSS terminals influence the demand for the BSS. Dell’Olio, Ibeas, 
Bordagaray and Ortúzar (2011) identify the infrastructure to foster cycling as a mode of 
transport in Santander.  

At the time of the data collection (2011), TusBic was comprised of around 200 bikes and 14 
terminals. Figure 2 shows the spatial distribution of the docking stations and in Santander and 
Table 1 describes the main features of the areas surrounding the terminals. 

Apart from the ordinary bike parking facilities, which are spread all over city, the infrastructure 
dedicated to cycling avoids the steep slopes and is mostly located along the perimeter of the 
city. The main attractions in Santander are served by the BSS (Table 1): the city center 
(terminals 1, 11 and 13); the rail station and the inter-urban bus station (terminal 14); the major 
touristic attractions such as the Park of La Magdalena (terminal 9), the Casino (terminal 8), the 
coastline (terminals 2, 4, 8, 9, 10), Las Llamas Park (terminal 3); and the University Campus 
(terminals 6 and 7). 

 
Figure 2. Localization of the TusBic terminals  

  



 

Table 1. Characteristics of the TusBic terminals 

BSS fare structure 

The fare structure and the types of subscription are key attributes of a BSS, as maintained by 
Midgley (2011). TusBic is open to general public. Three kinds of subscription are available: 
annual (10€), weekly (5€) and daily (1€). Weekly and daily subscribers (casual users) can 
register directly at the terminals by presenting a credit card. The card is charged with the fee 
and with a deposit of 150 €. Annual users must register online in advance. In Santander, the 
flat rate period during which the same bike can be used without additional charge, lasts 60 
minutes. 

4.2. Data description 

Our initial dataset (24,664 observations) includes the data collected in the summer 2011 (62 
days in July and August). The TusBic demand and its variability in terms of travel patterns 
peak during the summer months because of several reasons: 

• The summer weather is the most favourable to use the bikes. Previous research in 
Santander proves the negative influence of the bad weather on the choice of bicycles as 
mode of transport (Dell’Olio et al., 2011). The use of bikes sharply decreases during 
the rainiest months of the year, and July and August account for 30% of the yearly 
TusBic demand.  

• In the summer months, the bus system also experiences peak demand in the sunny days, 
due to demand of residents and tourists heading towards the seaside or the city center. 
This contributes to increase the attractiveness of the BSS. 

Termin
al 

Number 
of docks 

Bike 
lane Beach Panoramic 

view 
Trade 
center 

City 
center University Housing 

Long 
distance 
trains / 
buses 

1 40         

2 20         

3 20         

4 20         

5 20         

6 30         

7 30         

8 15         

9 15         

10 15         

11 25         

12 15         

13 25         

14 30         



• During summer, the variability of bike travel patterns peaks because all types of trip 
purposes can be expected given the simultaneous presence of tourists and residents, and 
the unstable weather. 

Transactions corresponding to “bike trials”, in which a bike is rented and then immediately 
substituted with a different one, are removed from the analysis. Vogel et al. (2011) 
systematically remove the rentals lasting less than 60 seconds whereas a more accurate 
approach is brought forward by (Bordagaray et al., 2014). By applying the latter methodology, 
we detect 5% of the total number of rentals to be removed for not being a trip but bike trials; 
75% of them are made by registered users, this is, annual subscribers.  

The data concerns 193 bicycles, with an average of 2 trips per day per bike. Compared to the 
statistics published by Fishman et al. (2013) and O’Brien et al. (2014), the demand for the 
Santander BSS appears quite low. On average, 1 bike a day is rented per subscriber. The annual 
members show the greatest variability of the number of rentals per day, however 90% of them 
do not exceed 17 rentals in the two months. 

4.3. General demand patterns 

Figure 3 shows the average hourly BSS demand compared to the demand for bus and private 
car in the city. The figure provides interesting insight on the mobility patterns in Santander. In 
Figure 3a it can be seen that the demand for buses and cars varies in a smoother way than that 
for shared bikes. The car use experiences a peak at lunch time, from 2 to 4 pm, in line with the 
Spanish custom of going back home for lunch. Different from the BSS in Barcelona and 
Zaragoza (Froehlich et al., 2008; Kaltenbrunner, Meza, Grivolla, Codina, & Banchs, 2010; 
O’Brien et al., 2014) that follow the same trend of motorised modes, in Santander the lunch 
time corresponds to a significant fall in demand for shared bicycles. This may indicate that 
cycling is generally considered an activity in itself, which in most cases takes place in the late 
morning and after the late afternoon. Nevertheless, the minor peak from 7 to 9 am may be 
ascribed to commuting bike trips since it occurs at the same time of the peaks of the other 
transport modes (Alonso, 2010). In Figure 3b the demand for bikes is disaggregated per type 
of user and day of the week. Major differences emerge between the rental rates of annual 
subscribers and more occasional users, but the general trend is common to all cases, with peaks 
taking place at mid-morning and late afternoon. The figure highlights the occurrence of a 
morning peak period (7 to 9 am) of the annual subscriber demand in weekdays that does not 
occur at weekends and for casual users. The finding suggests the existence of a group of regular 
TusBic users, who commute by shared bikes.   

 



 

 
Figure 3. Daily profiles of transport demand: a) Demand for BSS, buses and private cars; b) 

Average number of TusBic rentals 

4.3. Implications of the usage types in the travel patterns  

The conditions evaluated in the algorithm have been specified as follows for the present case 
study:  

• The activity threshold (AT) has been assumed equal to 15 minutes. Bordagaray et al. 
(2014) find that trips in which users change bicycle and the new rental starts no later 
than 15 minutes after the return of the first bike can be classified as bike trials. Noting 
that bike trials are a specific case of usage type in which no activity takes place between 
the two rentals, we think it is reasonable to extend the result of Bordagaray et al. (2014) 
and to assume no activity has taken place in any case in which the interval between two 
consecutive rentals of the same user is shorter than 15 minutes. Considering (a) a 
walking speed of 6km/h and a walking distance of 300m between the docking station 
and the location of the activity, and therefore a walking time of 6min; and (b) 2 minutes 
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overall to return the first bike and pick up the second; taking AT equal to 15min means 
that we assume that no activity can last less than 7min. 

• As said, the flat fee interval of the Santander BSS (60min) is longer than the commonly 
adopted value (30min). Therefore,  instead of the FFI itself, we take 40 minutes to 
distinguish between a bike substitution and the will to avoid being charged extra fee 
assuming, on the basis of the literature (Dill & Gliebe, 2008), and also considering the 
size of the city, that longer bike uses are recreational trips. Indeed, Dill and Gliebe 
(2008) concluded a rather different behavior between utilitarian cycling and other 
purposes. Cycling as a mode of transport was characterised by an average of 25 minutes 
of travel time in their study, whereas cycling for exercise resulted in around 45-50 
minutes. Consequently, an interval longer than 40 minutes is sufficient to assume 
purposes other than utilitarian. 

• We consider two rentals as being made in the same day if they take place in the 24h 
interval starting at 6am of a calendar day. This allows characterising return trips from 
night events as potential legs of journeys started before the midnight of the previous 
calendar day. 

With the described assumptions, we can classify 47% of rentals in one of the usage types 
defined by our algorithm. As previously mentioned, non-classified records are isolated bike 
rentals, not related to other trips in the same day. The percentage of classified trips can be 
expected to be characteristic of each BSS. It can provide initial insights on how the system is 
conceived and thereby used.  

Figure 4 shows the classification of the rentals obtained with the algorithm in Figure 1, 
distinguished by registered (Figure 4a) and casual (Figure 4b) users. Most of casual users’ 
rentals are round trips (almost half of the transactions) whereas round and perfectly 
symmetrical trips are almost equally represented in the annual card-holders’ rentals and overall 
the two categories collect 70% of trips. Annual subscribers substitute bikes more often. These 
differences complement the research by Lathia et al. (2012), in this case the comparison being 
made in terms of usage types. Lathia et al. (2012) found a higher demand for the BSS in London 
during weekends and a pattern change at some terminals after the policy that allow casual users 
was implemented, suggesting diverse travel behavior between registered and occasional users. 
From an alternative perspective, this research supports the conclusion drawn by Lathia et al. 
(2012) about the different cycling dynamics of each type of user.  

Note the operator should place importance in the second and third usage types presented in the 
graphs in Figure 4 since that demand is related to the will to reset the rental time or to substitute 
the bike. The first behavior might compromise the capacity of the system as it goes against the 
sharing nature of the service, whereas the second one is interpreted to be likely caused by a bad 
performance of the bike, which will influence in the overall perception of quality that the user 
may have, as concluded by Bordagaray et al. (2015).    



 

 
Figure 4. Usage types in TusBic: a) Annual subscribers; b) Weekly and daily subscribers 

4.4. Algorithm validation 

To validate our interpretation of the reasons underpinning the different usage types, we have 
estimated binary probit models explaining the probability of having a specific kind of trip with 
the type of subscription, the rental features (duration and time). Both logistic and normal 
distributions may be assumed in order to conceptualize the generation of a trip as a binary 
regression. The hypothesis of the errors distributing normal was accepted in this case due to 
the fit and the results supporting the common sense. 

The models are shown in Table 2. In estimating binary models, the interest is not in measuring 
how much each independent variable changes the probability of having one behavior with 
respect to one other behaviour, as it would be in the multinomial case, but compared to all other 
behaviors. In other words, we assume that the dependent variables of the binary models are not 
elements of the same multiple-choice exercise for the users, who may not even be aware of the 
choice set. Rather we consider that each particular type of rental (e.g., a bike trial) takes place 
in consequence of given situations occurring during the trip (for instance, hiring a faulty bike) 
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and the aim is to examine how much the independent variables explain each of the behavior 
strategies separately.   
The rental duration and the characteristics of the origin and destination terminal of each trip 
(described in Table 1) are the potential independent factors validating the heterogeneous travel 
demand across the defined usage behaviors. In the case of bike substitution and rental time 
reset types of usage, the pairs of subsequent rentals have been introduced as one unique 
journey, with the rental duration equal to the value of the total travel time (TTil) in the 
algorithm, this is, the sum of the durations of the two rentals. The peak period is related to the 
time-stamp at the rental origin; in the case considering the sum of the pair of subsequent rentals 
a unique one, the peak period refers to the origin of the first trip leg.  
As shown by Table 2, the occurrence of rentals in peak periods (7-9am and 1-4pm in weekdays) 
increases the probability of symmetrical trips and bike substitutions. This seems to confirm that 
symmetrical trips are associated to commuting, which normally takes place in peak times. The 
influence on the bike substitution usage type may be due to the shortage of well-functioning 
bicycles in relation to the demand in peak times. In all models but the one concerning the non-
perfectly symmetrical trips (in which the variable is not significant), the impact of the travel 
time and the peak period have opposite effects. This further corroborates the interpretation of 
symmetrical trips (more frequent in peak times) as trips with mobility purposes, normally 
shorter than trips for leisure or physical exercises that we think associated to rental time reset 
trips (more frequent in non-peak times). Finally our hypothesis that symmetrical trips are 
typical of mobility-related usage, whereas round and rental time reset trips are more common 
for recreational purposes is supported by the by the findings concerning the origin of each 
usage type: symmetrical trips are more frequently generated in residential areas, whereas the 
other trips tend to begin in non-residential zones. Finally, it should also be highlighted the 
influence of bike lanes on the probability to rent a bike. As shown by the models, such an 
infrastructure stimulates the generation of trips except in the case of the terminal where the 
bike is assumed to be changed to reset the rental time and in the case of symmetric pattern. In 
fact, together with the positive effect of the peak period on the symmetric behavior, the negative 
effect of bike lanes in this case means the terminals demanded by the users in this case cannot 
be reached by a bike lane, so there should be other attributes affecting this demand positively, 
such as the terminals being located in residential areas, as informed by the Model 4 (Table 2). 
On the contrary, those behaviors mainly associated with recreational cycling are shown to be 
positively affected by bike lanes as is the case of round trips and rental time reset. 
  



  Model 1 - Round trips Model 2 - Rental time 
reset 

Model 3 - Bike 
substitution 

Model 4 - Perfectly 
symmetrical journeys 

Model 5 - Non-perfectly 
symmetrical journeys 

  
Coefficien

t p-value Coefficien
t p-value Coefficien

t p-value Coefficien
t p-value Coefficien

t p-value 

Annual subscriber -0.087 0.004 -0.880 0.001 1.170 0.000 -0.068 0.075 -0.220 0.027 
Rental duration 0.007 0.000 0.210 0.000 -0.261 0.000 -0.019 0.000 0.003 0.174 
Peak period -0.540 0.000 -1.458 0.018 1.541 0.025 0.681 0.000 0.463 0.017 
Origin/Destination_residentia
l -0.994 0.000 - - - - - - - - 
Origin/Destination _bike lane 0.176 0.000 - - - - - - - - 
Origin/Destination _capacity 0.017 0.000 - - - - - - - - 
Origin1_residential - - -0.468 0.145 0.127 0.715 0.830 0.000 0.298 0.012 
Origin1_bike lane - - -1.033 0.001 1.113 0.002 -0.146 0.002 0.095 0.314 
Origin1_capacity - - -0.029 0.065 0.035 0.048 0.000 0.913 0.012 0.027 
Destination1_residential - - -0.118 0.693 0.197 0.558 -0.148 0.002 -0.284 0.009 
Destination1_bike lane - - -2.715 0.000 2.939 0.000 -0.112 0.036 0.081 0.584 
Destination1_capacity - - -0.061 0.001 0.069 0.001 -0.014 0.000 0.011 0.114 
Origin2_residential - - - - - - - - 0.014 0.875 
Origin2_bike lane - - - - - - - - 0.006 0.946 
Origin2_capacity - - - - - - - - -0.010 0.110 
Destination2_residential - - 0.337 0.073 1.191 0.001 - - - - 
Destination2_bike lane - - 0.184 0.303 1.451 0.000 - - - - 
Destination2_capacity - - -0.078 0.000 0.042 0.024 - - - - 
Log-likelihood function -4863.510 -84.681 -67.787 -3367.348 -583.319 

  

Table 2. Binary probit models for each usage type (Indexes 1 and 2 for origin and destination refer to the first and following rental in the usage 
behaviors described in models 2 to 5 )



As the models in Table 2 show, the characteristics of the origin and destination of a trip explain 
the usage types. To further investigate this issue, Figure 5 visualizes the spatial distribution of 
the origin of each usage type. For the sake of simplicity, bike substitutions are represented 
together with non-classified trips since the two groups are expected to be highly heterogeneous 
in terms of travel behavior, as previously argued. In the case of rental time reset, perfectly and 
non-perfectly symmetrical types, only first-leg trips are represented. This is because in trip 
chains the origin of the second trip is obviously dependent on the destination of the previous 
one. The figure confirms that spatial patterns of the different usage behaviors actually vary. 
Non-classified and bike substitution trips present small variations of the demand across 
terminals. On the contrary, the other usage types do show a clear preference for some of the 
terminals. These results support our hypothesis that the classified usage types are more 
homogeneous than isolated rentals.  

The distribution of symmetric trips provides insights on the features of the demand. The most 
demanded terminals for symmetric usage types are 1, 5, 10, 11, 13 and 14. All these docking 
stations are located in residential areas (Table 1), which supports our thesis that symmetrical 
usage is typical of trips starting at home, like the commuting ones, as resulted from Models 4 
and 5 in Table 2, where the peak period is confirmed to stimulate the generation of symmetric 
trips. The finding highlights the importance of the distance between terminals and housing 
estates and of network density household in determining the use of public bikes, as suggested 
by several existing studies (dell’Olio, Ibeas, & Moura, 2011; Fishman et al., 2013; García-
Palomares et al., 2012; Maldonado-Hinarejos, Sivakumar, & Polak, 2014). The spatial 
distribution of demand at the origins of rental time reset trips is similar to that of symmetric 
behavior trips, meaning that also the former usage type is mainly home originated. The least 
demanded terminals at the origin of a symmetric usage are 2, 3, 4, 6, 7, 8, 9 and 12. Indeed, 
Stations 2, 3, 4, 8 and 9 are located in recreational open areas with panoramic views and close 
to the seashore. Stations 6 and 7 are residential but they also serve the university campus, so it 
can be concluded that they are more used as destination zones than as origins of outward routes.  

Finally, recalling related literature (Akar & Clifton, 2010; Maldonado-Hinarejos et al., 2014; 
Pucher et al., 2010), the low demand for terminal 12 can be explained by two circumstances: 
it is a rather isolated terminal within the BSS network (Figure 2), and it is not served by a bike 
lane (Table 1). Terminal 1 is the most popular in any case. This can be expected, since it is the 
docking station with the largest capacity (Table 1) and it is located in the city center (Figure 
2), attractive to all possible trip purposes. The most surprising result is the demand for terminal 
3. As reported in Table 1, the location of this terminal permits great views of the skyline of the 
city, and also a bike lane serves and connects the park where it is located. However, it is not a 
touristic place since the coastline is not visible from the park and neither does the terminal 
serve the housing in the surroundings. However, the finding is explained by the land use: such 
terminal is located on the edge of the biggest park in Santander, a spot with no shops nor 
restaurants but an open and semi-natural area with lakes and paths for skating and cycling. 
Furthermore, there is a free parking lot next to the docking station, where people usually park 
to go for physical exercise or just to wander around. This suggests that trips originated at 
terminal 3 are primarily for leisure/exercise and not for mobility purposes, and therefore it 
confirms that the round trips are carried out as an activity per se. 

  



 
Figure 5. Spatial distribution of the origin of each usage type (percentage demand within the 

same usage type) 

 

Travel times are also analyzed to characterise the differences between the various types of BSS 
usage. In Figure 6 the box plots describe the rental duration of each usage type identified by 
the proposed algorithm. The duration of the two subsequent rentals is considered in the case of 
rental time reset and in bike substitution. Trips above 500 minutes have been omitted and 
considered outliers.  

As can be seen in Figure 6, round trips and those where the rental time has been reset show the 
longest uses of the public bikes, whereas perfectly symmetrical trips are the shortest, similar to 
non-perfectly symmetrical behavior and bike substitutions. Regarding the research by Dill and 
Gliebe (2008), the results confirm the hypothesis that the first two types are related to leisure 
or exercise cycling and symmetrical patterns with utilitarian cycling, in line with their findings 
of an average of 45-50 minutes for the first purpose and 25 minutes for the second.  
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Figure 6. Rental duration of each usage type 

 

The analyses in this section validate the developed algorithm because they show that it allows 
identifying different and easy-to-characterise usage patterns. In the following section, the usage 
types in the Santander case are analyzed in detail, to further illustrate the potential of the 
algorithm. 

4.5. Characterisation of the travel patterns of each usage type  

Round trips  

More than 40% of all the classified rentals in Santander are round trips. As it can be seen in 
Figure 4, this usage type is more common among casual users (50%) than among annual card-
holders (38%). 86% of round trips are longer than 20 minutes, 75% last more than 40 minutes, 
and 38% even overcome the flat fee interval of 60 minutes. Considering that 20 minutes is the 
average rental time in systems promoting a mobility-oriented use of public bikes (Jensen et al., 
2010), and the duration of about 45-50 minutes ride for exercise informed by Dill and Gliebe 
(2008), the fact that a high proportion of round trips last longer corroborates the idea that they 
are mainly recreational rides. This is in line with the survey of Bordagaray et al. (2015), 
according to which 75% of TusBic round trips are carried out  for leisure. In addition, the very 
probable recreational purpose of the ride in round trips was previously suggested with the 
results in Model 1 in Table 2: a negative effect of an annual subscription, peak period and 
residential terminals, at the same time that the rental duration and bike lane show a positive 
impact on the probability to make a round trip. 

Rental time reset 

With the proposed thresholds for the duration of an activity (AT=15 minutes) and the overall 
travel time (40 minutes instead of the FFI itself), 6.2% of rentals are classified as rental time 
reset. As explained earlier, we assume that this use of the BSS is related to the demand for 
public bikes for leisure or physical exercise. Resetting the rental time may aim to get round the 
fee imposed to ensure the sharing nature of the system. Two circumstances suggest that the 
goal of this category of rentals is to reset the time. Firstly, the same bike is actually rented in 
the two subsequent rentals in 40% of cases. This means that the bike was not returned because 



it was faulty. Secondly, 34% of all cases are perfectly symmetrical trips, i.e. the second bike is 
rented right after the first one is returned and the user terminates their journey where it started. 
The pattern seems to be typical of a pseudo round trip, whose return travel time is long enough 
to induce the users to reset the time rental to avoid incurring the fee. 12% of cases 
simultaneously show the above-mentioned conditions: the same bike in the two consecutive 
rentals and perfectly symmetrical journeys. Note that when neither condition is true, the aim 
of this kind of renting behavior mays still be resetting the rental time although the evidence 
provided by data is less strong. 

Further indications on the nature of this usage type come from the analysis of the duration and 
of the geographical distribution. The average of the overall duration of the two rentals is 90 
minutes with a standard deviation of 70 minutes. In addition, as shown by Model 2 in Table 2, 
the rental duration positively affects the probability to reset the rental time. Therefore, the 
overall journey tends to last longer than the 20 minutes that is considered the average duration 
of cycling for transport (Dill & Gliebe, 2008; Jensen et al., 2010; Pucher & Buehler, 2008); the 
average found in this research is even higher than the median found by Dill and Gliebe (2008) 
in the case of cycling for exercise, 8.5 miles and around 10 miles per hour, which means a 50-
minutes ride approximately.   

Figure 7 shows the distribution of the journeys corresponding to this renting behavior according 
to the origin of both the first and the second leg. The distribution of the origin of the first rental 
(already represented in Figure 5) shows the most popular terminals are located in residential 
areas. On the contrary, there is a clear tendency to reset the rental duration at touristic and 
recreational areas: terminals 3, 4, 9 and 11 (see Table 1 and Figure 2). This seems to support 
further the hypothesis that these trips are mainly leisure rides and the bike is returned only to 
avoid paying the additional fee. 

 

 
Figure 7. Spatial distribution of journeys with rental time reset (percentage of demand within 

the usage type) 

Bike substitution 

As pointed out in section 3, the analysis of this usage type allows identifying the bikes that do 
not work well and may need maintenance. Figure 8 shows the distribution of the frequency of 
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substitutions. While it is quite common for a bike to be substituted 1 or 2 times, bikes replaced 
more than 2 times are much less common. Therefore bikes with more than 2 replacements 
should be the first to be checked by the operator, which may optimize the redistribution route 
by considering this information. 

 

 
Figure 8. Number of bikes according to the number of times that they have been replaced by 

another bike 

The average total travel time of these trips is 25 minutes (considering the two trip legs), and 
the standard deviation 10 minutes. Therefore, many of these trips could be considered made 
for mobility purposes, an argument that is also supported by the positive effect of an annual 
subscription and the peak period, as well as the negative impact of the rental duration, presented 
in Model 3 of Table 2. The average travel time also confirms the finding of the survey of 
Bordagaray et al. (2015), according to which users place more importance on the quality of the 
bike when their journey is shorter than 25 minutes. This may point to the fact that cyclists using 
the service for transport (limited travel times) are more “picky” in terms of bike quality.  

As explained above, random travel patterns are expected for this usage type. The spatial 
distribution of origins and destinations represented in Figure 9 seems to confirm the expectation 
(the rentals ending with a bike substitution are considered single trips in the following analysis). 
In fact, although demand peaks at some terminals, it should be noted that all the docking 
stations are origin or destination of this kind of usage type, except for number 10 and 12. The 
latter is the least demanded in all usage types (Figure 5) so the concerning result is not 
surprising. 
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Figure 9. Spatial distribution of journeys with bike substitutions (percentage demand within 
the usage type) 

Perfectly symmetrical trips 

Perfectly symmetrical trips are more common among registered users (Figure 4). In addition, 
recalling the significant and positive impact of the peak period and the negative effect of the 
rental duration in Model 4 of Table 2, the results suggest that this bikeshare usage resembles a 
typical ride for mobility purposes. 

The average travel time of each leg of a symmetrical journey is 20 minutes with standard 
deviation of 27 minutes and positive skewness. The average is in agreement with cycling travel 
times among users of the public bikes in Lyon (Jensen et al., 2010) or Santiago of Chile 
(González et al., 2015). The time between two perfectly symmetrical rentals, i.e. the duration 
of the activity that is supposed to be the purpose of travelling, ranges between 16 minutes to 
13 hours with an average of around 3 hours. 

Figure 10 compares the spatial distribution of the origins of perfectly symmetrical trips with 
that of the destinations, where the activity takes place. The information revealed by Figure 10 
is in line with the results of Model 4 (Table 2). As expected, the destinations substantially differ 
from the origins. Destinations are localised mainly in the area of influence of terminals 9, 1, 8, 
4, 13, 2, 11 and 14, consistently with activity distribution within the city (Table 1 and Figure 
2). Furthermore, the demand concerning symmetric patterns at terminal 14 is considerably 
greater than other usage types (Figure 5). Since this docking station is close to the train station, 
the result supports the literature highlighting potential synergies between BSS and transit 
services (González et al., 2015; Jäppinen et al., 2013; Martens, 2004, 2007; Pucher & Buehler, 
2008, 2009). The area, densely populated and far from touristic attractions, is not served by 
any bike lane. Literature provides evidences that experienced cyclists choosing the bike for 
transport are less influenced by the presence bike lane (Akar & Clifton, 2010; Dill & Gliebe, 
2008; Dill, 2009). Therefore the fact that the lack of a dedicated lane does not discourage the 
demand in the case of the terminal 14 can be interpreted as a proof that the bikes are rented 
more for mobility purposes than for leisure.  
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Figure 10. Spatial distribution of perfectly symmetric trips (percentage demand within the 

usage type) 

Non-perfectly symmetrical trips 

Similar to the perfectly symmetric renting behavior, the range of time between the two rentals 
on non-perfectly symmetrical trips ranges between 16 minutes to 10 hours with an average of 
around 3 hours. The average distance between origin and destination of this kind of trips is 990 
meters, the standard deviation 580 meters, a distance that can be easily covered on foot. In 
some cases, the non-perfect symmetry might be due to an insufficient capacity of the 
destination terminals.  

The spatial distribution of non-perfectly symmetrical rentals is represented in Figure 11. The 
profiles are similar to the analogous ones in Figure 10, although in this case the destination of 
the outward trips does not coincide with the origin of the return trips. The similarity of the 
distribution suggests that also these trips can be interpreted as activity-oriented. The land use 
(Table 1 and Figure 2) around the most demanded terminals (1, 2, 4, 8, 9 and 11) shows that in 
this case TusBic is used to reach leisure activities. Furthermore, this hypothesis was previously 
suggested by Model 5 presented in Table 2, where a residential origin and a non-residential 
destination of the first leg increase the probability for a non-symmetrical behavior.  
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Figure 11. Spatial distribution of non-perfectly symmetric trips (percentage demand within 

the usage type) 

   

5. Conclusions 

The implementation of Intelligent Transport Systems within bike-sharing schemes makes big 
and rich datasets available to operators. The use of such data to understand and optimise system 
operations has been proposed and relatively widely explored in literature. Instead, our paper 
has put forward a method to take advantage of the passively collected data to derive information 
on the purpose of the bike rental (a tool for transport versus for recreation or physical exercise) 
from the features of the recorded rentals. We have developed a data mining algorithm aiming 
to classify rentals in usage types (round rentals, interval duration reset, bike substitution, 
perfectly symmetrical and non-perfectly symmetrical journeys) corresponding to very well 
defined user behaviors described in terms of symmetries, origin and destination coincidence or 
quick bike substitutions.  

We have tested the algorithm by an application to a dataset concerning the bike sharing system 
of Santander, Spain. The limited size of the TusBic system, and our familiarity with it and the 
city have allowed a thorough interpretation of the results provided by the algorithm. We 
conclude that the groups of rentals built by the algorithms actually show the features that we 
were expecting in designing the data mining procedure. Therefore the algorithm can be 
considered validated. We note that the size of the samples made available by the current 
technology allows the identification of less usual mobility patterns such as bike substitutions, 
which would have been difficult to obtain by traditional survey techniques. 

Our algorithm can tell the rentals having mobility as their primary scope from those in which 
cycling itself is the activity (for leisure and/or exercise). The spatial and temporal analysis 
confirms that the two groups of trips have different features, as found also by Heinen, van Wee, 
and Maat (2010). Significant differences exist also between the travel patterns followed by 
users with different types of subscription. This complements the research of Lathia et al. 
(2012). In general, the discussion of our findings confirms what is expected in the different 
types of  BSS classified by O’Brien et al. (2014). For instance, that the incidence of symmetric 
trips is higher when the bicycles are used for commuting. Symmetric patterns are typical of 
daily commuting trips. Wherever the scheme regulations encourage people using the bikes to 
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commute to register, such symmetrical trips are expected to be wider represented among 
registered users than among casual ones. In contrast, casual users’ demand can be expected to 
show greater heterogeneity and fewer symmetries. Therefore, casual users’ demand (including 
the touristic demand) is expected to be mostly represented by rental time resets and bike 
substitutions, and to show an important proportion of unclassified rentals.  
The implementation of the algorithm may provide useful insights to manage a BSS. Two 
specific usage types identified by the proposed data mining procedure are particularly relevant 
for operators: rental time reset and bike substitution. The former behavior might jeopardize the 
regular operations of the system, as it is against the sharing nature of the service. Once rentals 
that belong to this usage type have been identified, their time and spatial characteristics can be 
determined, and this can cast light on the conditions under which users benefit of a bike for a 
period longer than the flat fee interval without paying extra money. This is a very valuable 
information to improve and redesign the service (for instance, the FFI could be changed to half 
an hour in the case of Santander in order to motivate the bike rotation; also some terminals may 
need extra capacity such as number 3 at off-peak periods, and also an application could be 
developed that permits the user to indicate that the bike is faulty when returning the bike at the 
terminal and so that the bike is then blocked until it is collected for repair). The occurrence of 
a substitution may be a sign of bad performance of a bike, a circumstance which has a large 
negative influence on the users’ overall perception of the quality of the system, as concluded 
by Bordagaray et al. (2015). Since the bike IDs are recorded, they can be easily localised and 
a check can be included in their redistribution route.  

It is recommended that the operator applies this tool on a daily or weekly basis in order to 
optimize the bikes redistribution by the identification of the bikes that have been substituted 
the most. In any case, the tool should be implemented whenever the demand is expected to 
undergo a significant change, for instance in the summer or during particular events. Our 
algorithm would provide interesting insights for before-after evaluation of transport policies, 
scheme changes (e.g. the installation of a new bike terminal), or land use variations like, for 
instance, new developments or the opening/closure of schools. 

The tool is able to detect a set of travel behaviors whose characterization is of course influenced 
by both the available data and the general understanding of travel behavior and cycling. 
However, we think that the accurateness of the classification provided by the algorithm permits 
to design both strategic and operational measures for the sharing scheme. Other source of 
information such as GPS data could be used to gain deeper understanding of the described 
usage behaviors.  
Finally, the data mining technique could be further applied to different and larger schemes with 
two purposes: to validate the power of the methodology in all types of BSSs and to compare 
the results with the implications derived from the classification of BSSs provided by O’Brien 
et al. (2014) in terms of the type of use: commuting, leisure or touristic. Nevertheless, further 
algorithms could be developed with the same smartcard transactions in order to classify users 
and enrich the characterisation of the bikeshare demand while becoming less dependent on 
traditional survey methods.   

 

Acknowledgements 

The authors would like to acknowledge the financial support provided by the Spanish Ministry 
of Economía y Competitividad in the projects TRA2010-18068 and TRA2012-39466-C02-02, 



and the grant BES-2013-066347. Furthermore, it is the authors’ desire to thank the City Council 
of Santander and JCDecaux for providing the data that has allowed validating this research. 

 

References 

Akar, G., & Clifton, K. J. (2010). Influence of Individual Perceptions and Bicycle 
Infrastructure on Decision to Bike. Transportation Research Record: Journal of the 
Transportation Research Board.  

Alonso, B. (2010). Bus stop location model considering the operation and incidents on the 
network. Ph.D. thesis, University of Cantabria. 
Bordagaray, M., Dell’Olio, L., Ibeas, Á., Barreda, R., & Alonso, B. (2015). Modelling the 

Service Quality of Public Bicycle Schemes Considering User Heterogeneity. 
International Journal of Sustainable Transportation, 9(8), 580–591.  

Bordagaray, M., Fonzone, A., dell’Olio, L., & Ibeas, A. (2014). Considerations about the 
analysis of ITS data of bicycle sharing systems. Procedia - Social and Behavioral 
Sciences, 162(Panam), 340–349.  

Borgnat, P., & Abry, P. (2011). Shared bicycles in a city: A signal processing and data analysis 
perspective. Advances in Complex Systems, 14(3), 415–438. 

Cortés, C. E., Gibson, J., Gschwender, A., Munizaga, M., & Zúñiga, M. (2011). Commercial 
bus speed diagnosis based on GPS-monitored data. Transportation Research Part C: 
Emerging Technologies, 19(4), 695–707.  

Dell’Olio, L., Ibeas, A., Bordagaray, M., & Ortúzar, J. D. D. (2011). Modeling the Effects of 
Pro Bicycle Infrastructure and Policies Toward Sustainable Urban Mobility. Journal of 
Urban Planning and Development, 140(2), 1–8.  

dell’Olio, L., Ibeas, A., & Moura, J. L. (2011). Implementing bike-sharing systems. 
Proceedings of the ICE - Municipal Engineer, 164(2), 89–101.  

DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal 
of Public Transportation, 12(4), 41–56.  

Dill, J. (2009). Bicycling for transportation and health: the role of infrastructure. Journal of 
Public Health Policy, 30, S95–S110. 

Dill, J., & Carr, T. (2003). Bicycle Commuting and Facilities in Major U.S. Cities: If You Build 
Them, Commuters Will Use Them. Transportation Research Record, 1828, 116–123. 
http://doi.org/10.3141/1828-14 

Dill, J., & Gliebe, J. (2008). Understanding and measuring bicycling behavior: A focus on 
travel time and route choice. Portland, OR.  

Efthymiou, D., Antoniou, C., & Waddell, P. (2013). Factors affecting the adoption of vehicle 
sharing systems by young drivers. Transport Policy, 29, 64–73.  

Faghih-Imani, A., Eluru, N., El-Geneidy, A. M., Rabbat, M., & Haq, U. (2014). How land-use 
and urban form impact bicycle flows: evidence from the bicycle-sharing system (BIXI) in 
Montreal. Journal of Transport Geography, 41, 306–314.  

Fishman, E., Washington, S., & Haworth, N. (2013). Bike Share: A Synthesis of the Literature. 
Transport Reviews, 33(2), 148–165.  

Froehlich, J., Neumann, J., & Oliver, N. (2008). Measuring the pulse of the city through shared 
bicycle programs. In Proceedings of the International Workshop on Urban, Community, 



and Social Applications of Networked Sensing Systems, UrbanSense08. 
García-Palomares, J. C., Gutiérrez, J., & Latorre, M. (2012). Optimizing the location of stations 

in bike-sharing programs: A GIS approach. Applied Geography, 35(1-2), 235–246.  
González, F., Melo-Riquelme, C., & Grange, L. De. (2015). A combined destination and route 

choice model for a bicycle sharing system. Transportation. 
http://doi.org/10.1007/s11116-015-9581-6 

Gordon, J. B. (2012). Intermodal Passenger Flows on London’ s Public Transport Network. 
Massachusetts Institute of Technology. 

Heinen, E., van Wee, B., & Maat, K. (2010). Commuting by Bicycle: An Overview of the 
Literature. Transport Reviews, 30(1), 59–96.  

Jäppinen, S., Toivonen, T., & Salonen, M. (2013). Modelling the potential effect of shared 
bicycles on public transport travel times in Greater Helsinki: An open data approach. 
Applied Geography, 43, 13–24.  

Jensen, P., Rouquier, J.-B., Ovtracht, N., & Robardet, C. (2010). Characterizing the speed and 
paths of shared bicycle use in Lyon. Transportation Research Part D: Transport and 
Environment, 15(8), 522–524.  

Kaltenbrunner, A., Meza, R., Grivolla, J., Codina, J., & Banchs, R. (2010). Urban cycles and 
mobility patterns: Exploring and predicting trends in a bicycle-based public transport 
system. Pervasive and Mobile Computing, 6(4), 455–466.  

Lathia, N., Ahmed, S., & Capra, L. (2012). Measuring the impact of opening the London shared 
bicycle scheme to casual users. Transportation Research Part C: Emerging Technologies, 
22, 88–102.  

Maldonado-Hinarejos, R., Sivakumar, A., & Polak, J. W. (2014). Exploring the role of 
individual attitudes and perceptions in predicting the demand for cycling: a hybrid choice 
modelling approach. Transportation, 41(6), 1287–1304.  

Martens, K. (2004). The bicycle as a feedering mode: Experiences from three European 
countries. Transportation Research Part D: Transport and Environment, 9(4), 281–294.  

Martens, K. (2007). Promoting bike-and-ride: The Dutch experience. Transportation Research 
Part A: Policy and Practice, 41(4), 326–338.  

Midgley, P. (2011). Bicycle-sharing schemes: Enhancing sustainable mobility in urban areas. 
New York. 

Munizaga, M. a., & Palma, C. (2012). Estimation of a disaggregate multimodal public transport 
Origin–Destination matrix from passive smartcard data from Santiago, Chile. 
Transportation Research Part C: Emerging Technologies, 24, 9–18.  

O’Brien, O., Cheshire, J., & Batty, M. (2014). Mining bicycle sharing data for generating 
insights into sustainable transport systems. Journal of Transport Geography, 34, 262–
273.  

Pucher, J., & Buehler, R. (2008). Making Cycling Irresistible : Lessons from the Netherlands, 
Denmark and Germany. Transport Reviews, 28(4), 495–528. 

Pucher, J., & Buehler, R. (2009). Integrating Bicycling and Public Transport in North America. 
Journal of Public Transportation, 12(3), 79–104. 

Pucher, J., Dill, J., & Handy, S. (2010). Infrastructure, programs, and policies to increase 
bicycling: an international review. Preventive Medicine, 50(Supplement), S106–25.  

Rietveld, P. (2000a). Non-motorised modes in transport systems : a multimodal chain 



perspective for The Netherlands. Transportation Research Part D, 5(1), 31–36. 
Rietveld, P. (2000b). The accessibility of railway stations : the role of the bicycle in The 

Netherlands. Transportation Research Part D, 5(1), 71–75. 
Shaheen, S. a., Zhang, H., Martin, E., & Guzman, S. (2011). China’s Hangzhou Public Bicycle. 

Transportation Research Record: Journal of the Transportation Research Board, 2247, 
33–41.  

Vogel, P., Greiser, T., & Mattfeld, D. C. (2011). Understanding Bike-Sharing Systems using 
Data Mining: Exploring Activity Patterns. Procedia - Social and Behavioral Sciences, 20, 
514–523. 

Wang, W., Attanucci, J. P., & Wilson, N. H. M. (2011). Bus Passenger Origin-Destination 
Estimation and Related Analyzes Using Automated Data Collection Systems. Journal of 
Public Transportation, 14(4), 131–150. 

Wilson, N. H. M., Zhao, J., & Rahbee, A. (2009). The potential impact of automated data 
collection systems on urban public transport planning. In N. H. M. Wilson & A. Nuzzolo 
(Eds.), Schedule-Based Modeling of Transportation Networks (Vol. 46, pp. 75–99). New 
York: Springer. 

 


