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A B S T R A C T

Wireless sensor networks have become incredibly popular due to the Internet of Things’ (IoT) rapid devel-
opment. IoT routing is the basis for the efficient operation of the perception-layer network. As a popular
type of machine learning, reinforcement learning techniques have gained significant attention due to their
successful application in the field of network communication. In the traditional Routing Protocol for low-
power and Lossy Networks (RPL) protocol, to solve the fairness of control message transmission between
IoT terminals, a fair broadcast suppression mechanism, or Drizzle algorithm, is usually used, but the Drizzle
algorithm cannot allocate priority. Moreover, the Drizzle algorithm keeps changing its redundant constant k
value but never converges to the optimal value of k. To address this problem, this paper uses a combination
based on reinforcement learning (RL) and trickle timer. This paper proposes an RL Intelligent Adaptive Trickle-
Timer Algorithm (RLATT) for routing optimization of the IoT awareness layer. RLATT has triple-optimized
the trickle timer algorithm. To verify the algorithm’s effectiveness, the simulation is carried out on Contiki
operating system and compared with the standard trickling timer and Drizzle algorithm. Experiments show that
the proposed algorithm performs better in terms of packet delivery ratio (PDR), power consumption, network
convergence time, and total control cost ratio.
1. Introduction

Emerging network applications like the Industrial Internet [1], the
Internet of Things [2,3], and edge computing [4] have raised the
efficiency standards for routing protocols in recent years as a result
of the Internet’s rapid development. However, the current network
is no longer as reliable as the conventional wired network, and the
network connection status varies often as a result of the access of
many mobile IoT terminals [5–7]. The network has substantial diffi-
culties making effective and flexible routing decisions because of the
conflict between application needs and network characteristics. Addi-
tionally, as service types increase, more optimization goals—including
those involving PDR, power usage, network convergence time, and the
network’s overall control overhead ratio—become necessary [8–10].

In the current dynamic network [11–14], to ensure quality of service
(QoS), improving the hardware infrastructure is not only costly but
also has limitations on performance improvement. A large number
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of IoT terminals access the network and need to formulate efficient,
adaptive, and intelligent routing strategies to ensure the reliable op-
eration of the IoT. Therefore, many network optimization schemes
based on mathematical models have been proposed [15–17]. Numer-
ous limitations and idealized assumptions are used in the majority
of these studies to simplify specific scenarios so that mathematical
techniques can effectively handle network optimization challenges [18–
22]. However, the challenging aspect of actual situations lies in the
abundance of unknowns, making it difficult to guarantee the usefulness
of this method. Additionally, individually modelling each task not only
hampers the network’s scalability but also restricts a generic model
from simultaneously addressing multiple routing optimization tasks.
Therefore, it is anticipated that the RL [22–29] will offer a fresh
approach to solving this issue. Deep learning models [30–33] are often
able to provide better performance, but it is not always necessary or
appropriate to use them. First, the state space and action space defined
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in this paper are small and simple, so basic reinforcement learning
methods may be sufficient to achieve good performance. Second, deep
reinforcement learning requires greater computational cost as well as
more computational data, which may be too complex to use on simple
problems.

The development of hardware components like the central pro-
cessing unit (CPU) and graphics processing unit (GPU) has boosted
the learning [34,35] and generalization [36,37] capabilities of the RL
model. High precision and significant versatility are the hallmarks of
data-driven intelligent routing [38–45]. Different network optimization
challenges can be solved using models trained on multiple datasets
without the need for elaborate network environment assumptions and
modelling [46–48].

RPL (Routing Protocol for low-power and Lossy Networks) is a
wireless network routing protocol with low power consumption and
easy packet loss. It is an active protocol based on distance vector,
running on IEEE 802.15.4, and optimized for multi-hop and many-
to-one communication, but it also supports one-to-one messages. The
trickle-timer mechanism maintains the transmission interval of the DIO
control information of the RPL protocol. In addition, the Trickle-Timer,
as an efficient and lightweight routing update algorithm, has gradually
become one of the main algorithms for IoT routing. Based on this,
we combine the characteristics of RL and trickle timer and propose
an intelligent adaptive trickle timer algorithm to improve the efficient
operation of IoT routing.

The main contributions of this paper are as follows:

• This paper proposes an adaptive trickle timer algorithm based on
RL. In addition, according to the characteristics of the standard
trickle timer algorithm, the proposed RLATT algorithm performs
triple optimization on the trickle timer algorithm.

• In the experimental section, we assessed the PDR (Packet Delivery
Ratio), power consumption, network convergence time, and total
network control overhead ratio of the proposed RLATT algorithm.
We compared it with other algorithms in the literature and con-
cluded that the proposed algorithm outperformed the existing
ones.

The paper’s organization is as follows: Section 2 presents the related
work, which mainly includes the core concepts related to this paper.
Section 3 presents the RL-based IoT routing optimization algorithm.
Simulation experiments and result analysis are given in Section 4.
Finally, Section 5 provides the conclusion.

2. Related work

2.1. RPL overview

IoT networks usually consist of small battery-powered devices with
limited memory, and computing power, so traditional communication
protocols are not very applicable. At the network layer, many control
overheads are involved for efficient data delivery, consuming valuable
resources of these devices. Routing Protocol for Low Power and Lossy
Networks (RPL) [49], which organizes the Internet of Things network
into a Destination-Oriented Directed A-cyclic Graph (DODAG) with
Multi-access edge computing (MEC) as the root, i.e., the DODAG root,
was created to handle the operation at the network layer. Network-
level traffic ultimately ends up at the DODAG root, which connects
the topology to other IPv6 domains (e.g., the Internet). Using DODAG
Information Object (DIO) [50] messages, uplink routes are built and
maintained. Each node in the PRL protocol broadcasts its communi-
cation straight to a designated parent node, which is chosen using
the destination function [51]. AK Idrees et al. proposed a review
on RPL protocol optimization, covering the fundamental concepts,
optimization techniques, application situations, and potential future
developments for RPL protocol [52]; A comparison study was carried
out by H. Kharrufa et al.on a number of RPL protocol optimization
trategies, including DAG-based, multicast-based, greedy-based, and
2

ptimization based on routing tables [53].
2.2. DODAG build

To implement the construction of DODAG, RPL specifies some con-
trol messages: DODAG Information Solicitation (DIS), Destination Ad-
vertisement Object (DAO), DIO, etc. The graph construction process
starts from MEC, and the root first uses DIO to broadcast information
about the graph. Neighbouring nodes listening to the root receive and
process DIO messages and decide whether to join the graph based on
the destination function, broadcast path spend, etc. Once a neighbour
node is added to the graph, it has a route to the DODAG root, and the
root becomes the parent of this node. The neighbour node then calcu-
lates its rank value in the graph and sends a DAO message containing
the routing prefix information to its parent node. IoT terminals can
also use DIS messages to proactively request graph information from
neighbouring nodes. This process is repeated for all neighbouring nodes
until a DODAG with MEC as the root node is constructed in the whole
network (see Fig. 1).

DIS control messages are used for neighbour node discovery, DIO
is used to broadcast DODAG information, and DAO transmits desti-
nation information upwards. Among these control messages, the main
overhead is due to the DIO messages, which are broadcasted at each
time interval. The RPL protocol aims to lessen node energy usage and
speed up network convergence. A finite quantity of energy resources
are used up during the transmission of control messages. As a result, the
network’s DIO message transmission is inversely correlated with energy
usage. One of the primary design objectives of the IoT communication
protocol is to preserve network performance while minimizing the
quantity of control messages.

2.3. Trickle timer

The transmission interval of DIO control information is maintained
by a trickle timer mechanism. The trickle timer algorithm has been a
major research topic for researchers for its reliability and scalability. It
has been the focus of many IoT-related research projects in recent years.
The trickle timer algorithm aims to increase or decrease the frequency
of DIO transmission depending on the network conditions. According
to the standard, it increases the transmission rate of DIO messages if a
network inconsistency is detected. Among the inconsistency messages
mainly include the detection of loops in the network, failure of a node
in the network or a node joining the network, etc. Similarly, if the
network is consistent, it decreases the DIO transmission rate [54]. 𝑇
Clausen introduced the basic principles and applications of Trickle
Timer in [55]; Philip Levis introduced the Trickle Timer algorithm
in [56] in Applications in wireless sensor networks, and some improved
methods are proposed. D Nabil described the basic principle and appli-
cation of the Trickle Timer in the RPL protocol in [57]. The IoT terminal
is equipped with a trickle timer for defining the operation interval
and a counter for counting the number of consistent messages that are
consistent with the messages sent by the node. The parameters in the
trickle timer are explained: 𝐼max is the maximum time interval, 𝐼min is
he minimum time interval, 𝐼 is the current time interval, tTimer is the
andom time in the current interval, c is the total number of consistent
IO received in the current interval to suppress DIO transmission, also
nown as redundancy constants, received in the current interval to
uppress DIO transmission, also known as redundancy constants. The
rief flow of the trickle timer algorithm is described as follows:

1. Set 𝐼 to a value in
[

𝐼min, 𝐼max
]

to start the first time slot.
2. The first time slot starts by setting c = 0, tTimer = [I∕2, I] is a

point taken arbitrarily in the interval, and each time slot stops
at 𝐼 .

3. When the trickle timer receives a consistency message, let c+ =
1.

4. At time timer, the trickle timer checks if there is c < k and only

allows packets to be sent if c < k.
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Fig. 1. An overview of RPL Network Model.
4],
5. When I expires, make 𝐼∗2, if 𝐼∗2 > 𝐼max, set 𝐼 = 𝐼max.
6. If the trickle timer receives an inconsistency message, the trickle

timer will reset the timer.

One of the key difficulties for trickle timer algorithms is ensuring
fairness in the transmission of control messages among IoT terminals.
Putting in place a fair broadcast suppression mechanism is one of the
fixes. The node’s suppression of DIOs during discrete time intervals is
monitored in this mechanism by the variable 𝑥. Nodes that had DIO
suppression during the previous time period are given a higher priority
to transmit DIO messages during the following time interval.

To ensure fair DIO transmission among nodes, a recently proposed
Drizzle algorithm [58] divides up nodes’ DIO transmission rates based
on their prior DIO transmissions. The variable s keeps track of all DIO
broadcasts made in the previous time period by IoT terminals. IoT ter-
minals are given lower DIO transmission rates in subsequent intervals
and vice versa depending on which has more DIO transmissions in the
past. Additionally, the Drizzle algorithm does away with listen-only in-
tervals, resulting in quicker network data transmission to neighbouring
nodes. It consequently results in quicker network convergence times.
However, Drizzle is unable to give priority to nodes that have recently
received inconsistent DIO messages. The redundancy constant 𝑚𝑎𝑡ℎ𝑟𝑚𝑘
value of the Drizzle method is also constantly changing, never converg-
ing to the ideal value. We conducted research to address this issue and
discovered that the trickling timer algorithm and RL technology work
well together as an algorithmic solution.

3. IoT routing optimization algorithm based on RL

This section propose an RL-based adaptive trickle timer method.
There are two subsections within this section. The issue and an expla-
nation of RL are presented in the first subsection. The second section
goes into great detail on the proposed RLATT algorithm.

As shown in Fig. 2, the overall framework of the RLATT algorithm
consists of two parts: the network environment and the agent. The
network environment includes a network topology of routers (IoT ter-
minals). The IoT terminals transmit control information among them-
selves to update routing table information to form a dynamic network
3

environment. The edge server collects information from each IoT termi-
nal in the network in real time. It interacts with the agent information
to make decisions in response to state changes in the network.

3.1. Problem analysis

Due to their large effects on a wide range of network performance
parameters, including convergence time [59], control overhead ra-
tio [60], power consumption [61,62], and packet delivery rate [63],
trickle-down timers have been a popular research issue in the field
of network routing. The effort of striking a balance between these
measurements is difficult and crucial. The following areas of difficulty
are highlighted by the existing literature on trickle timers:

1. The overhead control ratio and power consumption rise when
the redundancy constant 𝑚𝑎𝑡ℎ𝑟𝑚𝑘 is not selected adaptively.
Therefore, for the trickling timer method to function properly,
adaptive redundancy constant selection is essential.

2. In inter-node DIO transfers, load balancing is harmful for power
usage and congestion control. Therefore, in time-varying self-
organizing networks, load balancing in DIO transmission is es-
sential to ensuring extended battery life.

3. In order to send the revised DIO information on the network
as quickly as feasible, nodes that have received erroneous DIO
signals must be allocated a higher DIO transmission rate in
subsequent intervals.

4. The trickling timer algorithm’s performance can be further op-
timized by making intelligent and self-learning decisions about
DIO transfer or suppression.

Due to its successful implementations in network communications [6
such as channel access [65], routing [66], and parent selection [67],
RL approaches have become a well-known machine learning approach.
Through the use of Markov Decision Processes (MDPs), RL models are
learnt. The trickling timer approach is enhanced by the algorithm given
in this chapter using Q-learning. The IoT terminal 𝑚 is a regarded an
agent and possesses a set of states, namely S =

{

s , s ,…s
}

in the
0 1 𝑛
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Fig. 2. RL-based IoT routing optimization algorithm RLATT.
Table 1
List of symbols.

Notation Definition

𝐷𝐼𝑂𝑠𝑒𝑛𝑡
𝑚 Tracks the number of DIO transmissions performed by IoT endpoint m;

resets to zero when inconsistencies are detected
𝑛 Keeps a record of the number of intervals between two resets to 𝐼𝑚𝑖𝑛
𝑐𝑘 Keeps the current value of the redundancy factor k, which is achieved by

increasing or decreasing the default redundancy factor value k
𝑖𝑛𝑐𝑜𝑛𝑛𝑚 Tracking the number of inconsistent DIO messages received by IoT

endpoint m during the current interval n
𝐼 Save the length of the current interval
𝑡𝑛𝑚 Random time selected by the IoT terminal m for DIO transmission in

the current time interval n
𝑐𝑛𝑚 Tracks the number of consistent DIOs received by the IoT terminal m

during the current interval n; this value is reset to 0 at the
endof the current interval or when an inconsistency is detected

𝑄𝑣𝑎𝑙𝑢𝑒𝑚 Save Q values for each state–action pair for IoT terminal m
𝑅𝑛

𝑚 Save the rewards received by node m in interval n
𝑟𝑎𝑛𝑑 A random number between 0 and 1 to select the exploration

or exploitation phase
𝑒𝑥𝑝𝑙𝑜𝑟𝑒 Percentage of time the tracking algorithm explores the environment
𝐼𝑚𝑖𝑛 This is the minimum interval size, and choosing this interval size will

result in a higher DIO transfer rate
𝐼𝑚𝑎𝑥 This is the maximum interval size, selecting this interval size will

result in the slowest DIO send rate
𝐷𝐼𝑂𝐶𝑜𝑢𝑛𝑡𝑛𝑚 Total number of consistent DIO messages received in the past time

interval; this variable is used to calculate the average number of
DIOs received in the past time interval
proposed Q-learning-based model. Additionally, the agent has a set of
actions, which are 𝐴 =

{

𝑎0, 𝑎1,… , 𝑎𝑛
}

. The agent takes a certain action
𝐴 while being in a specific state 𝑆 and receiving a reward 𝑅𝑛

𝑚. The agent
proceeds to the next state 𝑠, where 𝑠 ∈ 𝑆, based on the reward earned.
Saving the collected reward as the Q-value of the specific state–action
pair is the goal (S, A). In order to decide what to do in the future in a
certain state, the agent uses this information.

3.2. Overview of the RLATT algorithm

The RLATT algorithm proposed in this paper triple optimizes the
trickle timer algorithm.

1. Q-learning is used by RLATT to assess whether DIO is being
transmitted or suppressed. This results in wise choices about the
transfer or suppression of DIO. The best control overhead ratio
4

and lower power consumption result from intelligent transfer or
suppression.

2. A speedier resolution of network inconsistencies is ensured by
RLATT, which offers high transmission rates for nodes that
received inconsistent DIO messages during the previous period.

3. Based on the value of the average number of consistent DIO
messages received over the previous period, RLATT adaptively
sets its redundancy constant 𝑘 value. The dynamic redundancy
constant k is set for various nodes based on their local network
density by this adaptive selection. The main notations of the
proposed RLATT algorithm are compiled in Table 1.

The proposed RLATT method divides time into intervals, with the
agent having two alternative states throughout each interval: 𝑠0 =
DIO suppression and 𝑠1 = DIO transmission. The intelligent IoT device
carries out two actions: it can either keep the present state 𝑠 or change



Computer Networks 237 (2023) 110105H. Tan et al.

i
D
b

Fig. 3. State transfer diagram of RLATT algorithm.
t to 𝑠′, where 𝑠 ∈ S. The quantity of consistent and inconsistent
IO messages that were received at each time interval is recorded
y RLATT. The number of consistent DIO messages that node m has

received during the current period n is represented by the variable 𝑐𝑛𝑚.
The number of inconsistent DIO messages that node 𝑚 has received in
the current interval 𝑛 is shown by the variable incon 𝑛

𝑚.

3.2.1. Intelligent decision of DIO transmission or suppression
The proposed RLATT algorithm’s state transfer diagram is shown

in Fig. 3. If the agent in the proposed model is in state 𝑠1, the DIO
transfer state, and it receives inconsistent DIO messages in the previous
interval 𝑛 − 1 with the number of inconn−1m , then the agent will remain
in the same state to resolve the inconsistency quickly and will receive
a positive reward Rn

m in the current interval n because the transfer DIO
message decision is correct. However, when an agent is in state 𝑠1 and
received zero inconsistent DIO messages in the previous interval 𝑛 − 1,
it will move to state 𝑠0. Since the network is stable and transmitting
DIO messages is redundant, the agent receives a zero reward Rn

m in
the current interval n because its decision to transmit DIO messages in
the past interval was redundant and in the previous interval the agent
did not receive any inconsistent messages. Now let us assume that the
agent is in state s0 and received zero inconsistent DIO messages in the
previous time interval n−1. In this case, since the network is stable, the
agents collect positive rewards for their correct DIO suppression deci-
sions. However, if in-state 𝑠0 the agent receives inconsistent messages
incon 𝑛𝑛−1𝑚 in the previous interval 𝑛 − 1, the agent receives a negative
reward for its incorrect DIO suppression decision, and it moves to state
𝑠1 for DIO transmission in the next interval to resolve the inconsistency.

In each time interval 𝑛, the proposed RLATT algorithm calculates
the reward Rn

m for a specific IoT terminal 𝑚 using Eq. (1), and 𝑅𝑛
𝑚 is

defined as follows:

R𝑛
𝑚 =

{

1 − incon 𝑛
𝑚 if 𝑠 = 𝑠0

incon 𝑛
𝑚 if 𝑠 = 𝑠1

(1)

RLATT uses the computed reward Rn
m to measure the learning

assessment, i.e., 𝛥Q. The value of 𝛥Q(s, a) is an improved learning
estimate for a particular state–action pair, where 𝑎 ∈ 𝐴 and 𝑠 ∈ 𝑆.
𝛥Q(s, a) is defined as follows:

𝛥𝑄(𝑠, 𝑎) =
{

R𝑛
𝑚( s, a) + 𝛾 × max

𝑎
Q(s, a)

}

−𝑄(𝑠, 𝑎) (2)

Where 𝛾 ∈ [0, 1] is the discount factor, the value of 𝛾 determines how
5

much importance the agent places on future rewards. That is, setting
𝛾 = 0 means that the agent considers current rewards more positively,
while setting 𝛾 = 1 causes the agent to seek long-term rewards based on
current rewards, and the agent uses the computed 𝛥𝑄(𝑠, 𝑎) to calculate
𝑄new as shown in the following Equation:

𝑄𝑛𝑒𝑤(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝑎 × 𝛥𝑄(𝑠, 𝑎) (3)

Where 𝑎 ∈ [0, 1] is the learning rate, the learning rate a determines
how quickly the new values cover the previous values. If 𝑎 = 0, the
agent does not learn new values and only uses prior knowledge, while
𝑎 = 1, the agent considers only the latest information and ignores prior
knowledge. The learning rate is crucial in determining how quickly
the agent converges to the optimal 𝑄 value. maxa Q(s, a) represents
the estimate of the next state–action pair. This value converges to the
optimal value of the state–action pair when the agent runs for a longer
time, as follows:

lim
𝑡→∞

𝑄(𝑠, 𝑎) = 𝑄optimal (𝑠, 𝑎) (4)

The agent uses the Q value learned in Eq. (3) during the explo-
ration phase to select an action a(current) that leads to the maximum
cumulative positive reward in a particular state in the past, as follows:

𝑎optimal
current = argmax

𝑎
𝑄(𝑠, 𝑎) (5)

To make a trade-off between exploration and exploitation, the pro-
posed RLATT algorithm uses an 𝜀-greedy mechanism. In the 𝜀-greedy
mechanism, the agent explores at a rate of 𝜀 and exploits at a rate of
1 − 𝜀.

The algorithm picks a random number between 0 and 1 to choose
between exploration and exploitation. In the exploration phase, if the
number of received consistent DIO messages cnm is less than k, DIO is
transmitted and 𝑠1 is selected as the next state. On the other hand, if
the number of received consistent DIO messages cnm is greater than k,
DIO transmission is suppressed and 𝑠0 is selected as the next state. And
in the utilization phase, the best action is selected using Eq. (5). The
algorithm presented in Eq. (5) selects the action that has yielded the
highest cumulative reward for a particular state–action pair in the past
time interval.

3.2.2. Higher transmission rate
The proposed technique gives nodes that received inconsistent DIO
messages in the previous time interval a greater DIO transmission
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Fig. 4. Drizzle and RLATT algorithms for DIO transfer timer calculation.
rate, which aids in promptly resolving the inconsistent problem and
maintaining the network state.

The random time selection procedure for transmitting DIO messages
at the following time interval using the RLATT and Drizzle algorithms
is described in Fig. 4. We assume that DODAG IoT terminal 4 is out-
of-date and sending erratic DIO messages to the network. Due to the
proximity of IoT terminals 2 and 4, IoT terminal 2 has received this
inconsistent DIO message. To select the DIO transmission time tnm in the
next interval, the Drizzle algorithm makes Eq. (6) to select the random
time 𝑡𝑛𝑚, while the RLATT algorithm uses Eq. (7) to select the random
time 𝑡𝑛𝑚 :

𝑡𝑛𝑚 =
[

𝑠 × 𝐼
𝑛
, (𝑠 + 1) × 𝐼

𝑛

]

(6)

𝑡𝑛𝑚 =
[

𝐷𝐼𝑂sent
𝑚 × 𝐼

𝑛 + incon𝑛
𝑚
,

(𝐷𝐼𝑂sent
𝑚 + 1) × 𝐼

𝑛 + incon𝑛
𝑚

]
(7)

𝑐𝑘 =
∑𝑛

𝑙=1 𝐷𝐼𝑂 Count 𝑛
𝑚

𝑛
(8)

The Drizzle algorithm chooses a random time 𝑡𝑛𝑚 for the upcoming
time interval without considering the total number of inconsistent DIO
messages received in the past time interval. However, RLATT makes
use of this data and selects a random time while taking into account
the total amount of inconsistent DIO messages that were received
throughout the previous period of time. When running the Drizzle
algorithm, IoT terminal 2 selects a random time tnm between 0 and 1024.
on the other hand, RLATT selects a random time tnm between 0 and
512. it is apparent that in the next time interval, RLATT, by selecting a
random number between 0 and 512 instead of 0 and 1024 as selected
by the Drizzle algorithm Assigning a higher DIO transfer rate to IoT
terminal 2.

3.2.3. Adaptive redundancy constant selection
The performance of the trickling timer is strongly impacted by the

dynamic selection of redundancy constants. Depending on the local
network density, the method dynamically modifies the redundancy
constant. Eq. (8) is used to calculate the average of the total number of
6

DIO messages received over the past time interval, which is then added
up by the RLATT algorithm to get its redundancy constant 𝑐𝑘.

RLATT sums up the total number of DIO messages received in the
past time interval and then takes the average value. In case of receiving
inconsistent DIO messages, the variable n that holds the current time
interval and the variable DIOCount 𝑛

𝑚 that accumulates the total number
of DIO messages received in the past time interval are reset to zero. 𝑐𝑘
is initialized to the highest possible value, i.e., 𝑐𝑘 = k, to ensure DIO
transmission in the upcoming interval and avoid DIO suppression. The
proposed algorithm’s pseudo-code is described in algorithm 1.

4. Experimental analysis

The Cooja 3.0 emulator running on the Contiki operating system is
configured with a set of parameters in this study. This is an open-source
IoT device emulator [68].

This section provides simulation results and an analysis of the algo-
rithm. The normal trickle timer algorithm and the Drizzle algorithm,
two variations of the trickling timer technique, are contrasted with the
proposed algorithm. In Table 2, all simulation parameters are listed in
detail. Among them, the number of IoT terminals: refers to the number
of IoT devices or sensor nodes used in the simulation. Redundancy
constant k is a redundancy coefficient for specifying the number of
redundant packets used when sending data. 𝐼𝑚𝑖𝑛 and 𝐼𝑚𝑎𝑥 are used to
specify the range of time intervals during the simulation. Simulation
time refers to the length of time the emulator performs the simulation.
The Media Access Control (MAC) layer is the protocol layer responsible
for managing communication between nodes in the Internet of Things.
The adaptation layer is an intermediate layer located between the
MAC layer and the network layer, and is used to deal with adap-
tation issues between different wireless technologies and protocols.
Wireless medium means a wireless channel or transmission medium
between nodes. In wireless communications, signal transmission can be
affected by loss and interference. The Cooja emulator provides different
loss models and loss rate configuration options for simulating signal
transmission reliability and packet loss.

The standard algorithm and the Zolertia Z1 specification are both
followed by all simulation settings utilized in this investigation. Sim-
ulations were run with varying network sizes of 25, 50, 75, and 100
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Algorithm 1 Adaptive trickle timer algorithm based on RL

Input: 𝐼 ⟵ 𝐼𝑚𝑖𝑛, 𝑐𝑘 ⟵ 𝑘, 𝑠𝑚 ⟵ 0, 𝑐𝑛𝑚 ⟵ 0, 𝑛 ⟵ 1, 𝑖𝑛𝑐𝑜𝑛𝑛−1𝑚 ⟵ 0, 𝑟𝑒𝑤𝑎𝑟𝑑 ⟵ 0, 𝛥𝑄 ⟵ 0, 𝑄 − 𝑡𝑎𝑏𝑙𝑒 ⟵ 0
1: 𝑅𝑎𝑛𝑑𝑜𝑚 𝑡𝑖𝑚𝑒 ∶ 𝑢𝑠𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(6) 𝑡𝑜 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡𝑛𝑚
2: 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝐷𝐼𝑂 𝑡ℎ𝑒𝑛 ∶ 𝑐𝑛𝑚+ = 1
3: 𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑎𝑛 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝐷𝐼𝑂 𝑡ℎ𝑒𝑛 ∶ 𝐼 ⟵ 𝐼𝑚𝑖𝑛, 𝐷𝐼𝑂𝑆𝑒𝑛𝑡𝑚 ⟵ 0, 𝑐𝑛𝑚 ⟵ 0, 𝑛 ⟵ 1, 𝐷𝐼𝑂𝐶𝑜𝑢𝑛𝑡𝑛𝑚 ⟵ 0, 𝑖𝑛𝑐𝑜𝑛𝑛𝑚+ = 1
4: while 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑡𝑖𝑚𝑒 𝑡𝑛𝑚 𝑒𝑥𝑝𝑖𝑟𝑒𝑠 ∶ do
5: 𝐶ℎ𝑜𝑜𝑠𝑒 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 [0, 1](𝑟𝑎𝑛𝑑) 𝑡𝑜 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑛𝑑 𝑢𝑠𝑒
6: if 𝑟𝑎𝑛𝑑 ≤ 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 then
7: if 𝑐𝑛𝑚 < 𝑐𝑘 then
8: 𝐷𝐼𝑂 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑠1), 𝐷𝐼𝑂𝑠𝑒𝑛𝑡

𝑚 + +
9: else
0: 𝐷𝐼𝑂 𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑠0)
1: end if
2: else
3: 𝑈𝑠𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛(5) 𝑡𝑜 𝑠𝑒𝑙𝑒𝑐𝑡 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑙𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑠𝑡
4: end if
5: end while
6: while 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑒𝑥𝑝𝑖𝑟𝑒𝑠 ∶ do
7: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑅𝑛

𝑚 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(1)
8: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛥𝑄 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(2)
9: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑄 − 𝑡𝑎𝑏𝑙𝑒𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(3)
0: 𝑈𝑝𝑑𝑎𝑡𝑒𝐼 ∶𝐼 ⟵ 𝐼 ∗ 2
1: if 𝐼 > 𝐼𝑚𝑎𝑥 then
2: 𝐼 ⟵ 𝐼𝑚𝑎𝑥
3: end if
4: if 𝐷𝐼𝑂𝐶𝑜𝑢𝑛𝑡𝑛𝑚 = 0 then
5: 𝑐𝑘 ⟼ 𝑘
6: else
7: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑐𝑘 𝑢𝑠𝑖𝑛𝑔 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛(8)
8: end if
9: 𝑛+ = 1
0: 𝐷𝐼𝑂𝐶𝑜𝑢𝑛𝑡𝑛𝑚+ = 𝑐𝑛𝑚
1: 𝑖𝑛𝑐𝑜𝑛𝑛−1𝑚 ⟵ 0
2: end while
Table 2
Parameter settings.

Parameter Value

Number of IoT terminals 25, 50, 75, 100
Redundancy constants k 5, 7, 10
𝐼min , 𝐼max 210 , 220

Simulation time 60 min
MAC layer, Adaptation layer Contikimac, 6 LoWPAN
Wireless Media Disk Map Media (UDGM)
Loss Model Distance loss
Loss rate 10%, 20%, 30%
Packet transmission rate Standard, Dizzle, RLATT
Trickle timer algorithm Dackage

nodes. To observe the trickling timer’s behaviour under varying packet
loss rates, the UDGM model was subjected to packet loss rates of
0%, 10%, 20%, 𝑎𝑛𝑑30% between 25%, 50%, 75%, 𝑎𝑛𝑑100%. The simulations
sed two different kinds of data transfer rates. One is a fixed data
ate of one packet every 40 s, however in other situations a variable
ata rate is used, where each node selects a random value between 0
nd 60 as their data rate at launch. We assessed the suggested RLATT
lgorithm’s PDR, power consumption, network convergence time, and
otal control overhead ratio of the network and compared it to other
utting-edge methods to analyse the performance in various settings.
q. (9) illustrates the procedure for determining the PDR.

𝐷𝑅 =
∑𝑚

𝑖=1 Total packets received i
∑𝑚 (9)
7

𝑖=1 Total packets sent i
As indicated in Eq. (10), the overall control overhead ratio of the
network is computed by adding up the total number of DIO, DAO, and
DIS messages that each node has sent, followed by adding up the total
amount of control (AOC) overhead that each node has generated.

𝐴𝑂𝐶 =
𝑚
∑

𝑖=1
𝐷𝐼𝑂𝑖 +

𝑚
∑

𝑖=1
𝐷𝐴𝑂𝑖 +

𝑚
∑

𝑖=1
𝐷𝐼𝑆𝑖 (10)

The ratio of the overall amount of control overhead to the total
amount of data and control packets generated by the network is then
taken into account. To determine the total amount of power utilized
by each IoT terminal in the network, we also used Cooja’s Energest
module. Eq. (11) is used to compute the overall amount of power (AOP)
consumed.

𝐴𝑂𝑃 =
Energest value × current × voltage

Rtimer × Runtime (11)

Among these, the Energy consumption values (Energest values)
represent the number of seconds that the node spent using a certain
mode of communication. CPU Idle (CPUI), Low-Power (LPM), Transmit
(Tx), or Receive (Rx) modes are the specialized modes. Additionally,
the current (current) and voltage (voltage) values are consistent with
the Z1 node specification, the contiki timer’s R− - Timer stores the
number of beats per second, which is 32768, and runtime is the amount
of time between Energest tracking points.

The length of time it takes for all nodes to join a DODAG and
create a network that can talk to one another is known as the network
convergence time. By deducting the first node joining the network time
from the last node joining the network time, the network convergence

time is determined.
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Fig. 5. PDR with different number of IoT terminals.

.1. Analysis in a fixed data rate scenario

The PDR for the common trickle timer, Drizzle, and RLATT are
hown in Figs. 5 at a fixed data rate of 1 packet per 40 s. One pri-
ary reason for the diminishing PDR is the limited network resources

vailable to accommodate the increasing number of terminals. With
ore devices in the network, there is a higher level of contention

nd congestion, which leads to reduced efficiency in packet delivery.
he network infrastructure faces challenges in handling the surge in
ata traffic, resulting in longer queuing times and higher packet loss
ates. This ratio is very high in the prior art (because the prior art
as been widely used), so the improved upper limit is not big, but at
east there is a certain improvement. In addition, at larger network
izes, higher loss rates are applied. In addition to network resource
imitations, the PDR also decreased significantly at larger network sizes.
s the network became more densely populated with IoT devices,

he loss rates experienced by the transmitted packets increased. This
ensification creates an environment with higher levels of interference
nd contention, leading to a higher likelihood of packet collisions and,
onsequently, more frequent packet losses. As the network becomes
ense, this leads to frequent packet loss, and, therefore, a lower PDR
s obtained. Due to its inability to change its redundancy constant k
n accordance with the underlying local network density, the typical
rickle timer achieves the lowest PDR. Drizzle continuously changes the
alue of its redundancy constant k, and this jump enables drizzle to
chieve a lower PDR at lower network densities than the conventional
rickle. Drizzle, on the other hand, never achieves the ideal value for
he redundancy constant k. As a result, the PDR starts to decline as
he size of the network grows. As opposed to the typical trickle timer
nd Drizzle, RLATT is able to achieve the highest PDR because it may
odify the value of its redundancy constant k in accordance with the
ensity of the local network. The best method to broadcast or suppress
ontrol signals is discovered by RLATT using Q-learning.

The control overhead ratios for each trickle timer variable taken into
onsideration in this study are shown in Figs. 6. With an increase of IoT
erminals, the control overhead ratio rises. The inability to dynamically
odify its constant redundancy settings causes the typical trickling

imer to have the greatest control overhead ratio. However, because of
he varying value of its redundancy constant 𝑘, Drizzle achieves a lower
ontrol overhead ratio than the typical trickle timer. Additionally,
ecause to its capacity for learning, RLATT gradually decides whether
t is best to send or suppress DIO messages. As a result, it reduces
uperfluous DIO transfers, which lowers the control overhead ratio.
8

dditionally, RLATT modifies the value of its redundancy constant k u
Fig. 6. Control overhead ratio with different numbers of IoT terminals.

Fig. 7. Power consumption at different numbers of IoT terminals.

n accordance with the density of the local network. As a result, fewer
ointless DIO transfers are made during the discovery stage.

The total normalized power used by the common trickle timer,
rizzle, and RLATT algorithms is displayed in Fig. 7. We store and
se the trained RL technique parameters in the simulated experimental
nvironment for presenting the experimental findings. As a result,
he experimental process takes longer than the conventional way to
each the suboptimal or ideal answer. It is expected that the power
onsumption for hardware scheduling will be lower once RLATT is
ntegrated with the conventional RPL protocol. The findings indicate
hat as the number of IoT terminals rises, so does power consumption.
he RLATT method uses the least amount of power when compared
o other cutting-edge techniques because it is able to achieve a lower
ontrol overhead ratio, as shown in Fig. 7, and the elimination of
ointless DIO transfers allows it to run longer than the other two
rickling timers.

The network convergence times for each of the three trickle timer
ersions are shown in Fig. 8. Because Drizzle and RLATT do away with
he listen-only periods at the start of each interval, which speeds up net-
ork transmission at lower network densities, the network convergence

imes for Drizzle and RLATT are shorter than those for the traditional
rickle timer at lower network densities. For Drizzle and RLATT, this

ltimately leads to faster network convergence times. Because RLATT
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Fig. 8. Convergence times of three trickle timer variants with different numbers of IoT
terminals.

Fig. 9. Variable data rate scenario: (a) packet delivery rate PDR; (b) control overhead
ratio; (c) power consumption; (d) total network convergence time (ms).

Fig. 10. The influence of credibility on power consumption under different numbers
of IoT terminals.

provides greater DIO transmission rates to nodes that received inconsis-
tent DIO signals in the previous interval, RLATT achieves faster network
convergence times than Drizzle.

However, when the network size grows, Drizzle and RLATT start
to encounter longer network convergence times since they do away
with listen-only cycles, which increases the radio duty cycle algorithm’s
job in order to prevent congestion and contention. The minor delay
in network convergence time at larger network densities, however,
is negligible in comparison to the other performance improvements
examined above.
9

Fig. 11. Variation in the choice of adaptive redundancy constant 𝑐𝑘 values for different
network densities.

4.2. Analysis in variable data rate scenarios

IoT endpoints frequently demand varying data rates in IoT net-
works in order to accommodate hybrid applications. Therefore, we
did simulations at various data rates, where each IoT terminal selects
from 1 to 60 and chooses it as its data rate, in order to model the
behaviour of these three trickle timer variants in this variable data rate
environment. For regular trickling timer, Drizzle, and RLATT at varying
data rates, Fig. 9 displays the PDR, control overhead ratio, normalized
total network power consumption, and network convergence time. In
comparison to existing trickle timers, simulation findings demonstrate
that this approach has higher PDR and lower control overhead. The
battery life of IoT terminals is ultimately extended by this lower control
overhead ratio’s impact on power usage. Due to its capacity to learn the
best course of action for DIO transmission and suppression over time
by exploiting its learning capabilities, it can achieve greater PDR and
a lower control overhead ratio in an environment with changing data
rates. Additionally, during the algorithm exploration phase, RLATT
adaptively selects the value of its redundancy constant k, which aids
in adjusting the DIO transmission and suppression rate. Although, as
was already indicated, for bigger network sizes, the RLATT’s network
convergence time marginally increases. In contrast to a minor increase
in network convergence time, other performance improvements are
significant in contexts with variable data rates.

As shown in Fig. 10, the influence of credibility on power con-
sumption under different IoT terminals under the circumstances of
considering credibility and not considering credibility, it can be seen
that power consumption increases with the increase of the number
of IoT terminals, But considering reliability can help save energy by
reducing unnecessary DIO transfers compared to the case without
considering reliability, and ultimately allow it to run longer.

4.3. Analysis of adaptive redundancy constant 𝑐𝑘 selection under different
network densities

Fig. 11 illustrates how the adaptive redundancy constant 𝑐𝑘 value
varies for various network densities in the suggested algorithm. The 𝑐𝑘
value is set to the same value as k during network initialization. k is
currently set to 10 in this instance. However, the suggested approach
adaptively chooses the 𝑐𝑘 value as the network changes over time. The
local network density serves as the basis for this adaptive selection. In
order to account for this, the suggested method chooses a higher 𝑐𝑘
value for dense networks and a lower 𝑐𝑘 value for networks with lower
densities.



Computer Networks 237 (2023) 110105H. Tan et al.
4.4. Computational and memory complexity analysis

Determining the best state and action pairs in the RL paradigm
requires studying the entire state and action space by exploring every
available option. The number of actions and states is finite and unob-
servable. Each IoT terminal maintains a Q value for each possible state
and action pair. The number of states and actions significantly affects
the computational complexity of the proposed algorithm. The com-
putational complexity of this algorithm is 𝑂(𝑠)(𝑎), where s represents
the number of states and a represents the number of actions available
in each state. The number of state and action pairs on a specific IoT
terminal is independent of the network size as the Q-learning strategy
is applied to the local IoT terminal.

ROM and RAM are two key resources of IoT terminals. The proposed
RLATT algorithm requires additional memory to satisfy its RL-based
implementation. Therefore, it requires an additional 3021 and 2431
bytes of ROM, respectively, compared to the standard trickle timer and
the Drizzle algorithm. RLATT maintains more variables to satisfy Q-
value tables, exploration and learning rates, and discounting factors,
and maintains the average number of DIO transmissions received in
past intervals for efficient operation. Therefore, its operation requires
only 48 and 36 bytes of additional memory compared to the standard
trickle timer and Drizzle algorithms.

5. Conclusion

A large number of IoT terminals access the network and need to
formulate efficient, adaptive, and intelligent routing strategies to en-
sure the reliable operation of the IoT. After analysing the fair broadcast
suppression mechanism and Drizzle algorithm used in the traditional
RPL protocol, based on this, according to the characteristics of RL and
trickle timer, this paper proposes an intelligent adaptive trickle timer
algorithm, RLATT based on reinforcement learning. The algorithm is
then used with the typical trickle timer and Drizzle algorithms on
the Cooja3.0 emulator running on the Contiki operating system and
compared in a number of areas, including PDR, power usage, network
convergence time, and the network’s overall control overhead ratio.
Experiments show that RLATT can be applied to heterogeneous per-
ception networks and can effectively improve the routing efficiency of
perception layer networks. But the current experiment of this algorithm
is only carried out on the emulator. In future work, we will apply this
algorithm to the real network environment and further optimize it.
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