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I. INTRODUCTION 

GRICULTURE is a vital industry that has undergone 

significant technological advancement in recent years, 
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leading to the emergence of Agriculture 4.0. Adopting Agri- 

culture 4.0 can provide numerous benefits, including in- 

creased efficiency and productivity through precision farming 

techniques and autonomous vehicles, improved sustainability 

through reduced use of water, fertilizers, and fossil fuels, 

enhanced data analysis and decision-making through real-time 

data generated by IoT sensors, and increased food safety 

through the ability to detect and address potential issues that 

could affect food safety. However, this transformation is not 

without its challenges, as the adoption of these advanced 

technologies requires a period of transition and effort. One 

enabler of Agriculture 4.0 is the advancement of sensing 

technology [1]. The availability of powerful and efficient data 

sensing technology and the numerous advancements in edge 

devices have greatly expanded the deployment of Agriculture 

4.0. 

IoT sensors also become cheaper every year, as shown in Fig. 

1. These conditions make IoT more and more acces- sible, 

which will drive more than 70 billion devices to be connected 

by the end of 2025 [2, 3]. However, implementing a massive 

static sensing network can trigger problems such as 

integrating data from the distributed sensors to generalize 

inference. Increasing interest in the Airborne communication 
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agriculture sector through improved productivity and efficiency. 
However, adopting Agriculture 4.0 requires a period of transition 
and effort. Satellite-Airborne sensing technologies may become an 
opening enabler technology of this new paradigm due to its fast 
deployment process and flexible infrastructure. This paper provides 
an overview of the technology, trends, challenges, and opportuni- 
ties in agriculture and climate-resilient sensing technologies. The 
research covers critical enabling technologies such as Low Alti- 
tude Platforms (LAPs) (i.e., Drones, Tethered Ballon), High Altitude 
Platforms (HAPs) (i.e., Airships, HAPs Balloons, and Aircraft), and 
satellites, as well as recent advancements in data processing, and 
digital twins, with some examples from agricultural research 
projects. Furthermore, this paper explores some challenges in 
agriculture and the technological deployment of satellite-airborne 
sensing technologies. Finally, this paper provides some potential 
opportunities for satellite-airborne sensing technologies for agri- 
cultural purposes. This paper may become a guide for adopting 
Industry 4.0 by leveraging satellite-airborne network technologies. 
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Fig. 1: The declining cost of IoT sensors [5]. 

 

 
network (ACN) may become a potential way to address this 

problem. ACN can be deployed in a large coverage area but still 

provides a flexible infrastructure by leveraging various 

technologies such as Low-altitude platforms (LAPs), High- 

altitude platforms (HAPs), and Satellite. ACN infrastructure 

is usually considered as an enabling technology for 5G and 

 

 

 
 

Fig. 2: Survey methodology. 

beyond-5G systems [4]. Based on this idea, this survey will 

explore the technology of Satellite-Airborne Networks in the 

context of Agriculture 4.0. The promise of scalability in 

Airborne Networks may also become the enabler to initiate 

the adoption of this new paradigm. 

Looking back at history, agriculture has developed through 

several phases, from Agriculture 1.0 until the recent Agri- 

culture 4.0 driven by the industrial revolution 4.0 [6]. In 

Agriculture 1.0, the process still required much manual labor, 

limiting productivity. The industrial revolution 1.0, driven by 

the rise of steam engines and water power technology, paved 

the way for Agriculture 2.0, enabling new applications such 

as agricultural machinery to make work more efficient. Then in 

the 20th century, the industrial revolution 2.0 and 3.0 drove 

Agriculture 3.0, enabling useful techniques such as precision 

agriculture, partially automated systems, and green energy. The 

ongoing Agriculture 4.0 is enabled based on several key 

technologies such as the Internet of Things (IoT), Robotics, Big 

Data, Artificial Intelligence (AI), and blockchain. This survey’s 

objective is to contribute to navigating the enabling 

technologies, trends, challenges, and opportunities, in the 

context of the agricultural domain, covering the sensing and 

data processing aspects. 

Within Agriculture 4.0, certain technologies potentially play 

important roles of the overall technological adoption. A 

prime example of this is the use of satellite and air- borne 

sensing technologies. Satellite and airborne sensing 

technologies provide valuable tools for collecting data on 

various agricultural parameters at different scales. Satellites 

offer a global perspective, capturing large-scale information 

on climate patterns, vegetation indices, and land use [7]. The 

observations aid in understanding climate dynamics and 

identifying regions vulnerable to climate change impacts. On 

the other hand, airborne sensing technologies, such as drones 

and aircraft, offer a finer-scale perspective, enabling detailed 

monitoring of crop health, soil moisture, and pest infestations 

[8]. The combination of satellite and airborne data provides 

a comprehensive understanding of agricultural systems, fa- 

cilitating evidence-based decision-making. Integrating satellite 

and airborne sensing technologies enables a holistic approach 

to addressing climate resilience in agriculture. By leveraging 

the strengths of both platforms, a more accurate and timely 

assessment of climate-related risks and vulnerabilities can be 

achieved. For instance, satellite imagery can provide early in- 

dications of drought-prone areas, while drones with advanced 

sensors can accurately assess crop stress levels. The integrated 

approach enhances the capacity to develop targeted adaptation 

strategies, optimize resource management, and mitigate the 

negative impacts of climate change on agricultural productivity 

[9]. 

The novelty of this proposed survey lies in its exclusive focus 

on satellite-airborne sensing technologies in Agricul- ture 4.0 

and climate resilience, exploring the applications, trends, 

challenges, and opportunities. Furthermore, the survey goes 

beyond individual technologies by examining integration, 

identifying potential synergies with emerging technologies, and 

addressing scalable solutions for less developed areas. 

Additionally, the survey provides comprehensive coverage of 

application domains, showcasing the diverse uses of airborne 

sensing technologies in agriculture. The unique approach con- 

tributes to advancing knowledge and understanding in the field, 

offering valuable insights for academia, industry, policymak- 

ers, and stakeholders to harness the full potential of satellite and 

airborne sensing technologies in driving sustainable and 

climate-resilient agriculture. 

 
A. Motivations 

This survey is driven by several compelling motivations 

centred around the transformative potential of Agriculture 

4.0 technologies, specifically satellite and airborne sensing 

technologies. Understanding the capabilities, limitations, and 

emerging trends of these technologies can provide fertile 

ground for innovation in academia and industry and lead to 
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sensors. 

 

TABLE I: Surveys in Agriculture 4.0. 
 

Reference (Year) Sensing Technology Research Objective Use cases in Agriculture 

SAGUIN: Remote Sensing, drones, WSNs, 
mobile crowd sensing 

 

Sensors, satellite remote sensing instrument, 

Examine the enabler of 
agriculture 4.0 based on 
emerging industry 4.0 

technologies 

 
Technology of smart farming 

Precision farming, livestock 
monitoring, smart greenhouse, 

fishery management, and weather 
tracking 

Field agriculture, aquaculture, 
poultry and livestock breeding, 

[10] (2021) crowd sensing devices, plant phenotype 
measuring instrument, edge node 

and its application, security, and 
privacy concern 

greenhouse, plant factory, 
photovoltaic agricultural, solar 

insecticidal 

Smart monitoring, smart water 

 

 

 

 

 

 

[13] (2021) 
UAVs, Bluetooth low energy, agricultural 

smart farming 

Enabling technology, 

opportunity and requirement for 
UAVs in smart farming 

in greenhouses, compost 
management, offspring care 

Sky-farmers, precision agriculture, 
irrigation monitoring, aerial 

mustering, artificial pollination 

Satellite-Airborne technologies 
This survey IoT, LAPs, HAPs, and Satellite for Agriculture 4.0 and 

climate-resilient 

Technological adoption for remote 
field agriculture and climate resilient 

 

 

 

significant societal benefits. Critical motivations for this survey 

include: 

• Agriculture 4.0 promises to vastly improve the efficiency 

and productivity of the agricultural sector. However, com- 

prehensive adoption of these technologies often requires 

significant initial investment, which can be a barrier for 

many farmers. Airborne technologies present an inter- 

esting solution to this challenge, potentially enabling 

incremental adoption of Agriculture 4.0 technologies. By 

investigating the applications and potential of these 

technologies, we aim to identify opportunities for such 

gradual integration. 

• This survey offers a focused exploration of satellite and 

airborne sensing technologies, identifying their diverse 

applications and untapped potential in driving innovation 

and progress in agriculture. These technologies provide 

opportunities to enhance productivity, optimize resource 

management, and mitigate climate change impacts. This 

survey will offer critical insights by identifying gaps in 

existing knowledge and implementation. 

• While many surveys on Agriculture 4.0 review all key 

enabling technologies, this review seeks to find a scal- 

able solution for adopting these technologies that could 

contribute to less developed areas. 

• Lastly, our motivation stems from the urgent need for 

a comprehensive analysis of the integration of satellite and 

airborne sensing technologies, especially regarding 

climate resilience in agriculture. Climate change poses 

significant challenges to agricultural systems, and this 

survey addresses the critical gap in understanding how 

these sensing technologies can contribute to climate- 

resilient agricultural practices. 

 

The survey aims to bridge the knowledge divide by ad- 

dressing this gap and informing researchers, practitioners, 

 

and policymakers about the opportunities and strategies for 

harnessing these technologies to build resilient agricultural 

systems in a changing climate. 

 
B. Related Surveys 

In the past five years, significant research has been dedicated 

to smart agriculture, resulting in numerous comprehensive 

surveys. The selection presented in Table I is intentionally 

curated to focus on works that directly address the confluence 

of satellite-airborne sensing technologies and their application 

in intelligent farming systems. These surveys were chosen 

based on stringent criteria: their relevance to the integration 

of IoT with LAPs, HAPs, and satellite technologies; the depth 

of their analysis on the limitations and opportunities within 

the field; and the insights they offer into emerging trends and 

challenges specific to Agriculture 4.0. This focused approach 

allows us to delve deeply into the most pertinent studies that 

align with our paper’s objectives — to critically evalu- ate 

satellite-airborne sensing technology’s role in advancing 

climate-resilient agricultural practices. By concentrating on a 

select number of high-quality surveys, we ensure a detailed and 

targeted analysis that underscores the transformative po- tential 

of these technologies in the context of smart agriculture and 

climate change adaptation. 

 
C. Contributions 

Specifically, addressing satellite-airborne sensing technol- 

ogy is the main differentiation of this survey compared to 

previous works in smart agriculture. Moreover, this study 

explores the integration between some specific technologies 

and tries to find potential opportunities for the whole integrated 

sensing system. Generally, this survey’s contributions are as 

follows: 

[6] (2020) 

 
[11] (2021) 

Sensor nodes, agricultural robots, driverless 
tractors, radio frequency identification (RFID), 

Emerging technology for 
management, agrochemicals 

sustainable agriculture to meet 
applications, disease management, 

 unmanned aerial vehicles (UAVs) global food demand 
smart harvesting, supply chain 
management, smart agricultural 

practices 

 
[12] (2021) 

 
IoT and UAVs 

Application and communication  
Field Monitoring, livestock 

technology for IoT and UAVs in 
monitoring and tracking, application 
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TABLE II: Works on agriculture using satellite data. 
 

Reference (Year) Satellite Data Processing Techniques Agriculture Application 

[14] (2020) Sentinel-2 Multi-layer perceptron Neural Network 
Crop field identification and

 
information extraction 

[15] (2020) Sentinel-1 
Random Forest (RF), Support Vector Machine Automated crop classification 

(SVM), Artificial Neural Network (NN) workflow 

[16] (2022) Sentinel-2A 
Neural ordinary differential equations (NODEs) Crop Classification Under Varying 

+ recurrent neural networks (RNNs) Cloud Cover 

[17] (2021) Gaofen-1  
NIR and red spectral domain 

Estimate evapotranspiration 
(NRSD)/Priestley–Taylor Coefficient 

[18] (2017) Landsat-7 PROSAIL model and Modified Verhulst logistic 
Crop Growth Model

 
equation 

[19] (2022) Sentinel 2B and Landsat-8 
Normalized Difference Vegetation Index 

Agri-insurance claim settlement
 

(NDVI) and Normalized Difference Wetness 
process

 
  Index (NDWI) 

 

• We explore the application of satellite-airborne technolo- 

gies (such as LAPs, HAPs, and Satellite) and related 

technologies, including Terrestrial sensors, in agricultural 

use cases. Technical features of the technologies are also 

provided. 

• We present trends related to satellite-airborne sensing 

technologies and research projects in smart agriculture 

sponsored by the EU, US, and China. 

• We address challenges confronting the agricultural sector, 

such as those posed by climate change, and explore 

potential solutions facilitated by satellite and airborne 

technologies. We also highlight potential challenges as- 

sociated with deploying these technologies. 

• We explore potential opportunities for integrating terres- 

trial and non-terrestrial sensing networks with emerging 

technologies such as machine learning and digital twins. 

We then proposed synergy strategies between sensing 

technologies while exploring the potential use of multi- 

modalities in ubiquitous sensing and optimization. 

 
D. Research Methodology and Outlines 

This survey is conducted based on the methodology outlined 

in Figure 2, which classifies various sensing technologies in 

both terrestrial and non-terrestrial networks. This paper is 

outlined as follows. Section II of the survey will provide 

an introduction to each key enabling technology related to 

satellite-airborne sensing. Section III will examine current 

trends that can be integrated into these technologies as well as 

related projects that can serve as benchmarks for implementing 

these critical technologies. Section IV will explore the main 

challenges the agricultural sector faces and potential solutions 

to address these problems. Section V will discuss opportunities 

presented by currently available technologies and trends. In 

Section VI, the research challenges and insights gained while 

conducting the survey will be discussed, and finally, Section 

VII will explore potential future research directions in this field. 

 
II. TECHNOLOGIES 

This section explores the technological capability and limi- 

tation of the airborne network, Agricultural sensors, and Edge 

Computing as the key enabling technology and the connection 

between each technology to improve agricultural performance. 

Airborne Networks (AN) can be classified based on their 

deployment layer, which is: satellites, high-altitude platforms 

(HAPs), and low-altitude platforms (LAPs) [4]. 

 
A. Satellites 

In the agricultural context, satellites are commonly used 

to provide surface imagery for vast agricultural fields. This 

imagery data will then be processed using machine learning 

techniques (i.e., Random Forest, Deep Learning) to gain 

insight, classification, or prediction of the field performance. 

According to [21], the satellite is the most used capture 

platform for research in remote sensing for the agricultural 

sector. Some problems satellite imagery monitors are land 

use/land cover, soil health, plant physiology, crop damage, and 

yield [20]. Although much research uses this satellite imagery 

data, another type of satellite provides other data points valid 

for agricultural purposes, such as soil moisture data. Some 

examples of this satellite are Soil Moisture and Ocean Salinity 

(SMOS) and Soil Moisture Active Passive (SMAP). Some 

work using satellite data and its application in agriculture is 

summarized in Table II. Furthermore, this section will provide 

some details on the satellite technology used in agriculture. 

Satellites used in agriculture: Examples of satellite appli- 

cation in smart farming are summarized in Figure 3. 

1) Terra and Aqua: Terra satellite was launched on De- 

cember 18, 1999, and the Aqua satellite was launched on 

May 4, 2002, orbiting at 705 km above the earth. These 

two satellites provide one crucial instrument called MODIS 

(Moderate Resolution Imaging Spectroradiometer). Terra 

MODIS and Aqua MODIS view the entire earth’s surface and 

acquire data in 36 spectral bandwidths every 1 to 2 days. 

MODIS can capture different kinds of use cases based on its 36 

bands. Bands 1 and 2 are used to capture land/cloud/aerosols 

Boundaries. Band 3-7 are used to capture land/cloud/aerosols 

Properties. Band 8-16 are used to capture ocean 

color/phytoplankton/biogeochemistry. Band 17-19 are used to 

capture Atmospheric water vapor. Band 20-23 are used to 

capture surface/cloud temperature. Band 24 and 25 are used to 

capture atmospheric temperature. Band 26-28 are used to 

capture cirrus clouds’ water vapor. Band 29 is used to capture 

cloud properties. Band 30 is used to capture ozone. Band 31 

and 32 are used to capture surface/cloud temperature. Band 33-

36 are used to capture cloud top altitude. 
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Fig. 3: Launching timeline of satellite. The colored ones are the most commonly used satellites for agricultural research [20]. 

 

 
2) Landsat: Landsat 1 was launched on July 23, 1972. the 

first Landsat satellite is also the earth-observing satellite 

launched to study and monitor the Earth. The most recent 

Landsat satellite is Landsat 9 [22], which launched on Septem- 

ber 27, 2021. Landsat 9 replaces Landsat 7, which pairs with 

Landsat 8 to provide eight days gap revisit times. Landsat 

8 and 9 have a higher image capacity than the past Landsat 

satellite, which can capture up to 1400 scenes daily. Landsat 

8 and 9 have nine spectral bands on Operational Land Imager 

(OLI) and two bands on Thermal Infrared Sensor (TIRS), which 

is more compared to Landsat 7, that only has 8 Bands. 

3) Sentinel: There are seven series of Sentinel satellite 

missions. The series are Sentinel 1, 2, 3, 4, 5, 5P, and 6. Each 

mission has a different earth observation objective. Sentinel-1 

was launched in April 2014 to monitor land and the ocean. 

Sentinel-2 was launched in June 2015 to monitor land and 

provide high-resolution imagery. The sentinel-3 mission objec- 

tive is marine observation, including sea-surface topography, 

sea and land surface temperature, and ocean and land color. 

Sentinel-4, 5, and 5P generally focus on monitoring earth air 

quality. Moreover, The last Sentinel-6 is used to continuously 

monitor the mean sea level and the ocean sea state, which has 

been monitored since 1992. 

4) Soil Moisture and Ocean Salinity (SMOS): SMOS Satel- 

lite was launched on November 2, 2009. SMOS is the first 

satellite to provide microwave L-band measurement, which 

enabled the global measurement of soil moisture and sea 

surface salinity. SMOS satellite orbiting on 761.3 788.4 above 

the earth’s surface. Initially, the SMOS mission was designed 

as a five years mission. However, due to its excellent technical 

and scientific performance, it extended until 2021 and beyond. 

5) Soil Moisture Active Passive (SMAP): SMAP satellite was 

launched on January 2015 and then operated in April 2015. 

SMAP is designed to measure soil moisture everywhere on 

Earth that is not covered with water or frozen. This satellite 

will take the data at a spatial resolution of 36 km every 2-3 

days. Similar to SMOS, SMAP uses L-band as its measurement 

instrument to measure soil moisture. 

In agricultural monitoring, the capability to capture color 

 
imagery is vital for assessing vegetation health, land use, and 

water bodies. However, the majority of current satellites used 

in this domain are passive systems satellites, which inherently 

face several limitations. A significant challenge for these 

passive system satellites is their susceptibility to atmospheric 

conditions, particularly cloud cover, which can obstruct their 

sensors and impede the acquisition of clear, consistent imagery. 

This limitation highlights the need for innovative solutions or 

alternative technologies that can cir- cumvent such obstacles, 

ensuring reliable and continuous monitoring of agricultural 

landscapes. 

B. High-altitude Platforms (HAPs) 

Under the satellite layer, some HAPs operate in strato- 

spheric altitudes [23, 24, 25, 26]. HAPs provides both vast 

area coverage, and flexibility compare to satellite. HAPs can be 

manned or unmanned; due to their long-term operation, it is 

often unsuitable for a human pilot to operate it. Therefore, 

unmanned HAPs are more attractive to many stakeholders. 

Based on the design, HAPs are commonly classified into two 

types which are aerostatic and aerodynamic platforms [27]. 

Aerostatic HAPs such as airships (Fig. 4a) and balloons (Fig. 

4b) employ buoyancy as their flying mechanism. High-altitude 

balloons may need to be tethered to stay in one spot. On the 

other hand, airships employ gasoline engines or solar power 

to stay in one spot to maintain a good Quality of Service (QoS). 

Aerodynamic HAPs, high-altitude aircraft (Fig. 4c), cannot stay 

in the air unless they move. Therefore, high- altitude aircraft 

typically fly on a circular path to provide good QoS to maintain 

a quasi-stationary position. Regarding the energy source for 

airships, balloons, and aircraft, they can use the solar cell as 

their energy source [28]. 

HAPs can provide connectivity for a large area with a 

diameter of up to 200 km [33]. With these capabilities, HAPs 

open up an opportunity to provide sensing and communi- cation 

coverage for hard-to-reach areas, which is suitable for 

agricultural cases usually located in an area with little 

terrestrial network infrastructure development. Several HAP 

projects have been conducted, such as project Loon (2013) by 

Loon LLC, which is a subsidiary of Alphabet Inc. Loon project 

Landsat 7 
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(a) (b) 

  
(c) (d) 

Fig. 4: (a) Airship [29], (b) High-altitude Balloon [30], (c) 

High-altitude Aircraft [31], (d) Aerostat [32]. 

 
 

was conducted in New Zealand using 30 balloons deployed in 

the stratosphere that covers 5000 for over 100 days with only 

using solar panels as it energy source [34, 24]. Another HAP 

project by Facebook called Aquila (2014) planned to provide 

high-speed wireless communication to remote areas [24, 35]. In 

January 2018, AeroVironment and Softbank developed a HAP 

project called Hapsmobile, which intends to provide 

commercial wireless communication services [36]. 

C. Low-altitude Platforms (LAPs) 

Under the HAPs layer, there is the Low-altitude platforms 

(LAPs) layer. This section will explore two kinds of LAPs 

technologies: tethered balloons and drones. 

1) Tethered Balloon: is filled with helium or hot air and can 

be designed in an aerodynamic shape called Aerostat (Fig. 

4d). Concerning the HAPs technologies, work in [37] proposes 

a collaboration between HAPs drones and tethered balloons 

as a relay to maximize the sum rate between HAPs and the 

ground station. Furthermore, another work in [38] explores 

the tethered balloon as a healthier and environment-friendly 

replacement for the conventional ground base station (GBS). 

The tethered balloon provides several advantages due to its 

cost-efficient deployment and operation, more coverage area, 

low propagation delay, easy reconfiguration, and better LoS 

than GBS [39, 40]. In the context of sensing technologies, work 

in [41] used a tethered aerostat as a platform to acquire aerial 

imagery data to perform an object detection algorithm. 

Furthermore, Tethered balloon technology is used to support 

many applications such as disaster management [42, 43], smart 

environments [44] 

2) Drones: Another airborne technology in LAPs is drones. 

Various types of drones are available in the market, which 

can be classified based on size, flight range, rotors, landing 

style, and aerodynamics [45]. Based on the size, UAVs can 

be classified into four categories: micro UAVs, Mini UAVs, 

Medium UAVs, and Large UAVs. Based on the flight range of 

UAVs, there are three categories: medium range, short range, 

and close range. Based on the type of rotors, UAVs can be 

(a) (b) 

Fig. 5: Drone example for agriculture [61, 62]. 

 

 
classified into four categories which are tricopter, quadcopter, 

Hexacopter, and octocopter. Based on the landing style, UAVs 

can be classified into two categories: vertical take-off and 

landing (VTOL) and horizontal take-off and landing (HTOL). 

Then based on aerodynamics, UAVs can be classified into four 

categories: fixed wing, flapping wing, ducted wing, and multi- 

motor. UAVs can also onboard several sensors and cameras, 

such as RGB cameras, UAV LiDars, hyperspectral sensors, 

lightweight cameras, and lightweight thermal infrared sensors. 

Drones implementations have increasingly become standard 

in agriculture due to competition on the commercial side that 

can reduce the cost of it. According to [46, 47, 48], UAVs can 

improve the productivity of farming activities and do some 

tasks that the farmers usually do [49, 50]. The type of drones 

will differ based on the task they need to complete (Fig. 5). 

Drones may have several objectives to improve productivity in 

the agriculture sector. These objectives include optimizing the 

spraying process, crop monitoring, crop maturity monitoring, 

detecting and predicting various crop diseases, irrigation man- 

agement, artificial pollination, greenhouse temperature and 

humidity monitoring, and water assessment. 

Drones Routing Problem: Deploying drones in agricultural 

use cases needs to consider solving some optimization prob- 

lems. The first problem that needs to consider is drone path 

planning. In the agricultural context, the path planning prob- 

lem is to cover all the fields, which can be said as Coverage 

Path Planning (CPP) [51, 52, 53]. One common example of 

a CPP technique used in agriculture is boustrophedon. Some 

recent work has been applying this technique for agricultural 

uses case. In [54], the authors improved this technique by 

considering wind conditions. Another work in [55] used bous- 

trophedon to cover large-scale are in hard-to-reach areas (i.e., 

mountains). However, implementing boustrophedon for a large 

area of coverage can be inefficient. Which can only cover 

less than half a hectare in one flight [56]. This inefficiency 

happens due to energy limitations in UAVs. Although most 

prior works assume that the UAV has enough available energy, 

some consider energy usage and limitation when implementing 

CPP [57, 58, 59]. Another method, like the Voronoi-based path 

generation (VPG) algorithm, considers the energy constraint 

while planning the coverage path planning [60]. This algorithm 

proposed a good balance between run-time and optimality. 

However, VPG only provides a near-optimal path, meaning 

the drones will not hover at every point in the area. However, 

considering the energy limitation, partial coverage may give 

enough QoS to the system. 
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TABLE III: Sensors and its application for agriculture . 
 

Type of Sensors Application 
Location sensors such as GPS can be used to provide the precise position of some agricultural activities (e.g. when 

implementing CPP using drones) to measure actual effectiveness 

Optical sensors Optical sensors can be use to measure the vegetation health of the farm 
One conventional example of mechanical sensors is Tensiometer that can be used to monitor soil moisture conditions to 

schedule irrigation 
 

Electro-chemical 
sensors 

By detecting specific ions in the soil, this sensor can measure Nitrogen Phosphorus Potassium (NPK) in the soil that is 
important for the plant 

 

Dielectric soil moisture Measuring the soil water sensors using Frequency domain reflectometry (FDR) or Time Domain Reflectometry (TDR) 

Air flow sensors  Measuring air moisture level that can impact the plant vegetation 
 

 

Drones Scheduling Problem: The scheduling problem is an 

important consideration when deploying UAVs for agricultural 

purposes. One of the main challenges is the limited flight time 

of most UAVs. Most drones can only fly for a few hours, so we 

must be carefully scheduled to ensure they can complete their 

tasks within the available flight time. Work by [63] tries to 

tackle this problem using Lyapunov optimization for 

scheduling problems on renewable charging station use cases. 

Another potential problem when deploying UAVs as data 

collection tools in the field is when an unexpected condition 

changes the initial knowledge of the scheduled plan (i.e., when 

the UAVs and the ground sensors do not have a good enough 

data collection velocity). To address this problem, Work in [64] 

proposed a Multi-UAV Deep reinforcement learning-based 

scheduling algorithm (MADRL-SA) that reduces the data loss 

even with the outdated knowledge of the current network con- 

dition. The scheduling problem can be particularly challenging 

when multiple tasks need to be completed, which has been 

proved as an NP-hard combinatorial optimization problem [65]. 

To solve this multi-UAV task scheduling problem, some 

approaches such as Genetic algorithm (GA), tabu search (TS), 

ant colony optimization (ACO), simulated annealing (SA), and 

particle swarm optimization (PSO) are considered, which 

potentially provides a globally optimal solution. 

 
D. Sensing in Agriculture 4.0 

Airborne sensing technologies can be important in Agricul- 

ture 4.0, especially for outdoor farmland. Sensing technology 

will provide the data to make decisions or interventions in the 

field to reach the desired outcome to perform various kinds of 

applications in smart farming (Table I). 

Agriculture typically has more land usage compared to other 

industries. This condition makes agriculture have a unique 

technological deployment problem. The sensing technologies 

in agriculture should be scalable enough to reach the Quality of 

Service (QoS) for a vast coverage area. To reach enough QoS 

for the system, solving a scalability problem may come with a 

trade-off to maintain the reliability of the sensing network. 

Furthermore, the sensing technologies should be deployed in 

many sensing dimensions to gain more complete farm 

conditions. Liu et al. introduced Space-Air-Ground- 

Undersurface Integrated Network (SAGUIN) that provides 

ubiquitous agriculture sensing and networking [6]. 

1) IoT Sensors: Data collection in agriculture cannot forget 

the role of sensors as a data collection method in the field. 

Innovation in sensor technology provides us with smaller 

and cost-efficient sensors that are increasingly suitable to be 

deployed in agricultural cases. In some cases, these sensors 

are equipped with electronic components such as processing 

units, modems, and antennas enabled to access the internet as 

a stand-alone object called the Internet of Things (IoT) [66, 67]. 

This advancement in ground-level data capture is intrinsi- cally 

linked to the broader scope of satellite-airborne sensing, 

signifying a shift towards a more integrated and intelligent 

data collection framework. Furthermore, this integration has 

given rise to a new paradigm in monitoring and surveillance, 

where ’smart’ observational chains form between terrestrial 

and non-terrestrial sensing. [68]. 

In the agricultural context, several kinds of sensors are 

usually used in the field. These sensors are location, opti- 

cal, mechanical, electrochemical, dielectric soil moisture, and 

airflow sensors [69]. They can be implemented in several 

applications, as listed in Table III. Each type of sensor exhibits 

unique properties in terms of metrological characteristics. 

Location sensors typically prioritize high accuracy and 

precision to ensure reliable positional data. The most common 

example of this sensor is the global positioning system (GPS). 

Optical sensors are designed with high sensitivity to discern 

subtle changes in various light properties, such as intensity, 

polarization, spectrum, and phase. Their detection capabilities 

range from basic light detection, useful in applications such 

as ambient light sensing, to more complex image detection used 

in digital cameras, barcode readers, and machine vision 

systems. 

Mechanical sensors, particularly those used for stress or 

strain measurements such as in tensiometers, necessitate high- 

resolution capabilities that enable them to detect subtle varia- 

tions in mechanical forces. Furthermore, producing consistent 

measurements under unchanged conditions (i.e., repeatability) 

is also crucial. This ensures the reliability and accuracy of these 

sensors in various applications. 

Electrochemical sensors, utilized to monitor chemical 

changes, depend critically on their sensitivity and specificity. 

Sensitivity is crucial as it determines the sensor’s ability 

to detect changes in the concentration of specific chemical 

elements. On the other hand, specificity ensures the sensor can 

distinguish between different chemical elements, preventing 

cross-reactivity and false readings. 

Dielectric soil moisture sensors measure the dielectric con- 

stant of soil, thereby detecting variations in moisture content. 

Maintaining the accuracy and precision of these sensors is 

essential to obtain reliable data. 

Lastly, airflow sensors, such as hot-wire anemometers, are 

Location sensors 

Mechanical sensors 
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TABLE IV: Classification of Algorithms for 1D and 2D Data in Agriculture 4.0 
 

Algorithm Category Examples of Algorithms Data Dimension 
Linear Regression, Polynomial Regression, Support Vector Regression (SVR), Random Forest 

Regression, Artificial Neural Networks (ANN) 
 

Decision Trees, Random Forest, Support Vector Machines (SVM), K-Nearest Neighbors 
(KNN), Naive Bayes, Artificial Neural Networks (ANN) 

K-Means, Hierarchical Clustering, DBSCAN, Gaussian Mixture Models (GMM), 
Self-Organizing Maps (SOM), Agglomerative Clustering 

ARIMA (AutoRegressive Integrated Moving Average), Exponential Smoothing, Seasonal 
Decomposition of Time Series (STL), Recurrent Neural Networks (RNN) 

Convolutional Neural Networks (CNN), Histogram-based Thresholding, Edge Detection, 
Image Segmentation, Object Detection 

 

Data Mining Association Rule Mining, Decision Tree Mining, Clustering, Sequential Pattern Mining 2D 

 

utilized to detect changes in the rate of airflow or measure air 

moisture levels. Maintaining swift response times is essential 

in many instances to facilitate real-time monitoring. While 

some of these sensors are in-situ ground-based sensors (i.e., 

Mechanical, Electrochemical, Dielectric soil moisture), and 

some can be employed in UAVs as airborne sensors. How- 

ever, these two types of measurement can complement each 

other, enabling us to acquire a more complete and detailed 

understanding of the overall environmental and agricultural 

conditions. 

2) Data Crowd-sensing: Deploying many sensors in an 

agricultural field needs to consider how to collect the data from 

a vast area of deployment. One approach to address this issue 

is using the mobile crowd-sensing technique to do data sensing 

on a vast data source [70]. However, unlike the typical crowd-

sensing method that uses a mobile device such as a smartphone, 

tablet, or wearable device, it is rarely available for 

agricultural use cases, usually in rural areas. Therefore 

[71] proposed a UAV-Assisted crowd-sensing that can be used 

in rural, remote, and inaccessible areas. 

Increasing the number of outputs (i.e., yields) or reducing the 

input (i.e., water, fertilizer) required to get the same output 

will directly impact our food welfare. One factor that provides 

us the opportunity to improve our current agricultural condition 

is the innovation of some technology that makes things that 

seem impossible possible. 

 
E. Mobile Edge Computing (MEC) 

Combining terrestrial and non-terrestrial networks such as 

LAPs, HAPs, and satellite opens up a new opportunity to 

develop a more flexible system in a vast coverage area. There 

is another paradigm that can complete the combination of 

terrestrial and non-terrestrial networks, which is Mobile Edge 

Computing. By definition, mobile edge computing refers to a 

set of techniques designed to move the storage and computing 

power of a cloud server closer to its data source [72]. With this 

new approach, the system will have a low latency capability 

that enables a faster result based on the data input from the 

sensing device. This approach also has a better privacy- 

preserving design due to its data handling methods that are 

computed locally. 

Combining UAV capabilities in a MEC system can in- crease 

the system flexibility compared to conventional IoT 

architecture. UAV can be deployed as Airborne Base Stations 

(ABS) [73], data collectors, relay nodes [74], Jammers [75], 

Monitors [76], edge and cloud computing servers [77], and 

power suppliers [78] to support the IoT system. In general, 

UAV- Enabled MEC can give several benefits, such as flexible 

and efficient communication due to its line-of-sight (LoS) 

link, which can provide a broader range of applications. UAV- 

Enabled MEC provides a low latency computation offloading, 

which can improve the energy efficiency of the overall system. 

Intuitively UAVs can have many contributions to MEC 

servers due to their versatility and ease of deployment. In 

a MEC system, UAV can act as an Edge Computing node 

that offloads its computing result to the MEC Server, a MEC 

server itself that is responsible for monitoring a group of 

end nodes, or become a gateway between end nodes and the 

MEC server (Fig 6). When deploying a UAV-MEC system, 

some aspects need to be considered, such as Communications 

security issues, computational and task offloading, Latency, 

Energy efficiency, consumption, UAV Trajectory Planning, 

quality of Service (QoS), Resources Allocation, Computation 

overhead and cost reduction. 

 
III. AGRICULTURE 4.0 TRENDS 

In recent years, several emerging technologies can comple- 

ment the sensing technologies discussed in this survey. This 

section will discuss emerging technologies, such as Machine 

Learning (ML) and Digital Twins (DT). Furthermore, this 

section will discuss the research projects in Agriculture 4.0 

from several countries (i.e., EU, US, and China). 

 
A. The Rise of Powerful Data Processing 

Obtaining large amounts of data is only the first step to 

extracting value from it. Processing large amounts of data 

needs a robust algorithm and resources. Thanks to emerging 

techniques such as machine learning that enable extracting 

value from massive volumes of data. Many kinds of machine 

learning models are used in many different use cases. Some 

of the traditional machine learning methods are the K-means 

algorithm [79], Support Vector Machine (SVM) [80], and the 

expectation–maximization (EM) algorithm [81]. No one 

method can be used for any problem, which is also true in 

machine learning problems. Every method has different 

capabilities for different problems. One of the most essential 

techniques in machine learning to process a massive amount 

of data is deep learning (DL) [82]. DL uses Artificial Neural 

Networks (ANNs) to identify patterns within the data, thereby 

Regression 

Clustering 

Classification 

Image Processing 

Time Series Analysis 

. 

1D 

2D 

2D 

1D 

2D 



HAZMY et al.: 9 
 

 

 

 

   

 

(a) (b) (c) 

Fig. 6: (a) The scenario UAVs have computation task, (b) The scenario UAVs as a Relay, (c) The scenario UAV act as a MEC. 

 

 
facilitating machine learning processes. The DL technique 

effectively processes unstructured data such as images, video, 

and sound. In the agricultural remote sensing context, it often 

collects data in the image form (e.g., satellite imagery) that 

align with the DL strength. Table II provides examples of use 

cases where enhanced DL techniques are employed to process 

satellite data for field and crop classification. Furthermore, 

considering the two types of data that are typically produced: 

1-dimensional (1D) data (e.g., soil moisture readings) and 2-

dimensional (2D) data (e.g., satellite imagery). Relevant 

algorithms have been classified based on these data dimensions 

in table IV. 

B. Emergence of Digital Twin 

Sensing is one of the crucial parts and an enabler of digital 

twin technology. By acquiring real-time data, digital twin 

technology develops a digital representation that can simulate, 

analyze, and optimize real-world counterparts. This system 

needs a combination of hardware, software, and data to perform 

a virtual simulation representing the physical entities. 

Implementing digital twins may be an opportunity as the next 

step after developing a reliable sensing infrastructure. Work in 

[83] conduct a review on the state of the art of digital twin 

technology in agriculture. Implementing digital twin 

technology can improve several agricultural use cases (e.g., 

Crop and livestock monitoring and optimization). 

In the context of the airborne network, authors in [84] 

propose an architecture of an air-ground network powered by 

digital twins. Two kinds of digital twins represent the ground 

equipment and drones, reducing the communication cost 

between drones and ground devices, and increasing the 

system’s efficiency. Furthermore, by leveraging digital twin 

technology, the system designer can efficiently evaluate a 

large-scale IoT network before deploying it to the real world. 

C. Smart Agriculture Research Projects 

Agriculture 4.0 is rapidly expanding through numerous 

initiatives worldwide. This section examines some Agriculture 

4.0 projects by the European Union, the United States, and 

China to understand the current trends and efforts when 

implementing airborne sensing technology in the Industrial 4.0 

project. 

1) European Union: The European Union (EU) has tradi- 

tionally prioritised supporting and developing its agricultural 

 
sector, as agriculture is a significant part of the EU’s economy. 

The EU’s Common Agricultural Policy (CAP) supports farm- 

ers, promotes sustainable agriculture, and ensures a stable food 

supply. Based on The Community Research and Development 

Information Service (CORDIS) platform1 there are several 

smart agricultural projects conducted in Europe: 

FLOURISH [85]: This project aims to fill the gap between 

agricultural robots’ current and desired capabilities by de- 

veloping an adaptable robotic solution for precision farming. 

This project started from March 2015 to August 31, 2018, 

with a total funding of up to C4.7 Million. This project used 

multi-copter drones and a multi-purpose Unmanned Ground 

Vehicle (UGV). This combination between drones and UVG 

provides a complete system that can survey a field from the air, 

perform the intervention on the ground, and provide detailed 

information for decision support. 

FOODIE [86]: This project aims to develop an open and 

inter-operable agricultural platform hub on the cloud for spatial 

and non-spatial management for farming production. This 

project started from March 1, 2014, to February 28, 2017, with 

a total funding of up to C5.9 Million. This project implements 

terrestrial and non-terrestrial sensor data, such as satellite 

imagery, to simulate yield production based on satellite data. 

MISTRALE [87]: This project aims to address soil moisture 

management in agriculture using Global Navigation Satellite 

Systems reflected signals (GNSS-R). This project is from 

January 1, 2015, to June 30, 2018, with a total funding of 

up to C3.3 million. Using GNSS-R, the project maps the soil 

humidity to optimize water resource management for the 

agricultural context. This project also embedded a GNSS-R 

receiver into a small Remotely Piloted Aircraft System (RPAS) 

to increase the sensing accuracy. 

2) United States: The United States government, through 

USDA (United States Department of Agriculture), pays at- 

tention to the agricultural sector by providing funding for 

research, development, and infrastructure projects, as well as 

support for farmers and rural communities. On the other hand, 

some technology companies, such as Microsoft, are also 

experimenting with emerging technology to improve the 

agricultural sector. An example of such projects are: 

 
1cordis.europa.eu 



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2023 
 

 

GRAPEX [88]: Grape Remote Sensing Atmospheric Pro- file 

Evapotranspiration eXperiment (GRAPEX) is a highly 

collaborative and interdisciplinary project that is supported by 

NASA, USDA, and E&J Gallo2. GRAPEX is a remote sensing 

experiment that started in 2014 to improve irrigation 

management in California vineyards. This project develops a 

multi-scale remote sensing evapotranspiration (ET) toolkit for 

grape-growing regions. This project produces twenties papers 

that consist of two volumes. The first volume is about the 

application, uncertainties, and sensitivities in the measurement 

and remote sensing of vineyard ET. The second is remote 

sensing methods for monitoring vine water status and stress, 

root zone soil moisture, and management applications. One 

of the published paper by Kisekka et al. combine the sensing 

technology between imagery data from Landsat satellite and 

in situ soil moisture data from the field [89]. 

FarmBeats [90]: FarmBeats is a project by Microsoft that 

started in 2014 intending to enable data-driven agricul- ture. 

This project used some technologies, including sensors, drones, 

tractors, cameras, satellites, and weather stations, to acquire 

data from the field. This project provided a platform that 

process and combines the data using some technique (i.e., 

Artificial Intelligent) to fill the gap in the data and predict likely 

outcomes from the data. All these data collection and 

processing enabled practical use cases such as developing a 

very hyper-local weather prediction, building 3D orthomo- 

saics, and aerial time-lapses of the farm. 

3) China: China’s government and research institutions such 

as the Chinese Academy of Science (CAS) and the Chinese 

Academy of Engineering (CAE) have implemented various 

policies and projects to improve the country’s agricultural 

sector. Some of these projects are: 

Smart agriculture model in Ruian, Zhejiang Province [91]: 

The project of triune integration between agricultural produc- 

tion, supply and marketing, and credit access was initiated 

in 2006. By 2020, the project adopted a modern agriculture 

platform (MAP) that integrates into the triune system with the 

help of Syngenta Group3. Some technologies integrated with 

MAP systems are remote sensing, big data, cloud computing, 

IoT, Blockchain, and AI. by leveraging these technologies, the 

system can provide worry-free agricultural scenarios, which 

include subsidy, loan, planting, and selling. Furthermore, by 

implementing robots in the field, this project reduced the cost 

by US$1200 per hectare. 

Smart Agriculture Strategy for China 2035 [92]: In 2021, the 

Chinese Academy of Engineering (CAE) developed a smart 

agriculture strategy for China 2035. Four categories become the 

key technologies in this strategic planning. These technologies 

are smart service, smart decision-making, Intelli- gent control, 

and smart perception. Currently, China has to implement 

automatic navigation, smart plant factories, and UAVs for 

agricultural applications with the help of BeiDou technologies4. 

Furthermore, the long-term goal is to establish a technology 

system combining key technologies such as ”AI 

 
2www.gallo.com 
3www.syngentagroup.com 
4beidou.gov.cn 

+ big data + new-generation communication technology + 

Internet of Things (IoT) + Beidou satellite navigation”. 

IV. CHALLENGES 

The use of airborne sensing technology has the potential 

to revolutionize agriculture in the age of Agriculture 4.0. 

However, to successfully implement the technology need to 

consider some potential challenges. This section will discuss 

the challenges from agricultural perspective and technological 

perspectives. The challenges faced by the agricultural sector 

perspective will help to understand how airborne sensing 

technology contributes to solving the problem. On the other 

hand, from the technological perspective will provide some 

consideration when implementing the technology. 

A. Limited Resources 

One challenge the agriculture sector faces is optimizing the 

output with limited resources. In general, there are two primary 

resources in the agricultural context. The first one is land. 

The land is a critical resource for agriculture, providing space 

for raising crops and livestock. However, access to land can 

be limited due to various factors, including ownership pat- 

terns, land tenure systems, and land use policies. The second 

vital resource for agriculture is water. Water is essential for 

agriculture as it is necessary for crops’ growth and livestock 

maintenance. However, access to water can be limited due 

to physical and economic factors. Other resources necessary for 

agriculture, such as fertilizers, pesticides, and irrigation 

equipment, may also be limited due to economic constraints 

or inadequate infrastructure. 

1) Precision Agriculture: One approach commonly used to 

manage limited resources in agriculture is Precision Agricul- 

ture [93]. Precision agriculture is a farming approach that 

utilizes advanced technologies to increase efficiency, reduce 

waste, and improve crop yields by tailoring inputs such as fer- 

tilizers and pesticides to the specific needs of individual plants 

or fields. Precision agriculture relies on data collection and 

analysis to make informed decisions about crop management, 

and it can significantly improve agricultural operations’ sus- 

tainability and profitability. Work in [94] specifically explored 

UAV-based applications for precision agriculture. According to 

their research, the several applications of UAVs in precision 

agriculture include weed mapping management, vegetation 

growth monitoring and yield estimation, vegetation health 

monitoring and disease detection, irrigation management, and 

corps spraying. However, the most common application of 

UAVs in precision agriculture is to monitor crop growth. 

Furthermore, on the technological aspect, some resource 

needs to be managed, such as energy consumption. Usually, we 

face this problem when deploying LAP UAVs in a large 

agricultural field. In addressing this problem, an optimization 

approach can be used to manage the limited resource in UAVs 

to achieve the desired QoS. 

2) Resources optimization on LAP UAVs: UAVs’ limited re- 

source consumption can be managed as a scheduling problem 

or workload distribution. Dynamic availability of resources 

plays an essential role in improving the performance of 

offloaded services. Various resource allocation schemes have 

been adopted to ensure optimal utilization of resources in order 

http://www.gallo.com/
http://www.syngentagroup.com/
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to improve UAV network performance and meet the increasing 

demand for computationally intensive applications due to 

uncertainty in the field with resource-constrained devices. 

Resource allocation is a crucial challenge for UAV networks 

to meet the minimum QoS in the field, especially in large 

areas of implementation due to UAV battery and trajectory 

limitations. 

1) Energy Efficiency: The first constraint that needs to be 

optimized is the energy consumption for the whole system. 

In this system, we can see the subset of this energy opti- 

mization as the tasks that consume energy. Some of these 

tasks are the calculation of resource allocation, online task 

scheduling, the live location of the drone, and calculating the 

number of drones under a delay constraint (e.g., slow offloading 

velocity). Therefore, the solution space of energy optimization 

problems is often vast and complex, with multiple local optima. 

One promising approach to addressing this issue is 

Evolutionary Algorithms (EAs). EAs are population- based 

heuristic search methods that work without needing gradient 

information. However, EAs may have some issues when the 

number of sensors and UAVs increases, which makes the 

problem have a large-scale search space with a mixed decision 

variable and also needs to include the correlation between 

UAVs deployment and task scheduling. To tackle this issue, 

work by Wang et al. proposed ToDeTaS that works in two 

layers of optimization which used EAs to optimize the number 

of deployed UAVs (i.e., Upper layer) and optimized the 

scheduling problem as an integer problem at the lower layer 

that improves the algorithm efficiency [95]. In another 

noteworthy contribution to this field, Shi et al. delves into 

energy efficiency optimization within the context of satellite- 

aerial-terrestrial networks (SATN). Addressing the limitations 

of existing works that often focus on resource optimization 

while overlooking relay strategy optimization among multiple 

UAVs, they proposed an innovative solution: an iterative 

algorithm. This algorithm, which leverages coordinate ascent 

and Lagrangian dual decomposition methods, was designed 

to optimize relay selection, power allocation, and UAV de- 

ployment jointly. The study’s extensive simulation results 

underscored its effectiveness, highlighting its potential for sig- 

nificantly improving system energy efficiency and optimizing 

relay selection and power allocation decisions. This work’s 

novelty and promising results further underline the potential 

of algorithm-based approaches in enhancing energy efficiency 

in SATNs [96]. 

2) Computation Efficiency: In the implementation of UAV- 

MEC systems, optimization of computation power is crucial. 

The work in [97] addresses this by proposing a compu- tation 

efficiency maximization strategy. This strategy aims to 

maximize central processing unit (CPU) frequencies and 

energy consumption while minimizing user offloading time and 

optimizing the position and mobility of UAVs. To solve this 

problem, the study calculates transmitted power and CPU 

frequencies using the Lagrangian Duality Method. Further- 

more, the Sequential Convex Approximation (SCA) method 

addresses determining the optimal UAV trajectory. Similarly, 

[98] presents an approach that optimizes the system’s en- ergy 

consumption and computation bits. This is achieved by 

managing users’ transmit power, optimizing the allocation of 

spectrum resources, and setting the most efficient trajectory 

for UAVs. 

3) Delay Minimization: Another problem is an operational 

delay, a significant concern for optimization. An existing 

approach to address this issue is described in [99], which aims 

to minimize the maximum delay (min-max) by optimizing user 

scheduling binary variables, offloading task ratio, and trajec- 

tory of UAVs under discrete binary constraints to enhance 

the overall performance. The authors employed the Penalty 

Dual Decomposition (PDD)-based algorithm consisting of 

two loops. In the inner loop, variables are updated using the 

Concave-Convex Procedure (CCCP) algorithm, while the 

Augmented Lagrangian (AL) multiplier and penalty factor are 

updated in the outer loop. Building on this understanding, recent 

work by Mao, He, and Wu presents an innovative approach to 

delay minimization in the context of a space- aerial-assisted 

mixed cloud-edge computing framework. Here, unmanned 

aerial vehicles (UAVs) provide low-delay edge computing 

services to IoT devices, while satellites ensure ubiquitous 

access to cloud computing [100]. The authors strive to minimize 

the maximum computation delay among IoT devices by jointly 

scheduling association control, computation task allocation, 

transmission power and bandwidth allocation, and UAV 

computation resource and optimizing deployment position. To 

tackle the formulated problem, they leveraged block coordinate 

descent and successive convex approxima- tion, creating an 

alternating optimization algorithm with guar- anteed 

convergence. Extensive simulation results from this study 

showcased a significant delay reduction compared to existing 

benchmark methods, further highlighting the potential of such 

joint optimization strategies in minimizing operational delay. 

UAV computing is discussed for supporting 6g networks and 

industry 4.0/5.0 [101] and disaster management [102]. 

4) Load Balancing: Another method for improving the 

entire UAV-Enabled MEC system is load balancing. By evenly 

distributing the computational load across various machines, 

load balancing minimises bottlenecks and ensures efficient 

system functioning. According to one study in [103], load 

balancing issues can be resolved by concurrently optimizing 

job scheduling and UAV deployment under coverage restric- 

tions. The author optimized the scheduling of jobs offloaded 

in multi-UAV scenarios using Deep Reinforcement Learning, 

which decreases transmission delay. In line with this approach, 

a different study proposes a federated deep Q-network (DQN)- 

based task migration strategy that considers both load and 

energy deviation among UAV MEC servers to enhance energy- 

efficient load balancing in UAV-Enabled MEC systems [104]. 

This strategy uses DQN to create a local model for migration 

optimization for each server, and federated learning forms a 

more efficient global model by capitalizing on the standard 

spatial features among adjacent regions. 

 
B. Climate Change 

Climate change has the potential to significantly impact 

agriculture, as changes in temperature, precipitation, and ex- 

treme weather events can affect the growth and yield of crops 
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TABLE V: HAP and LAP Characteristic Related to Communication. 
 

Characteristic Low Altitude Platform (LAP) High Altitude Platform (HAP) 

Range Limited Long 
Latency Low High 

Cost Low High 

Power Low High 

Jamming susceptibility High Low 

 

 

and the health and productivity of livestock. Rising temper- 

atures can increase water stress for plants and promote the 

growth of pests and diseases. Changes in precipitation patterns 

can also majorly affect agriculture, with floods and droughts 

posing challenges for farmers. Extreme weather events, such as 

heatwaves, hurricanes, and wildfires, can devastate agriculture, 

damaging crops and infrastructure and reducing production. 

The current climate condition is increasingly concerning as in 

the [105] which studies the effect of climate change in China, 

it shows that it is expected that the Total Factor Productivity 

and yield will decrease linearly by 2.6% and 4.4% during 

the whole year. If we are not finding a way to improve this 

condition, it could cause another crisis related to food security. 

Addressing this problem, this section will generally explain 

some approaches, such as facility agriculture and Climate- 

smart agriculture, to adapt to the current climate condition. 

1) Climate-smart Agriculture (CSA): Climate-smart agricul- 

ture is a farming practice that aims to increase agricultural 

productivity and adapt to climate change’s impacts while 

reducing greenhouse gas emissions and increasing carbon 

sequestration. It is a holistic approach considering agriculture’s 

economic, social, and environmental aspects. In 2022 USDA 

invested more than $3.1 billion for 141 projects in climate- 

smart commodities [106]. On another side of the world, work 

in [107] evaluates several cropping systems in the North China 

Plain (NCP) considering the CSA approach. In the sensing 

technology context, there are several efforts to implement a 

climate-smart approach. Innovations such as energy harvesting 

[108], on-demand sensing [109], and battery-free device [110] 

may improve sustainability when deploying a sensing technol- 

ogy. Combining these technologies, work in [111] proposed 

a new sustainable power supply scheme called PowerEdge. 

Moving the energy supply distributed may support the sensing 

technology deployment in a vast agriculture field. 

C. Terrestrial to Airborne Communication 

Another challenge from the technological deployment per- 

spective is communication between terrestrial and airborne 

networks. When deploying a conventional IoT sensor network, 

it is necessary to consider the obstacle that may disturb the 

network communication. On the other hand, airborne networks 

have the advantage of providing better communication by 

providing LoS connection. However, a challenge, such as 

three-dimensional interference, still needs to be overcome. 

Addressing this problem, work in [112] proposes an inter- 

ference management approach using mean-field game theory in 

a dense drone small cells (DSC) network. By controlling the 

altitude of each DSCs, this work achieves a better down- link 

communication quality and considers the interference 

introduced by other DSCs. Furthermore, work by Wang et al. 

 

addressed more complex conditions when the interference and 

the traffic demand change frequently. Using a machine 

learning-based approach (i.e., affinity propagation and K- 

means), they mitigate an inter-DSC inference and optimize 

the position to receive better signal quality [113]. Another 

problem that must be considered in designing communica- 

tion between airborne and terrestrial sensing networks is the 

distance between two or more machines. In the conventional 

terrestrial system, one solution to extend the communication 

range is to use a relay between two machines. However, due 

to the mobility constraint in the terrestrial device, the relay 

device is mostly deployed in a fixed location. On the other 

hand, airborne technologies (i.e., UAVs) enable a more mobile 

relaying strategy that provides short-range LoS communication 

links [114]. Moreover, it is essential also to consider the 

characteristic of different types of airborne platforms, namely 

Low Altitude Platforms (LAPs) and High Altitude Platforms 

(HAPs) in Table V. These attributes can significantly influence 

the design and performance of such systems. 

LAPs, such as drones, provide the advantage of rapid 

deployment and adaptability to specific areas of interest. They 

are also relatively affordable compared to HAPs, making them 

more accessible to smaller farms or resource-constrained 

regions. However, LAPs present some limitations, includ- ing 

a restricted range due to their limited flight endurance. This 

constraint may necessitate multiple flights with frequent 

recharging or battery replacement to cover larger agricultural 

areas. Moreover, LAPs are more susceptible to jamming. On 

the other hand, HAPs have the capability to cover large 

agricultural areas, providing wide-scale monitoring and data 

collection. However, deploying and maintaining HAPs can re- 

quire a significant investment, which may pose challenges for 

small farms or less developed regions seeking to adopt HAP 

technology. Moreover, due to their long-range deployment, 

HAPs may exhibit higher latency, which could delay data 

transmission and impact real-time decision-making processes 

in agricultural management. 

V. OPPORTUNITIES 

 
Leveraging the technological capabilities of airborne sens- 

ing, data processing, and virtual optimization trends and 

addressing the challenges from both the agricultural and 

technological perspectives leads to a new opportunity for 

improving the current agricultural system. This section will 

explore the potential of combining these elements and propose 

innovative ideas that build upon the findings from previous 

sections. The aim is to provide a comprehensive understanding 

of the opportunities and potential solutions for improving the 

agricultural landscape through airborne sensing technology. 
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A. Sensing Synergies 

In our exploration of satellite-airborne sensing technologies, 

as detailed in Section II, we scrutinize the spectrum of satellite-

airborne sensing technologies such as LAPs, HAPs, and 

satellites, as illustrated in Fig. 7. The utility of these tech- 

nologies varies with altitude; LAPs excel in high-resolution 

imaging for precise, local agricultural assessments, while 

satellites facilitate expansive coverage, crucial for gathering 

data in remote regions. Despite the broad reach afforded by 

satellites’ high-altitude positioning, challenges like cloud cover 

can impede data acquisition, which can compromise data 

quality. 

Addressing this, a multi-tiered sensing strategy emerges as 

a solution employing HAPs and LAPs to complement satellite 

observations by operating beneath cloud coverage, thus filling 

the observational voids and improving the overall sensing 

quality. This integrative approach not only counters the 

limitations of satellite data but also significantly boosts effi- 

ciency by ensuring continuous and reliable data flow. Bridging 

the gap further, the synergy between terrestrial sensors and their 

non-terrestrial counterparts enables a multi-dimensional 

analysis, enhancing the granularity of our agricultural insights. 

Adopting the idea on [115], the synergy between each sensing 

technology can be categorized into four strategies (Fig. 8). 

1) Data Comparison: This strategy compares the data 

between different data sources. The data from different sources 

will not affect each other interpretation, and the result will be 

compared to gain new insight. This strategy is categorized as 

weak synergy because it only compares the result (e.g., using 

visualization) without affecting each other interpretation of the 

data. 

2) Multi-scale Explanation: This strategy combines different 

data sources to obtain more detailed information. This strategy 

will combine the result between different data models to 

develop an interpretation. Expanding the idea in [115] that 

combined the detailed view of a UAV and the global view from 

a satellite makes it possible to combine other data sources’ use 

cases with the same logic combined between local and global 

sensing data. 

3) Model Calibration: Bringing the local and global com- 

bination to the next level, the Model calibration strategy 

combined the data in the model level to calibrate the result. For 

example, more specific local data with more detailed features 

can improve the global data model output. However, this 

strategy is not combining the data directly into one model but 

as a collaboration between 2 or more data sources to improve 

one model (e.g., improving the data label based on a more 

specific data source). 

4) Data Fusion: Combining data into one model is the main 

idea for the data fusion strategy. In this strategy, it is 

possible to combine multi modalities data (e.g., Image, sound, 

temperature) into one model to gain a more in-depth 

representation of the actual condition. One promising approach 

to this problem is multimodal machine learning [116]. 

B. Intelligent Sensing 

Data processing processes such as ML commonly start after 

sensing technologies acquire data. However, work in 

 
 

 

Fig. 7: Terrestrial and airborne network architecture. 

 

 

 
Fig. 8: Synergy strategies. 

 
 

[117] proposed a concept to merge computation and machine 

learning-based statistical analysis of signal into the sensing 

technology hardware to optimize sensing performance. Their 

proposed intelligent sensor design consists of four steps. First, 

the intelligent sensor will begin with the sensing data acquisi- 

tion. Next, these data will be used to train a machine-learning 

model as part of the sensing system. The model will then 

be evaluated by calculating the cost function, which will be 

compared to the ground truth sensing data. This optimization 

part will reduce non-informative or less helpful features in the 

data. Finally, the sensing hardware will be redesigned based 

on the statistical analysis of the previous phase. 

In the context of agricultural remote sensing (e.g., satellite 

imagery), which usually has a vast data set, we may need to 

reduce the complexity of the data to gain insight more effi- 

ciently. Intelligent sensing provides the capability to optimize 

the data by selecting only essential features (i.e., reducing data 
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noise) that can reduce the overall computational expenses of 

the system [118]. 

C. From Sensing to Virtual Optimization 

A reliable sensing infrastructure that provides accuracy, 

high-resolution, and real-time data collection with cost- 

effective adoptions will enable effective virtual optimization by 

integrating the data into virtual simulation approaches such as 

digital twin (DT) or predictive modelling [119]. Processing 

multi modalities data in sensing technologies needs to consider 

a strategy to integrate it. Work in [120] investigates multi-

modalities in digital twins using a knowledge graph as 

heterogeneous information networks (HINs). Furthermore, in- 

tegrating HINs with powerful data processing approaches such 

as DL needs to transform the graph or network structure into a 

low-dimensional vector space using an approach like network 

embedding. Another perspective on implementing digital twin 

technology is explored by Hu et al. that examines the potential 

of developing a Driver Digital Twin (DDT) as the enabling 

technologies for intelligence vehicles [121]. In the context of 

smart farming, there is an opportunity to develop a digital twin 

of a farmer based on a multimodal interface that can provide 

comprehensive sensing and feedback. Furthermore, handling 

multimodal information may need to leverage multimodal 

fusion that consists of three fusion levels, i.e., feature-level, 

model-level, and decision level [122]. 

Developing a virtual system optimisation also needs to 

consider the virtualization of the hardware and network sides. 

Software-defined networking (SDN) and network function 

virtualization (NFV) technologies can be used to develop a 

network design and structure that can be simulated and 

implemented virtually [123]. Leveraging these technologies 

will enable new services to be quickly deployed and tested, 

increasing infrastructure flexibility and network service adapt- 

ability. 

D. Climate Resilience and Satellite-Airborne Sensing 

Technologies 

Airborne sensing technologies play a crucial role in address- 

ing the impacts of climate change on agriculture. The changing 

climate patterns, including shifts in temperature, precipitation, 

and extreme weather events, pose significant challenges to 

agricultural productivity and food security. Farmers and poli- 

cymakers can better understand and respond to the challenges 

by harnessing the capabilities of satellite and airborne sensing 

technologies. Airborne sensing technologies provide valuable 

data for monitoring climate-related parameters that impact 

agriculture. For example, satellite remote sensing data can help 

assess the spatial and temporal distribution of temperature, 

rainfall, vegetation indices, precipitation, vegetation health, and 

soil moisture levels [124]. The information enables farm- ers to 

make informed decisions regarding irrigation manage- ment, 

crop selection, and pest control measures. By integrating 

satellite imagery with data from airborne platforms such as 

drones or tethered balloons, finer-scale and near-real-time 

monitoring can be achieved, offering localized insights for 

climate-resilient agriculture [125]. 

In addition to data collection, airborne sensing technologies 

facilitate the development of predictive models and decision 

support systems to enhance climate resilience in agriculture. 

Machine learning algorithms applied to the collected data can 

help identify patterns, predict crop yields, and detect anomalies 

related to climate stress [126]. Such models aid in opti- mizing 

resource allocation, implementing adaptive practices, and 

mitigating climate-related risks for farmers. Moreover, 

integrating airborne sensing technologies with other tech- 

nologies, such as IoT devices and data analytics platforms, 

enables continuous monitoring of environmental parameters at 

various scales [127]. This comprehensive approach enhances 

the understanding of climate change impacts on crop growth, 

soil conditions, and water availability. Using this knowledge, 

stakeholders can design climate-resilient strategies, improve 

resource management, and promote sustainable agricultural 

practices. 

Furthermore, airborne sensing technologies support adaptive 

decision-making in agriculture. By continuously monitoring 

climate variables, farmers can make timely and informed 

decisions regarding irrigation management, crop selection, and 

pest control strategies [128, 129]. For instance, satellite data 

and ground-based sensors can provide real-time infor- mation 

on soil moisture content, helping farmers optimize irrigation 

schedules and conserve water resources in water- stressed 

regions. Similarly, aerial platforms with multispectral or 

hyperspectral sensors can detect early signs of crop stress or 

disease, enabling proactive interventions and preventing yield 

losses. Mitigation strategies for climate change can also be 

enhanced through airborne sensing technologies. By providing 

detailed information on greenhouse gas emissions, land use 

changes, and vegetation dynamics, these technologies 

contribute to assessing and monitoring carbon sequestration 

efforts in agricultural landscapes [130]. The data can support 

implementing and evaluating climate-smart agricultural prac- 

tices, such as agroforestry, precision nutrient management, and 

conservation agriculture, which aim to reduce greenhouse gas 

emissions [131, 132, 133, 134, 135] and enhance carbon sinks 

in agricultural ecosystems. 

In recent years, several case studies have demonstrated the 

effectiveness of airborne sensing technologies in enhancing 

climate resilience in agriculture. For instance, a study in 

[136] showcased using drones with thermal imaging sen- sors 

to assess crop water stress in drought-affected regions. By 

detecting variations in canopy temperature, the drones provided 

early indicators of plant water needs, allowing for targeted 

irrigation and water management strategies. This approach 

optimised water usage and mitigated the potential yield losses 

caused by drought conditions. Another initiative by [137] 

utilized satellite remote sensing to monitor changes in 

vegetation dynamics and land cover in response to climate 

change. By analyzing multi-temporal satellite imagery, the 

study highlighted the shift in agricultural practices towards 

more climate-resilient crops and land management strategies. 

The insights gained from this monitoring approach guided 

policy interventions and supported adaptive decision-making at 

regional scales. Furthermore, airborne sensing technologies 

have been integral in precision agriculture applications for cli- 

mate resilience. In [138], drones equipped with hyperspectral 

sensors to detect early signs of crop diseases and pests were 
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used. By identifying stress indicators in the plant’s spectral 

signature, the drones enabled timely interventions, preventing 

the spread of diseases and reducing yield losses. This targeted 

approach minimized pesticide usage and promoted sustainable 

farming practices. As we continue to grapple with the impacts 

of climate change, the adoption and further development of 

these technologies present an unprecedented opportunity to 

secure our food systems and foster a more sustainable, resilient 

future for agriculture. 

VI. RESEARCH CHALLENGES AND INSIGHT GAINED 

After exploring the technologies of airborne agricultural 

sensing (Section II), the current trends (Section III), challenges 

(Section IV), and opportunity (Section V) related to it, the 

insights we gained are as follows: 

• The airborne network can be utilized to enable more flex- 

ibility to the sensing network. However, the opportunity 

this technology provides also comes with limitations on 

each airborne technology (i.e., LAP, HAP, Satellite), such 

as limited energy capacity and high noise sensing data. 

Addressing this problem, the synergy between technology 

is a promising solution to gain the full potential of these 

technologies. 

• The synergies between each airborne technology show us 

some new exciting collaboration patterns between global 

and local sensing perspectives. We may gain unexpected 

insight by combining global and local sensing perspec- 

tives compared than interpreting them separately. Fur- 

thermore, applying it to multimodalities data processing or 

virtual optimization will potentially provide a more 

accurate optimization objective. 

• Advancements in airborne sensing technologies offer 

significant opportunities to enhance agricultural produc- 

tivity while tackling climate change challenges. These 

technologies provide crucial data for informed decision- 

making, offer real-time monitoring when integrated with 

platforms like drones or IoT devices, and support cli- mate 

change mitigation strategies. However, their full potential 

can only be realized when effectively integrated into 

physical machinery for proper field intervention. 

Adopting and developing these technologies presents a 

promising path towards a more sustainable and resilient 

agricultural future amidst climate change. 

• Airborne technologies may become a reasonable initial 

adoption as a key enabler of Agriculture 4.0 due to their 

scalability, which can be easily implemented across large 

agricultural areas (Fig. 9). However, current technological 

adoption may need some level of technical expertise. 

Therefore, examining a more efficient way of adopting 

this technology from the farmer’s perspective becomes 

essential. 

Conducting this study, we also face some challenges, some of 

are as follows: 

• Reviewing an emerging technology and its application 

in a specific domain, such as agriculture, requires a 

balanced perspective between a technical understanding of 

the technology and the problem faced in the domain. 

Therefore, some parts in section IV discuss some prob- 

 

 

Fig. 9: Scalable satellite-airborne technologies initiate Agri- 

culture 4.0 adoption. 

 
 

lems in the agricultural domain perspective. 

• To accurately recommend further improvements by lever- 

aging the current state of airborne technological capabil- 

ities and limitations in sections II, III, and IV and syn- 

thesize an idea in section V, a dedicated and systematic 

brainstorming session may be necessary. 

 
VII. FUTURE RESEARCH DIRECTION 

Airborne sensing network collaboration, robust data pro- 

cessing, and reliable integration between various technologies 

provide several opportunities to enhance agricultural produc- 

tivity. However, the development of a robust sensing architec- 

ture presents a multitude of challenges. One such challenge is 

developing a resilient methodology for multi-modalities data 

processing. Data processing techniques like machine learning 

can still encounter performance bottlenecks when applied 

to multi-modalities optimization problems. Addressing this 

challenge could lead to a more comprehensive understanding 

of the agricultural environment and conditions through the 

combined input of multiple sensing technologies. 

A related direction for future research is the exploration 

of efficient and effective collaborations between sensing tech- 

nology and robotic intervention in the field. The increased 

urgency to maintain productivity in the face of a dwin- dling 

farming workforce, compounded by extreme weather 

conditions, underscores the potential value of this research. 

However, technological advancement alone is not sufficient. 

There is a critical need to improve the cost efficiency of 

adopting these technologies to ensure they are accessible and 

practical solutions to real-world problems. 

Following this line of thought, we propose several key areas 

of focus for future research: 

1) Data Fusion and Integration: Investigating techniques 

for seamless data integration and fusion from satellite and 

airborne platforms with ground-based sensors and IoT devices. 

The fusion approach can create comprehensive datasets for 

precise decision-making and enable more profound insights 

into agricultural systems. 

2) Enhanced Data Processing and Analytics: Advancing 

data processing techniques, including artificial intelligence, 

machine learning, and data fusion algorithms, to efficiently 

analyze vast amounts of remote sensing data and derive 
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actionable information for precision agriculture and climate 

monitoring. 

3) Climate-Resilient Adaptation Strategies: Developing and 

implementing climate-resilient agricultural practices based on 

the insights obtained from satellite and airborne data, including 

targeted approaches for water management, pest control, and 

crop selection optimized to withstand climate variations. 

4) Multi-Scale Monitoring: Exploring the integration of 

satellite and airborne technologies to provide multi-scale 

monitoring, combining regional and global perspectives with 

detailed local observations to understand agriculture’s response 

to climate change comprehensively. 

5) Climate Change Impact Assessment: Continuously as- 

sessing the impact of climate change on agriculture using long-

term remote sensing data to monitor trends, shifts in cropping 

patterns, and ecological changes, aiding in climate change 

vulnerability assessments. 

In navigating the future of agricultural sensing technologies, 

we identified that the trajectory is moving towards a holistic, 

integrated approach. At the core of this evolution is the fusion 

and integration of data across various platforms, including 

satellite, airborne, and ground-based sensors. This integra- tion 

is pivotal for developing comprehensive datasets that enable 

precise, informed agricultural decision-making. Further, 

enhancing data processing and analytics through advanced AI 

and machine learning techniques is essential, especially when 

handling multi-modalities from broad sensing tech- nologies. 

These advancements will be crucial for developing climate-

resilient agricultural strategies grounded in data-driven insights. 

Additionally, combining wide-ranging perspectives from 

regional to local scales, multi-scale monitoring will offer a 

more nuanced understanding of agriculture’s response to 

climate change. Finally, continuous assessment of climate 

change impacts through long-term remote sensing will be key 

to adapting agricultural practices and ensuring food security 

in a changing world. Together, these directions aim to forge a 

future where agricultural systems are highly efficient, resilient, 

and adaptable to climatic variations. 

VIII. CONCLUSION 

Adopting key technologies such as airborne sensing tech- 

nology in Agriculture 4.0 presents an economically viable and 

flexible means of harnessing its benefits and improving climate 

resilience. The present review has explored airborne sensing 

technology, unpacking its enabling technologies, trends, chal- 

lenges, and opportunities from both agricultural and technolog- 

ical perspectives. The integrated approach of merging airborne 

sensing technologies with IoT devices and data analytics 

platforms has been stressed, emphasizing the need for com- 

prehensive and continuous monitoring at various scales. The 

integration approach lead to a deeper understanding of climate 

change impacts on crop growth, soil conditions, and water 

availability, thereby enabling the design of climate-resilient 

strategies, improved resource management, and the promotion 

of sustainable agricultural practices. We also underscored the 

potential of airborne sensing technologies to facilitate mitiga- 

tion strategies for climate change by monitoring greenhouse gas 

emissions, land use changes, and vegetation dynamics. 

By adopting the proposed strategies and technologies, farmers 

potentially achieve significant cost savings, increase increased 

crop yields, and contribute to the broader trend of sustainable, 

data-driven, and climate-resilient farming practices. With the 

scalability and quick deployment capability, airborne sensing 

technologies offer a promising pathway to lower the barrier 

to entry of Agriculture 4.0 adoption and improve climate 

resilience. Furthermore, the potential impact of adopting air- 

borne sensing technologies on global food security is immense, 

as more efficient and sustainable agriculture practices are 

crucial for meeting the growing demand for food in a rapidly 

changing and climate-impacted world. 
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