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1. Introduction

Consider the forced Lur’e (also Lurie or Lurye) system of nonlinear differential equations:

ẋ = Ax + Bf (Cx + v2) + v1 , (1.1)

where, as usual, x is the state variable and v = (v1, v2) is an external forcing (or control or disturbance)
term. Here A, B and C are compatibly-sized matrices and f is a (in general nonlinear) function. Lur’e
systems are the feedback connection of the linear control system

ẋ = Ax + Bu + v1, y = Cx + v2 , (1.2)
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2 R. DRUMMOND ET AL.

Fig. 1. Block diagram of forced Lur’e system (1.1).

with control input, state and output u, x and y, respectively, and the static nonlinearity u = f (y). They
comprise a common and important class of nonlinear control systems, and are consequently well-studied
objects. A diagram of the feedback connection is shown in Figure 1.

In this paper, we establish the following result for Lur’e systems.
Main result: Restricting to the subclass of Lur’e systems (1.1) where f is globally Lipschitz, whenever an
absolute stability criterion guarantees global exponential stability of the unforced equation, or a linear
L2-input-output stability estimate (combined with the detectability property for the underlying linear
system), then the same absolute stability criterion in fact guarantees the stronger stability property of
exponential input-to-state stability (exponential ISS).

Recall that the Lur’e system (1.1) is called exponentially ISS if there exist positive constants Li, λ

such that every trajectory (v, x) of (1.1) satisfies

‖x(t + τ ; v)‖ ≤ L1e−λt‖x(τ )‖ + L2‖v‖L∞(τ ,t+τ) ∀ t, τ ≥ 0 . (1.3)

The above upper bound (also called an estimate) is of course valid for the special case of stable linear
control systems, that is, the first equation in (1.2) with v = Bu + v1 and asymptotically stable matrix
A, meaning all the eigenvalues of A have negative real part. The exponential ISS property extends this
notion to include forced nonlinear control systems.

An absolute stability criterion is a sufficient condition for stability, meaning a number of possible
notions, in terms of a condition on the linear control system (1.2) and sector- or boundedness-data on the
nonlinear term f . The term absolute refers to the property that stability is ensured for all nonlinear terms
within a given class, a key robustness requirement. Absolute stability theory has garnered much academic
interest (see, for instance, the extensive literature reviewed in (Liberzon, 2006)) and traces its roots back
to the 1940s and the Aizerman Conjecture (Aizerman, 1949). Classical absolute stability criteria include
the complex (also known as the complexified or generalised) Aizerman Conjecture, which despite its
name, is true, as established in Hinrichsen & Pritchard (1992) (see also Hinrichsen & Pritchard (2011,
Section 5.6.3)), as well as the celebrated circle and Popov criteria (Popov, 1962); see, for example, Khalil
(2002) and Haddad & Chellaboina (2008). The Circle Criterion generalises the sufficiency part of the
Nyquist Criterion in the single-input single-output setting to Lur’e systems, allowing the tools of the
linear systems to be applied to this class of nonlinear system. Yet another approach to absolute stability
is via so-called Zames–Falb multipliers, initiated by O’Shea (1966, 1967), and further developed by
Zames & Falb (1968), with a recent tutorial and perspectives given in Carrasco et al. (2016). Further
criteria are afforded by the Integral Quadratic Constraints (IQCs) framework, pioneered by the work of
Megretski (1993) and Megretski & Rantzer (1997), although the term IQC dates back to the work of
Yakubovich in the 1970s; see Fu et al. (2005) and the references therein.

ISS is a stability concept for controlled (or forced) systems of nonlinear differential equations,
initiated in the 1989 work of Sontag (1989), with subsequent developments in the 1990s by Sontag
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EXPONENTIAL INPUT-TO-STATE STABILITY 3

and others across, for example, Jiang et al. (1994); Sontag & Wang (1995) and Sontag & Wang (1996).
There is now a vast literature on the subject, and a number of variations of the ISS property have since
been proposed, such as so-called integral ISS (Sontag, 1998; Angeli et al.„ 2000), strong ISS (Chaillet
et al.„ 2014) and incremental ISS (Angeli, 2002). The ISS property has been developed in discrete
time as well, from Jiang & Wang (2001) onwards. For more background on ISS, we refer the reader
to the survey papers of Dashkovskiy et al. (2011) and Sontag (2008). One strength of the input-to-state
stability paradigm is that it both encompasses and unifies asymptotic and input-output approaches to
stability, the latter initiated by Sandberg and Zames in the 1960s; see Desoer & Vidyasagar (1975).
The comparison functions ensured by the ISS property are somewhat general and, consequently, one
advantage of exponential ISS over the usual version is that it, at least qualitatively, estimates the form of
the comparison functions involved. Practically, ISS is important as it shows that ‘small’ external noise,
disturbance or unmodelled dynamics result in a correspondingly ‘small’ effect on the resulting state.

Much attention has been dedicated to establishing ISS properties for Lur’e systems, originating in the
work of Arcak & Teel (2002). Arguably, these authors initiated a line of enquiry investigating the extent
to which classical absolute stability criteria may be strengthened to ensure certain ISS properties of the
corresponding forced Lur’e system. Indeed, the result by Arcak & Teel (2002, Theorem 1) is reminiscent
of the classical positivity theorem (in the ‘infinite sector case’) for absolute stability; see, for example,
Khalil (2002, Theorem 7.1, p. 265)—there with K1 = 0. As is well known, ISS ensures asymptotic
stability properties, and the converse is false in general. Whilst there are some subtle pathological
cases, such as the examples considered in Teel & Hespanha (2004), broadly speaking, it is the case
that suitably strengthened absolute stability criteria do ensure various ISS notions. That the complex
Aizerman Conjecture and Circle Criterion may be strengthened to ensure various ISS-type properties
has been established by the work of Logemann, and his students and collaborators, dating back to
Jayawardhana et al. (2009) and including Jayawardhana et al. (2011); Sarkans & Logemann (2015);
Bill et al. (2016); Sarkans & Logemann (2016); Guiver et al. (2019); Gilmore et al. (2020) and Guiver &
Logemann (2020). Roughly, and as evidenced in the cited papers, the extension from an absolute stability
criterion to a sufficient condition for ISS often involves detailed and lengthy technical arguments.

Here we continue the line of enquiry of strengthening classical absolute stability criteria to ensure
the ISS property. We invoke the recent characterisations of the exponential ISS property from Guiver
& Logemann (2023), which, in turn, builds on an observation from Khalil (2002, Lemma 4.6, p. 176).
Namely, we show that, under the assumption that the function f in (1.1) is globally Lipschitz, then global
exponential stability of the unforced version of (1.1), or a linear L2-input-output gain (combined with
a detectability assumption), are in fact necessary and sufficient for exponential ISS of (1.1).

Whilst the assumption that f is globally Lipschitz is somewhat restrictive, and by no means necessary
for exponential ISS of (1.1), it appears as a hypothesis in many absolute stability criteria such as Zames–
Falb multiplier theorems or the Kalman conjecture (Kalman, 1957; Barabanov, 1988), in the guise of
slope-restricted nonlinearities. The upshot is that a number of, to the best of our knowledge as-yet-
untreated, absolute stability criteria including IQCs, Zames–Falb multipliers and Popov criteria, ensure
exponential ISS with little additional effort, at least under a global Lipschitz assumption. We comment
that whilst the observation that ‘global exponential stability and globally Lipschitz implies (or should
imply) ISS’ is perhaps control folklore, or at least unsurprising, to the best of our knowledge, this
observation has not been previously applied to IQC and Zames–Falb multiplier methods in the literature.

The note is organised as follows. Our main results appear across Sections 2 and 3, and concluding
remarks appear in Section 4.
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4 R. DRUMMOND ET AL.

1.1. Notation

Mathematical notation is mainly standard and follows Guiver & Logemann (2023), but the following is
listed for convenience. For a measurable function z defined on R+ and taking values in Euclidean space
R

n (a signal), the L2-norm of z over the horizon (τ , t + τ) is defined as

‖z‖L2(τ ,t+τ) =
( ∫ t+τ

τ

‖z(θ)‖2 dθ
) 1

2
t, τ ≥ 0 ,

where ‖ · ‖ is the Euclidean norm on R
n. Similarly, the L∞-norm of z over the horizon (τ , t + τ) is

defined as

‖z‖L∞(τ ,t+τ) = ess supθ∈(τ ,t+τ)‖z(θ)‖∞ t, τ ≥ 0 ,

where ‖ · ‖∞ is the maximum norm on R
n. When the above quantities are finite for all 0 ≤ t, τ < ∞,

then we say that z belongs to L2,loc(R+,Rn) and L∞,loc(R+,Rn), respectively, that is, z is locally square
integrable or z is locally essentially bounded, as a function on R+ taking values in R

n.
Let G(s) denote a transfer function—a proper rational function of the complex variable s defined on

some open right-half complex plane. When every pole of G has negative real part, then the H∞ norm
of G is defined as

‖G‖H∞ := sup
ω∈R

σ̄
(
G(jω)

)
,

where σ̄ (·) denotes maximum singular value.
Finally, recall that a square matrix is called Hurwitz if every eigenvalue has negative real part.

2. Absolute stability criteria for exponential ISS

2.1. Preliminaries

Consider the Lur’e system of forced nonlinear differential equations (1.1), where A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n, and f : Rp → R
m for positive integers m, n and p. We assume throughout that f is locally

Lipschitz and linearly bounded, meaning there exists k > 0 such that

‖f (z)‖ ≤ k‖z‖ ∀ z ∈ R
p . (2.1)

Under these assumptions, it follows routinely from the theory of ordinary differential equations that
for each v = (v1, v2) ∈ L∞,loc(R+,Rn × R

p), there exists a locally absolutely continuous function
x : R+ → R

n such that (1.1) holds almost everywhere. We call the pair (v, x) a trajectory of (1.1).
Moreover, for each v ∈ L∞,loc(R+,Rn × R

p) and ξ ∈ R
n, there exists a unique trajectory (v, x) of

(1.1) with x(0) = ξ . Evidently, the sector condition (2.1) yields that f (0) = 0 and so (0, 0) is a constant
trajectory of (1.1). For clarity, we shall always assume that v in (1.1) belongs to L∞,loc(R+,Rn × R

p).
Lur’e system (1.1) is called linearly L2-input-output stable if there exists a positive constant α such

that every trajectory (v, x) of (1.1) with x(0) = 0 satisfies

‖y‖2
L2(0,t)

+ ‖u‖2
L2(0,t)

≤ α‖v‖2
L2(0,t)

∀ t ≥ 0, (2.2a)
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EXPONENTIAL INPUT-TO-STATE STABILITY 5

where, here and throughout for (1.1), y = Cx+v2 and u = f (y). The above property is often simply called
stable in the IQC literature, namely Megretski & Rantzer (1997, Definition, p.281). Strictly speaking, the
feedback connection in Figure 1 is a slight generalisation of that in Megretski & Rantzer (1997, Figure
1) to which Megretski & Rantzer (1997, Definition, p. 281) applies, as here v1 need not be of the form
v1 = Bv′

1, for some disturbance signal v′
1. Under our standing linear-bound assumption (2.1), it follows

that if there exists a positive constant α0 such that every trajectory (v, x) of (1.1) with x(0) = 0 satisfies

‖y‖2
L2(0,t)

≤ α0‖v‖2
L2(0,t)

∀ t ≥ 0 , (2.2b)

then the inequality (2.2a) holds with α := α0 + k2 where k is as in (2.1). Observe that inequality (2.2b)
clearly follows from (2.2a) with α0 := α. Therefore, for the Lur’e systems considered presently, the
inequalities (2.2a) and (2.2b) are equivalent, that is, one holds if, and only if, the other does.

Note that v ∈ L∞,loc(R+,Rn × R
p) implies that v is locally square integrable, that is, belongs to

L2,loc and so the right-hand sides of (2.2) are finite. Obviously, for the right-hand sides of (2.2) to remain
finite in the limit t → ∞ requires that v ∈ L2(R+,Rn × R

p), which is not implied by local essential
boundedness of v in general.

We say that (1.1) has the linear L2-state/input-to-state gain property if there exist positive constants
β1, β2 such that, for all trajectories (v, x) of (1.1),

‖x‖L2(0,t) ≤ β1‖x(0)‖ + β2‖v‖L2(0,t) ∀ t ≥ 0 . (2.3)

(Strictly, the property (2.3) should hold for all t, τ ≥ 0—see Guiver & Logemann (2023, Definition
3.3)—but this is equivalent to the displayed property (2.3) when f in (1.1) is time-invariant, as is the case
here, by a standard shift- and causality-argument.)

Similarly, recall that (1.1) is said to be exponentially input-to-state stable (exponentially ISS) if there
exist positive constants L1, L2, γ such that the estimate (1.3) holds for all trajectories (v, x) of (1.1).

Since it plays a key role presently, we record the main result of Guiver & Logemann (2023), namely
Guiver & Logemann (2023, Theorem 3.4), in the context of the forced Lur’e system (1.1).

Theorem 1. Consider the forced Lur’e system (1.1) and assume that f is globally Lipschitz. Consider
also the unforced version

ẋ = Ax + Bf (Cx), (2.4)

that is, equation (1.1) with v = 0. The following statements are equivalent:

(1) (2.4) is globally exponentially stable;

(2) (1.1) is exponentially ISS;

(3) (1.1) has the linear L2-state/input-to-state gain property;

(4) (1.1) admits an exponential ISS Lyapunov function, that is, there exist a continuously differen-
tiable function V : Rn → R+ and positive constants b1, b2, b3 and b4 such that

b1‖z‖2 ≤ V(z) ≤ b2‖z‖2 ∀ z ∈ R
n, (2.5a)
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6 R. DRUMMOND ET AL.

and

〈∇V(z), Az + Bf (Cz + w2) + w1〉 ≤ −2b3V(z) + b4‖w‖2 ∀ (z, w) ∈ R
n × (

R
n × R

p).
(2.5b)

Recall from, for example, Logemann & Ryan (2014, p. 286), that a function V : R
n → R+ is

continuously differentiable if, and only if, every partial derivative of V exists and is continuous. In this
case the gradient of V , denoted ∇V , and which is often defined as the derivative of V , may be identified
with a vector of partial derivatives of V .

2.2. Main result

The following theorem is the main result of the present note.

Theorem 2. Consider the forced Lur’e system (1.1) and assume that f is globally Lipschitz. The
following statements hold:

(1) If an absolute stability criterion ensures that zero is a globally exponentially stable equilibrium
of (2.4), then (1.1) is exponentially ISS.

(2) If the pair (C, A) is detectable and an absolute stability criterion ensures that (1.1) is linearly
L2-input-output stable, then

(a) (1.1) has linear L2-state/input-to-state gain;

(b) (1.1) is exponentially ISS; and

(c) there exist positive constants Γ1, Γ2, γ such that every trajectory (v, x) of (1.1) satisfies

‖x(t + τ)‖2 ≤ Γ1e−2γ t‖x(τ )‖2 + Γ2‖v‖2
L2(τ ,t+τ)

∀ t, τ ≥ 0 . (2.6)

Property (2.6) is somewhere between exponential ISS and the linear L2-state/input-to-state gain
property, with the bound for ‖x(t + τ)‖2 in terms of exponential decay in the state and linear growth
in the L2-norm of the input. Observe that the inequality (2.6) with v = 0 trivially shows that zero is
a globally exponentially stable equilibrium of the unforced Lur’e system (2.4), and so is equivalent to
exponential ISS (and hence the linear L2-state/input-to-state gain property) of (1.1) by statement (1).
In particular, for the Lur’e systems under consideration, the inequalities (1.3) and (2.6) are equivalent,
which may be situationally advantageous when one or the other is easier to verify, or when either the
L2- or L∞-norm of the forcing term v is more relevant.

Statement (2) of Theorem 2 draws inspiration from Megretski & Rantzer (1997, Proposition 1)
(which does not consider outputs or the exponential ISS property), where property (2.6) is shown to
be equivalent to the linear L2-state/input-to-state gain property when x(0) = 0. In particular, we obtain
a new proof of Megretski & Rantzer (1997, Proposition 1) for forced Lur’e systems with Lipschitz
nonlinear term. We note that the detectability assumption in statement (2) is natural when seeking to
infer stability properties of a state from those of an output.

Proof of Theorem 2. Statement (1) follows immediately from Theorem 1.
To prove statement (2), let v ∈ L∞,loc(R+,Rn × R

p) and let (v, x) denote a trajectory of (1.1).
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EXPONENTIAL INPUT-TO-STATE STABILITY 7

(a) Define z := x − e−1x(0) where e−1(t) := e−t for all t ≥ 0, and yz := Cz + v2. A routine
calculation shows that

ż = Az + Bf (Cz + v2) + w ,

where

w := v1 + B
(
f (Cz + Ce−1x(0) + v2) − f (Cz + v2)

) + (A + I)e−1x(0) .

In particular,
(
(w, v2), z

)
is a trajectory of (1.1) with z(0) = 0. Hence, the linear L2-input-output stability

hypothesis (2.2b) here reads

‖yz‖L2(0,t) ≤ √
α0

∥∥(w, v2)
∥∥
L2(0,t) ∀ t ≥ 0 .

Invoking that f is globally Lipschitz, we may majorise w by

‖w‖ ≤ c1

(‖v1‖ + e−1‖x(0)‖) ,

for some positive constant c1 and which, therefore, yields that

‖yz‖L2(0,t) ≤ c2

(‖v‖L2(0,t) + ‖x(0)‖) ∀ t ≥ 0 , (2.7)

for some positive constant c2.
Revisiting x, the detectability assumption of the pair (C, A) guarantees the existence of H ∈ R

n×p

such that A − HC is Hurwitz. The Lur’e system (1.1) may be rewritten as

ẋ = (A − HC)x + Bf (Cx + v2) + HCx + v1

= (A − HC)x + Bf (yz + Ce−1x(0)) + Hyz + HC(e−1x(0) − v2) + v1 .

The variation of parameters formula for x yields that, for all t ≥ 0,

x(t) = e(A−HC)(t)x(0)

+ (
e(A−HC) �

(
Bf (yz + Ce−1x(0)) + Hyz + HC(e−1x(0) − v2) + v1

))
(t) , (2.8)

where � denotes convolution, and

e(A−HC)(t) := e(A−HC)t ∀ t ≥ 0 .

From the Hurwitz property of A − HC, there exists c3 > 0 such that

max
{‖e(A−HC)‖L2(0,t), ‖e(A−HC)‖L1(0,t)

} ≤ c3 ∀ t ≥ 0 . (2.9)

Taking L2(0, t) norms in (2.8) for t ≥ 0 and invoking that f is globally Lipschitz, and the upper bounds
(2.7) and (2.9), gives (2.3), for some β1, β2 > 0, as required.
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8 R. DRUMMOND ET AL.

Part (b) follows from (a) and Theorem 1.
Finally, to prove part (c), we invoke statement (b) and Theorem 1 to ensure the existence of an

exponential ISS Lyapunov function V : Rn → R+ as in (2.5). The dissipation inequality (2.5b) yields

d

dt
V(x(t)) ≤ −2b3V(x(t)) + b4‖v(t)‖2 for almost all t ≥ 0 .

From an application of the variation of parameters formula, and a suitably modified version of Logemann
& Ryan (2014, Lemma 5.43), we deduce the inequality

V(x(τ + s)) ≤ e−2b3sV(x(τ )) + b4

∫ s+τ

τ

e−2b3(s+τ−p)‖v(p)‖2 dp ∀ s, τ ≥ 0 . (2.10)

Therefore, estimating both sides of the above using (2.5a) gives

b1‖x(t + τ)‖2 ≤ b2e−2b3t‖x(τ )‖2 + b4

∫ t+τ

τ

‖v(s)‖2 ds ∀ t, τ ≥ 0 ,

which is (2.6) with Γ1 := b2/b1, γ := −b3 and Γ2 := b4/b1. �
In the remainder of the note, we comment on how and where Theorem 2 applies to a selection

of results across the literature. Given the breadth and depth of study on absolute stability criteria, the
following description is by no means exhaustive.

For which purpose, we set G(s) := C(sI − A)−1B, which is the transfer function from input u to
output y in the linear control system in (1.2). In much control theoretic literature, the terminology slope-
restricted is used in the single-input single-output setting. Recall that the scalar-valued function f is
called slope-restricted if there exist a < b such that

a ≤ f (z1) − f (z2)

z1 − z2
≤ b ∀ z1, z2 ∈ R, z1 �= z2 . (2.11)

Slope-restricted functions are globally Lipschitz and, when a ≥ 0, are also monotone nondecreasing, in
the sense that

0 ≤ (z1 − z2)
(
f (z1) − f (z2)

) ∀ z1, z2 ∈ R .

In the multivariate setting, a function f : Rp → R
p is called diagonal (or decoupled) if

(
f (z)

)
i = fi(zi) ∀ z = (

z1 . . . zp
)� ∈ R

p, ∀ i ∈ {1, 2, . . . , p} . (2.12)

Such a function is called slope-restricted if every scalar-valued component fi : R → R is.
A slope-restricted condition on f and the usual assumption in control systems that f (0) = 0 are

sufficient for the linear-bound condition (2.1) to hold.
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EXPONENTIAL INPUT-TO-STATE STABILITY 9

2.3. Zames–Falb multipliers

Of particular interest to the present authors are absolute stability criteria in terms of Zames–Falb
multipliers. Zames–Falb multipliers treat absolute stability problems for nonlinearities that are either
monotonic or slope restricted; results obtained using them are often less conservative than ones obtained
using Circle/Popov Criteria and the more usual sector bounds. Roughly speaking, the approach seeks
multipliers which guarantee passivity of a certain transfer function (Carrasco et al. 2016; Turner, 2021)
and the existence of such a multiplier then guarantees that the system (1.1) is L2-input-output stable. The
classical result of Carrasco et al. (2016, Theorem 1) does not explicitly mention linear L2-input-output
stability as a conclusion. However, an inspection of the proof of Zames & Falb (1968, Lemma 1), the
key stability result used in proving Zames & Falb (1968, Theorem 1), shows that this property is in fact
an unmentioned conclusion.

Recently, the control systems literature has seen a surge of papers on Zames–Falb multipliers,
such as Mancera & Safonov (2005); Chang et al. (2012); Fetzer & Scherer (2017) and Turner &
Drummond (2020), with the main interest being the application of the method to systems to slope-
restricted nonlinearities, that is systems for which f satisfies inequality (2.11). As observed in the
previous section, such nonlinearities are globally Lipschitz and, therefore, by Theorem 2 stability results
obtained via Zames–Falb multipliers guarantee exponential ISS with no further assumptions, apart from
the mild assumption of detectability of the linear part of the system. The same conclusion is true of the
various multivariable extensions of Zames–Falb’s result (Mancera & Safonov, 2005).

2.4. Popov criteria

The eponymously-named Popov criterion dates back to Popov (1962). The result is a classical absolute
stability criterion and appears in a number of different forms across the literature, including in terms of
an IQC interpretation and via a Lyapunov approach in terms of a so-called Lur’e-Postnikov Lyapunov
function as appearing in the monographs by Khalil (2002, Theorem 7.3), Haddad & Chellaboina (2008,
Theorem 5.20) and Vidyasagar (2002, Theorem 46, p. 231). There are distinct formulations of the
Popov criterion, but all essentially combine a (possibly infinite) sector condition with a positive-realness
assumption of an auxiliary function (the transfer function multiplied by a so-called Popov multiplier).
Popov criteria require that the dimensions of the input and output spaces coincide, meaning m = p in
(1.1) and (2.4).

We show how Theorem 2 applies to two distinct Popov criteria:

1. The result Haddad & Chellaboina (2008, Theorem 5.20) assumes that (A, B, C) is minimal and
that the nonlinear term φ = −f is diagonal (or decoupled) as in (2.12). If φ and positive definite
diagonal M ∈ R

m×m are such that

〈φ(z), φ(z) − Mz〉 =
m∑

i=1

φi(zi)(φi(zi) − Miizi) ≤ 0 ∀ z ∈ R
m ,

and s �→ I + M(I + Ns)G(s) is strictly positive real for some positive definite diagonal
N ∈ R

m×m, then the zero equilibrium of (2.4) with f = −φ is globally exponentially stable.
The result (Haddad & Chellaboina, 2008, Theorem 5.20) only claims global asymptotic stability,
but in fact global exponential stability follows from their argument—integrating the inequality
(Haddad & Chellaboina, 2008, (5.234), p. 385) between 0 and t gives that (using the notation of
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10 R. DRUMMOND ET AL.

Haddad & Chellaboina (2008))

p1ε‖x‖2
L2(0,t)

≤ ε〈x, Px〉L2(0,t) ≤ V(x(0)) − V(x(t)) ≤ p2‖x(0)‖2 ∀ t ≥ 0 ,

for some positive constants p1 and p2, where we have used that P is positive definite and φ is
sector bounded. Global exponential stability of (2.4) with f = −φ now follows from Guiver &
Logemann (2023, Theorem 2.1).

2. The result (Fliegner et al., 2006, Theorem 2) considers the single-input single-output (m = 1)
case and assumes that lims→0 sG(s) > 0, that α ∈ (0, ∞) and q ≥ 0 are such that

s �→ 1 + α(qs + 1)G(s) is strongly positive real,

and that φ = −f satisfies

αzφ(z) ≥ φ2(z) and zφ(z) ≥ α0z2 ∀ z ∈ R ,

for some α0 > 0. In this case, it follows from Fliegner et al. (2006, Theorem 2, statement (i))
that zero is globally exponentially stable. Note that Fliegner et al. (2006, Theorem 2) do not
impose that the linear system is controllable and observable, and the matrix A in (1.1) has a simple
eigenvalue at zero.

In both cases, an application of Theorem 2 gives that if φ is globally Lipschitz, then (1.1) with f = −φ

is exponentially ISS. For clarity and the avoidance of doubt, we comment that Popov criteria, such as
the above two results, do not require that f is globally Lipschitz. Rather, the present novel findings are
that, under an additional global Lipschitz assumption on f , these Popov criteria in fact ensure additional
stability properties.

2.5. Integral Quadratic Constraints

IQCs are a powerful tool for determining input-output stability of rather general feedback connections—
namely a stable linear system (with transfer function G) and a causal operator Δ with bounded gain. The
classical IQC result (Megretski & Rantzer, 1997, Theorem 1) provides sufficient conditions for when
this feedback connection is linearly L2-input-output stable. Both the classical Zames–Falb multiplier
theorem (Zames & Falb, 1968, Theorem 1, Corollary 1) and the Popov Criterion (Jönsson, 1997) can be
interpreted in an IQC context.

However, IQC analysis for Lur’e systems is not limited to classical approaches and if (i) any IQC
stability analysis concludes stability in the sense of Megretski & Rantzer (1997, Theorem 1); and (ii) the
operator Δ is a static, globally Lipschitz nonlinearity, then the system fits the form of (1.1) and satisfies
the hypotheses of Theorem 2. The upshot is that exponential ISS may be concluded, providing again that
the mild condition on detectability of (C, A) is satisfied. In a sense, our work here complements that in
Seiler (2015) where a time-domain interpretation of the IQC result is given, enabling one to see, through
a time-domain dissipation argument, both asymptotic (exponential) stability and linear L2-input-output
stability of system (1.1). The results in Seiler (2015) stop short of proving exponential ISS, however.
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EXPONENTIAL INPUT-TO-STATE STABILITY 11

2.6. Further absolute stability criteria

There are dozens, if not hundreds, of papers that introduce, develop and refine absolute stability criteria.
All results which ensure global exponential stability of (2.4), or a linear L2-input-output gain of (1.1)
and detectable linear part, and impose that f is globally Lipschitz, satisfy the hypotheses of Theorem 2.
As specific examples, we highlight the papers Park (2002); Turner & Kerr (2012) and Valmorbida et al.
(2018), noting that the function f is assumed slope-restricted in each of these works.

3. Comments on stability rates and gains

Theorem 2 relates various stability notions qualitatively. Here, we briefly describe certain quantitative
connections between these concepts. We comment upfront that state and input-output stability concepts
are, in isolation and in general, quantitatively independent. Indeed, this may be seen through two scalar
examples, namely, the two control systems

ẋ1 = h(x1) + a1u1, y1 = x1 and ẋ2 = −2a2x2 + 2a2u2, y2 = x2 ,

for some nonlinear function h : R → R. On the one hand, global exponential stability of the first system,
when unforced (so that u1 = 0), is independent of a1 > 0, yet a1 will occur in any input-output estimate.
On the other hand, the second system is linearly L2-input/output stable with gain one, as

‖y2‖L2(0,t) = ‖x2‖L2(0,t) ≤ ‖G‖H∞‖u2‖L2(0,t) = ‖u2‖L2(0,t) ∀ t ≥ 0 ,

since G(s) = 2a2/(s + 2a2) satisfies

‖G‖H∞ = G(0) = 1 ,

independently of a2 > 0. However, in terminology to come, a2 > 0 is a rate of exponential convergence
for this control system.

One strength of the exponential ISS property in this context is that it enables both quantitative
estimates for state- and input-state stability notions. Quantitative estimates for input-output stability
notions may then be determined from output equations. For which purpose, we require additional
terminology. Let g : R

n → R
n be locally Lipschitz with g(0) = 0. Recall that the zero trajectory

of the differential equation

ẋ = g(x) , (3.1)

is called globally exponentially stable (GES) if every trajectory (here just a solution) of (3.1) is global,
and there exist k, r > 0 such that every trajectory x of (3.1) satisfies

‖x(t + τ)‖ ≤ ke−rt‖x(τ )‖ ∀ t, τ ≥ 0 . (3.2)

In this case, we simply write that (3.1) is GES. (We note that since (3.1) is autonomous, the estimate (3.2)
is satisfied if the inequality holds for τ = 0 only.) Following Corless & Glielmo (1998, Section 2), the
terms k and r in (3.2) are called a gain of exponential convergence and rate of exponential convergence,
respectively.
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12 R. DRUMMOND ET AL.

A continuously differentiable function V : Rn → R+ is called a GES Lyapunov function (for (3.1))
if there exist positive constants a1, a2 and a3 such that

a1‖z‖2 ≤ V(z) ≤ a2‖z‖2 ∀ z ∈ R
n , (3.3a)

〈∇V(z), g(z)〉 ≤ −2a3V(z) ∀ z ∈ R
n . (3.3b)

It is well known that existence of such a V is sufficient for GES of (3.1) and, from Corless & Glielmo
(1998, Fact 3), with gain β := √

a2/a1 and rate α := a3.
Consider now the general forced system of nonlinear differential equations

ẋ = h(x, d) , (3.4)

for locally Lipschitz h with h(0, 0) = 0. The input d takes values in R
q. The exponential ISS property

and an exponential ISS Lyapunov function for (3.4) are analogous to those for the special case of the
forced Lur’e system (1.1). Existence of an exponential ISS Lyapunov function is sufficient for the
exponential ISS property (1.3) and, up to some additional assumptions on h, necessary as well; see
Guiver & Logemann (2023, Theorem 3.4). We call the constants Li and γ in (1.3) exponential ISS gains
and an exponential ISS rate, respectively. Evidently, an exponential ISS Lyapunov function for (3.4) is a
GES Lyapunov function for the unforced version (3.1) with g(z) = h(z, 0), so that L1 and γ in (1.3) are
also a gain and rate of exponential convergence, respectively.

The following lemma extracts various rates and gains from an exponential ISS Lyapunov function.
The result is valid for control systems of the form (3.4), which includes forced Lur’e systems (1.1) as a
special case.

Lemma 3. Suppose that V : Rn → R+ as in (2.5) is an exponential ISS Lyapunov function for (3.4).
The following statements hold:

(a) (3.4) has the linear L2-state/input-to-state gain property (2.3) with gains β1 := √
b2/(b1b3)

and β2 := √
b4/(b1b3).

(b) (3.4) is exponentially ISS with gains L1 := √
b2/b1, L2 := √

b4/(2b1b3) and rate γ := b3.

(c) If h is globally Lipschitz with Lipschitz constant L, and W is a GES Lyapunov function for (3.1)
with g(z) := h(z, 0) with linearly bounded gradient, meaning

‖(∇W)(z)‖ ≤ a4‖z‖ ∀ z ∈ R
n , (3.5)

for some a4 > 0, then W is an exponential ISS Lyapunov function for (3.4) with

b1 = a1, b2 = a2, b3 = a3 − ε, b4 = L2a2
4

8a1ε
,

where ε ∈ (0, a3) is arbitrary.

The upshot of statements (a) and (b) of the above lemma is that linear L2-state/input-to-state gains
and exponential ISS gains/rates may be computed from exponential ISS Lyapunov function bounds and
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EXPONENTIAL INPUT-TO-STATE STABILITY 13

the dissipation inequality. Combining statement (c) with these statements provides estimates for linear
L2-state/input-to-state gains and exponential ISS gains/rates from from a GES Lyapunov function for
the unforced system. Observe that the exponential ISS rate b3 may be arbitrarily close to the exponential
rate of convergence a3 of the unforced system, at the price of a larger exponential ISS input gain b4.
However, this is likely an artefact of the proof and we suspect will lead to a conservative value of b4
which, as argued at the start of the section, is not so surprising since GES of the unforced system alone
provides no information in general on input-to-state or input-to-output gains.

Proof of Lemma 3. For the proof, it is convenient to record the elementary inequality

√
c2 + d2 ≤ c + d ∀ c, d ≥ 0 . (3.6)

Statement (a) follows from Guiver & Logemann (2023, Lemma 3.8). An inspection of that proof,
particularly the displayed equation below Guiver & Logemann (2023, inequality (3.8)), combined with
the above inequality, gives the claimed linear L2-state/input-to-state gain gains. Note that a3 in the
notation of Guiver & Logemann (2023, Lemma 3.8) is equal to 2b3 here.

To prove statement (b), let V be as described and let (d, x) be a trajectory of (3.4). The variation of
parameters inequality (2.10) holds (with v = d) from which we estimate both sides using (2.5a) to give

b1‖x(t + τ)‖2 ≤ b2e−2b3t‖x(τ )‖2 + b4‖d‖2
L∞(τ ,t+τ)

∫ t+τ

τ

e−2b3s ds

≤ b2e−2b3t‖x(τ )‖2 + b4

2b3
‖d‖2

L∞(τ ,t+τ)
∀ t, τ ≥ 0 .

Dividing both sides of the above by b1 and using the inequality (3.6) gives the desired exponential ISS
rates.

The proof of statement (c) is inspired by the estimates in the proof of Khalil (2002, Lemma 4.6, p.
176). Let L > 0 be a Lipschitz constant for h. We use the dissipation inequality (3.3b), the gradient
inequality (3.5), and the perturbation argument

〈∇W(z), h(z, w)〉 = 〈∇W(z), h(z, 0)〉 + 〈∇W(z), h(z, w) − h(z, 0)〉
≤ −2a3W(z) + ‖∇W‖ · ‖h(z, w) − h(z, 0)‖ ≤ −2a3W(z) + La4‖z‖‖w‖

≤ −2(a3 − ε)W(z) + L2a2
4

8a1ε
‖w‖2 ∀ (z, w) ∈ R

n × R
q ,

as required. Here we have also used the standard quadratic inequality

La4‖z‖‖w‖ = 2
√

2εa1‖z‖(La4‖w‖/(2√
2εa1)

)

≤ 2εa1‖z‖2 + L2a2
4

8a1ε
‖w‖2 ∀ (z, w) ∈ R

n × R
q .

�
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14 R. DRUMMOND ET AL.

4. Summary

Absolute stability criteria that ensure either global exponential stability of an unforced Lur’e system, or
guarantee a linear L2-input-output gain of the forced version, have been shown to in fact be sufficient for
the a priori stronger exponential ISS property when the nonlinear term is globally Lipschitz (or slope-
restricted). While the connection between exponential stability and the linear L2-input-output property is
fairly well known, the fact that both of these properties implies exponential ISS is not widely understood.
We have identified a selection of settings from across the literature where these hypotheses are satisfied,
including results from the IQC and Zames–Falb multiplier frameworks. Given the vast absolute stability
literature, one motivation for the current work is to prevent a proliferation of related ISS results which
fall into the rather general framework considered presently. Another motivation for the present study is
an attempt to better connect approaches from the IQC/multiplier and input-to-state stability communities
by showing overlap between concepts from both.

We emphasise that our main result, Theorem 2, connects various stability notions qualitatively.
As discussed in Section 3, in the absence of additional information, these stability notions may be
quantitatively independent, so that relating them quantitatively from the qualitative connections alone is
likely to be conservative. However, a number of rates and/or gains associated with these stability notions
may be estimated from an exponential ISS Lyapunov function.

Two natural future lines of enquiry are to investigate the extent to which (a) quantitative rates and/or
gains may be derived from Zames–Falb multipliers themselves, and; (b) the results generalise to time-
varying Lur’e systems, where f (Cx + v2) in (1.1) is replaced by f (t, Cx + v2). In light of the above
discussion, to make progress with (a) may require identifying additional structure or imposing further
assumptions. With regards to (b), this would likely require time-varying versions of the results of Guiver
& Logemann (2023), which, to the best of the authors’ knowledge, are not currently available. However,
and roughly speaking, it has been noted in Guiver & Logemann (2020, Remark 3.9) in the context
of various ISS notions, that results for such time-varying Lur’e systems are often obtainable from the
original result when the nonlinearity satisfies given norm- or sector-bounds uniformly in time. Presently,
in the single-input single-output setting, the natural generalisation of the slope-restricted condition (2.11)
is that the constants a < b are such that

a ≤ f (t, z1) − f (t, z2)

z1 − z2
≤ b ∀ z1, z2 ∈ R, z1 �= z2, almost all t ≥ 0.

Finally, we comment that exponential ISS has been established for Lur’e systems via other arguments
which do not require slope-restricted nonlinearities. For simplicity, assume that A in (1.1) is Hurwitz. It
is known from, for example, Sarkans & Logemann (2015, Theorem 3.2, comments on p.451), that the
simple small-gain condition

‖G‖H∞ sup
z�=0

‖f (z)‖
‖z‖ < 1 ,

is sufficient for exponential ISS. Whilst the above condition is typically conservative, it does not enforce
that f is globally Lipschitz and permits, for instance, the increasingly-rapidly-oscillating function

f (z) = c0z(1 + c1 sin(z2)) ∀ z ∈ R ,
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EXPONENTIAL INPUT-TO-STATE STABILITY 15

for suitable constants c0 and c1. Since f in (1.1) is typically assumed to be locally Lipschitz to ensure
existence of unique solutions to (1.1), in light of the present work, future attention in determining
sufficient (at least qualitative) conditions for exponential ISS should focus on the case where f is locally,
but not globally, Lipschitz.
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