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ABSTRACT 

Sepsis remains a major challenge that necessitates improved approaches to enhance patient 

outcomes. This study explored the potential of Machine Learning (ML) techniques to bridge 

the gap between clinical data and gene expression information to better predict and 

understand sepsis. We discuss the application of ML algorithms, including neural networks, 

deep learning, and ensemble methods, to address key evidence gaps and overcome the 

challenges in sepsis research. The lack of a clear definition of sepsis is highlighted as a major 

hurdle, but ML models offer a workaround by focusing on endpoint prediction. We 

emphasize the significance of gene transcript information and its use in ML models to 

provide insights into sepsis pathophysiology and biomarker identification. Temporal analysis 

and integration of gene expression data further enhance the accuracy and predictive 

capabilities of ML models for sepsis. Although challenges such as interpretability and bias 

exist, ML research offers exciting prospects for addressing critical clinical problems, 

improving sepsis management, and advancing precision medicine approaches. Collaborative 

efforts between clinicians and data scientists are essential for the successful implementation 

and translation of ML models into clinical practice. ML has the potential to revolutionize our 

understanding of sepsis and significantly improve patient outcomes. Further research and 

collaboration between clinicians and data scientists are needed to fully understand the 

potential of ML in sepsis management. 
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Introduction 

Sepsis is a global health challenge affecting individuals of all ages and underlying diseases in 

low-income, middle-income, and high-income countries
1
. Based on data from the United 

States, it is estimated that the global annual incidence of sepsis ranges from 15 million to 19 

million cases. Despite significant morbidity and mortality associated with sepsis, a 

comprehensive understanding of its pathophysiology remains elusive. This complexity arises 

from the interplay between host response, pathogen virulence, and health system response. 

Existing knowledge gaps, particularly those tied to the disease's heterogeneity and 

multivariate data types associated with sepsis, pose a significant obstacle in creating 

systematic best practice guidelines for its management. Hypothesis-driven clinical studies, 

typically used to direct clinical practice, demand a pre-established framework for interfacing 

clinical data pertaining to specific questions. However, the inherent variability of sepsis data 

complicates traditional system modeling approaches, leading to a lack of precision and 

impeding systematic representation of sepsis. Since sepsis results from the body's 

immunological response to pathogens, a deeper understanding of the immune response 

mechanisms in sepsis is indispensable. However, this has been hampered by the difficulty in 

accurately modeling the disease. Therefore, novel research strategies are necessary, such as 

Machine Learning (ML), a branch of Artificial Intelligence, to improve our understanding of 

sepsis and reduce morbidity and mortality (Figure 1).  

 

An international consensus proposed modifications to the 2005 adult sepsis definitions, 

characterizing sepsis as a "life-threatening organ dysfunction resulting from a dysregulated 

host response to infection." Septic shock was defined as "a subset of sepsis in which 

particularly profound circulatory, cellular, and metabolic abnormalities are associated with a 

greater risk of mortality than sepsis alone”
2
. Despite these revisions, persistent ambiguity has 
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hampered the development of guidelines and protocols for the management of clinical sepsis 

(Figure 2). This ambiguity persists despite decades of immune system research focusing on 

the host-pathogen response in sepsis. This could involve understanding the timing of 

infection initiation, discrepancies in infection load, type of organism, and variations in the 

age of the animal model among other factors. Researchers have attempted to control for 

sepsis heterogeneity by simplifying study effects, such as by reducing the complexity of 

study effects. However, such a reductionist approach may limit the applicability of these 

findings to the clinical context. For example, research model simplification may be 

counterproductive for adequately capturing the complexity and heterogeneity of sepsis, which 

may be essential for developing a wider application of therapies across the sepsis spectrum. 

In vitro studies allow for enhanced control over disease heterogeneity; however, they can 

complicate the process of back-extrapolation to the clinical context. The simplification of in 

vivo investigations can be initiated and implemented in complex biological systems in 

diverse ways; however, these methodologies hinge on bio-statistical methods, which can be 

resource intensive. Such scientific approaches are yet to yield the radical therapeutic 

advances required to affect global sepsis-related mortality. Therefore, new approaches are 

required to address sepsis and its heterogeneity to develop specific research criteria, 

milestones, and endpoints. There are still significant gaps in our understanding of the 

immunological, biochemical, molecular, and cellular changes that occur during sepsis, 

particularly those relating these factors to patients at the bedside. 

 

Omics methodologies, including lipomics, proteomics, and transcriptomics, are broad-scale 

data-intensive techniques that offer a holistic view of biological systems.  Langston et al. 

(2023) reviewed leukocyte phenotyping in sepsis using omics, functional analysis, and silicon 

modeling
3
. Omics provides a system-level view through simultaneous analysis of multiple 
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biological pathways. This approach has the potential to provide a comprehensive 

understanding of sepsis pathogenesis. However, the employment of 'omics' strategies to 

analyze sepsis data using statistical methods necessitates pre-established interpretative 

frameworks. Thus, relating omics data to clinical parameters noted in sepsis using traditional 

analytical techniques may not be straightforward. For example, temporal analysis of sepsis 

has suggests that mRNA gene expression techniques may not be viable for biomarker 

discovery
4
. However, using an ML model with the same data yielded predictive benefits 

5
. 

Thus, ML is an alternative method to model data that does not require a predetermined 

understanding of either the data structure or variable relationships, thereby circumventing 

past statistical limitations. ML approaches may be useful for the early detection of sepsis, as 

suggested by Stolarski et al. (2022) in murine models, showing that it was possible to 

determine different sepsis phenotypes 6 and 24 h after infection
6
.  

 

In essence, for a computer to learn from the input data, it must be taught to identify sepsis 

and, ideally, do so promptly. For example, Akram et al. (2021) adopted ML using bedside 

physiological markers following temporal changes to predict early sepsis
7
. However, omics 

studies are a proxy for cellular processes and may enhance sepsis modeling, with high-

throughput gene expression used to track changes in biological functions. Hence, to 

understand the importance of gene expression information in the context of ML, this narrative 

review first explored the issue of defining sepsis. Subsequently, the focus shifts towards 

sepsis identification and the importance of timing in this process. Finally, the application of 

ML algorithms to sepsis is discussed. The application of ML was demonstrated based on the 

transcriptomic sepsis literature selected using a systematic search strategy (Figure 3) and 

tabulated (Tables 1-3).   
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As part of this narrative, the temporal dynamics of sepsis are considered, which are crucial in 

modeling the sepsis trajectory from the initial detection. Within this narrative, it is essential to 

consider the temporal dynamics of sepsis as they play a critical role in modeling the 

trajectory of sepsis from its initial detection. By understanding the changing patterns and 

progression of sepsis over time, ML algorithms can be optimized to provide accurate and 

timely predictions, aiding in early intervention to improve patient outcomes. 

 

Types of ML for the Computational Modelling of Sepsis, Bridging the Gap in Clinical 

Extrapolation 

Machine learning (ML) algorithms can be broadly classified based on whether they utilize 

labeled or unlabeled data, leading to categories such as supervised, unsupervised, semi-

supervised, and reinforcement learning.  Supervised learning leverages a labeled dataset to 

make predictions, which is common in classification and regression tasks.  By contrast, 

unsupervised learning employs unlabeled data to decipher the data structure, which is 

frequently utilized in clustering tasks.  These techniques have applications in managing 

sepsis, as detailed in Table 1A (unsupervised) and Table 1B (supervised). Semi-supervised 

learning leverages labeled and unlabeled data when the latter are abundant.  

 

The categories described in this section cover many machine learning approaches. However, 

many other variations and hybrid methods have been developed. 

 

Sepsis Definitions Quandaries and ML Workarounds  

Shehab et al. (2022) provided a comprehensive review of Machine Learning (ML) and its 

applications in the medical field
8
. ML can be useful in addressing the limitations of 

traditional approaches in modeling sepsis complexity, which includes the important issue of a 

ACCEPTED

D
ow

nloaded from
 http://journals.lw

w
.com

/shockjournal by B
hD

M
f5eP

H
K

av1zE
oum

1tQ
fN

4a+
kJLhE

Z
gbsIH

o4X
M

i0h
C

yw
C

X
1A

W
nY

Q
p/IlQ

rH
D

3i3D
0O

dR
yi7T

vS
F

l4C
f3V

C
1y0abggQ

Z
X

dgG
j2M

w
lZ

LeI=
 on 01/26/2024



8 

suitable definition. Defining any condition is central to the progress of research and the 

application of statistical or ML approaches. However, ambiguity in the definition of sepsis 

represents a challenge, causing various disconnects, such as the misreporting of adult sepsis 

mortality rates 
2
. Sepsis committees tasked with developing protocols for adult and pediatric 

sepsis face a dearth of evidence in many clinical areas, primarily because of the lack of a 

clear definition of sepsis. Multiple revisions have been implemented to improve adult sepsis 

guidelines, including those pf 1991, 2005, and 2016 
9,10

.  The next iteration of the pediatric 

sepsis guidelines and definitions is keenly awaited. Moreover, a suitable definition that 

adequately encompasses all age groups remains elusive. This latter point could be related to 

the fact that sepsis research seldom crosses age boundaries set by medical specialists.  

 

An optimal sepsis definition should encapsulate practical and objective insights concerning 

biological changes to quantify the alterations under investigation. Nonetheless, 

characterization of immunological shifts in sepsis in a universally applicable manner remains 

a scientific quandary. To deepen our understanding of the clinical practice paradigm, in which 

the patient (host) is the central figure affected by sepsis, one potential approach could be to 

depict the biological transformation of sepsis, either as an internal or external manifestation 

(Figure 4A). 

 

Clinical scoring is an established part of hospital practice, and is useful for risk stratification. 

However, machine-learning models predict sepsis more accurately than clinical scores. The 

use of machine learning (ML) to connect to the complex and diverse temporal sepsis datasets, 

including gene expression data and clinical scores, is shown (Figure 5). Including temporal 

genomic data in ML modeling may provide a cellular perspective that would otherwise be 

lacking when using clinical data alone.  
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The absence of a clear definition of sepsis the paradoxical question of how ML can accurately 

interface with critical sepsis characteristics. To navigate this quandary, ML specialists have 

made assumptions in framing machine learning models, thereby circumventing the issue of a 

nebulous definition. For example, changes indicative of sepsis can be utilized in an ML 

approach by labeling events during the progression and characterization of clinical sepsis. 

This workaround becomes feasible as the application of ML to clinical sepsis primarily 

focuses on the endpoint, bypassing the necessity for forward hypothesis testing, typically 

demanded by statistical analysis. Currently, when designing a machine learning risk 

prediction model, ML operators must understand how to best define the clinical event (sepsis) 

to be predicted. In the future, ML algorithms that are pivotal in feature classification could 

prove invaluable in the pursuit of a pragmatic definition. The following section on temporal 

modeling underscores the value of ML in the context of sepsis. 

 

Temporal Considerations of Sepsis Pathogenesis  

Early intervention in sepsis is crucial for favorable outcomes, and delayed management is a 

significant prognostic risk factor. Consequently, the immediate administration of antibiotics 

and fluids upon clinical suspicion alone is strongly advocated by expert consensus. Timely 

diagnosis of sepsis is, therefore of utmost importance, and the ability to identify the condition 

several hours before its onset could potentially be lifesaving.  Therefore, for ML to 

effectively impact sepsis outcomes necessitates early prediction is required during the clinical 

interactions 
11

. 

 

However, sepsis heterogeneity has clinical implications, resulting in variations in treatment, 

timing of interventions, and differential host responses. Unfortunately, sepsis cannot be 

reduced to a simple, discrete phenomenon from clinical, immunological, and 
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pathophysiological viewpoints. The progression  from infection to clinical sepsis is complex. 

To fully comprehend the evolution of sepsis, it is essential to understand its temporal 

dynamics from clinical and laboratory perspectives, including its ability to track the condition 

over time (Figure 6). Given its highly nonlinear and complex multivariable nature, sepsis is 

an ideal target for machine learning (ML) approaches.  

 

As noted by Lauritsen et al. (2021), effective machine learning (ML) models for sepsis 

prediction require close collaboration between clinicians and data scientists 
12

.  Another 

challenge is the lack of a suitable immune biomarker for close temporal tracking, which 

limits the modeling precision. Temporal predictions in ML hinge on the specification of 

distinct time points, which can be facilitated by employing a range of time windows to 

construct temporal ML models (Figure 4C). Several studies have selected time windows of 

48 h before and 24 h following Suspicion of Infection (SI) events, that is, when sepsis is 

initially suspected, whereas others have chosen a time frame of 24 h before and up to 12 h 

after SI as the window
13-15

. However, such temporal configurations have not yet been applied 

to sepsis using time-associated gene sequence information. Incorporating gene expression 

information could enrich a system-wide perspective by serving as a surrogate for cellular 

alterations at the molecular level. 

 

An approach based on time windows has enabled sepsis researchers to make predictions 

without knowing the time of the infection onset. However, the original Adult Sepsis 

definitions were based on the ICD-9 and utilized subjective labels and definitions, thus not 

allowing for relevant time signposting for ML. In 2016, the definition of adult sepsis was 

modified to incorporate a temporal component, as reflected in the Sepsis-3 definition, with 

respect to the change in the SOFA score
2
. An increased SOFA score of greater than 2, a proxy 
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for a change in physiological state, was used to define multi-organ dysfunction syndrome, a 

feature of severe sepsis. As with the Sepsis-3 definition, parameterization should be 

incorporated into future enhancements of the sepsis definitions. The enhanced (Sepsis-3) 

definition provides a temporal milestone, a feature that allows the comparison of patient 

trajectories. However, the current sepsis-3 definition lacks objectivity of immunological or 

biochemical features, reflecting a gap in our understanding of the dynamics of sepsis 

pathophysiology. 

 

Using Artificial Neural Networks for Enhanced Sepsis Biomarking and Temporal 

Analysis  

ANNs are a subset of machine learning algorithms inspired by the structure and function of 

the human brain. They are proficient in recognizing patterns, interpreting sensory data, and 

identifying patterns in large and complex datasets. Artificial Neural Networks (ANN) 

simulate and solve distinct problems, particularly in pattern recognition and prediction tasks. 

 

Artificial Neural Networks (ANNs) have been utilized to analyze sepsis microarray 

experiments, providing the advantage of working with small sample sizes (Table 2). 

However, most machine learning (ML) frameworks require determining the time of sepsis 

onset (T0) or the initiation of a period when patterns are consistent with sepsis as a distinct 

entity. Kim et al. (2022) recently adopted this approach 
16

. Dale et al. (2020) implemented 

ANNs using Long Short-Term Memory and multi-layer perceptrons for sepsis prediction 
17

. 

The study used five time points with 11 simulated cytokine concentrations to forecast 

prospective cytokine trajectories, with the multilayer perceptron performing best when using 

24-hour post-infection data. However, biomedical systems are stochastic, and incorporating 

randomness into clinical modeling is crucial for their validity. Zhang et al. (2016) attempted a 
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"back in time" approach in a primate study utilizing a mathematical cluster modeling 

technique known as "nearest neighbor" 
18

. Two pig models were used to validate the 

methodology: one with surgically induced peritonitis and the other using an LPS infusion-

induced approach. This study did not incorporate other immunological information in 

addition to biomarker assay levels. Combining temporal vital sign monitoring with a single 

biomarker measurement resulted in a highly accurate estimate of infection onset time. 

Additionally, the study assumed that the timing of the onset of infection was aligned with 

physiological changes indicative of sepsis. 

 

Additional types of ANNs include recurrent neural networks (RNNs) and Convolutional 

Neural Networks (CNNs). Their potential usefulness in gene expression sepsis studies 

suggests promising avenues for exploration, which will be discussed here. However, the lack 

of existing studies citing the use of such ANNs in combination with gene expression profiling 

suggests the potential for future work in harnessing such algorithms. RNNs were designed to 

process the input sequential data. Because they use their internal (hidden) state to process 

input sequences, they possess a form of memory; thus, RNNs are a suitable choice for 

sequential datasets. Bedoya et al. (2020) applied dual multi-output Gaussian Processes 

(MGPs) with RNNs, also known as MGP-RNNs, to both dynamic and static clinical data 

related to sepsis prediction
19

. The likelihood of developing sepsis was computed within four 

hours of each marked time point. Different ML methods were compared using the same 

datasets, and MGP-RNN was found to be superior. Sheetrit et al. (2019) focused on time 

intervals instead of strict time points in their RNN methods
20

. An interval approach may be 

more desirable because clinical data are often multivariate and originate from different 

sources. This approach allowed the discovery of frequently repeated temporal patterns within 

the datasets, thereby creating a probabilistic distribution model of temporal patterns. A 
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Temporal Probabilistic Profile (TPF) was developed, allowing the prospective classification 

of new data and outcome prediction. Large benchmark clinical datasets were used to apply 

TPF, demonstrating improved sepsis prediction and enhanced performance compared to other 

machine learning models. Convolutional Neural Networks (CNNs) are another type of ANN 

designed to process data with a grid-like topology, which can be viewed as a 2D grid of 

pixels. Because of their proficiency in extracting spatial features, they are commonly used in 

image and video processing tasks. They are particularly adept at spatial hierarchies, and 

CNNs may also be useful in temporal modeling. Using temporal CNNs, Kok et al. (2020) 

developed an automated sepsis prediction tool that involved per-time-step metrics. This tool 

showed a high predictive capability for the development of sepsis (AUROC 98%)
21

. 

 

Deep Learning in Sepsis - Enhanced Modelling in Sepsis Using Transcript Information 

Deep learning (DL) is a powerful subfield of machine learning (ML) that uses multilayered 

artificial neural networks to learn complex representations of data that are useful for 

dimensional reduction in genomic studies and for predictive modeling of large and complex 

biological datasets
22

. DL can be unsupervised, (semi)-supervised, or reinforcement learning-

based
23

. Reinforcement learning is based on an agent gaining environmental feedback using a 

reward or penalization system. It is ideal for large, complex biological datasets and is not 

discussed within this article due to the paucity of sepsis studies using this method. DL models 

can be applied throughout the data processing pipeline, from data acquisition to gene and 

pathway enrichment, thereby improving biological data analysis. For example, DL has been 

used to re-examine images generated from previous microarray experiments, revealing 

imaging defects in many studies. For example, using a DL, Qin et al. (2021) re-examined the 

images generated from previous microarray experiments 
24

. This study analyzed microarray-

generated images based on fluorescent signals from previously published studies. The results 
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showed the presence of imaging defects in 26.73% of the microarray studies analyzed. In 

addition, DL may be a useful adjunct in the quality control process for testing the accuracy of 

data capture. Schaack et al. (2021) performed a meta-analysis of publicly available data series 

extracted from NCBI Gene Expression Omnibus and EMBL-EBI ArrayExpress to create a 

comprehensive meta-expression set
25

. They compared various ML methods against the 

traditional technique of differential gene expression (DGE) analysis. Consequently, Deep 

Learning was the most resilient among the tested methods, including DGE, random forest, 

support vector machine, and decision tree analysis. The DL classifiers allowed for the 

differentiation of patients with and without sepsis.  They found that deep-learning neural 

networks performed the best, especially when the data were noisy or incomplete, highlighting 

the efficacy of DL models in facilitating sepsis modeling. Yuan et al. (2021) applied DL to 

sequential single-cell RNA data using a supervised method 
26

. Gene interactions were 

predicted using 3D tensors and trained convolutional and recurrent neural networks (RNNs). 

The model accurately identified regulatory and causal gene-gene interactions and new gene 

function assignments. 

 

The deduction of gene relationships predicated on differential gene expression necessitates an 

array of computational frameworks, extending from Pearson correlation to undirected 

graphical modeling. Nevertheless, such a stratified approach presents challenges for Deep 

Learning (DL) because unsupervised processing can mistakenly identify noise-associated 

genes as significant. To address these complications, Yuan et al. (2019) devised a DL 

convolutional neural network for co-expression applied to single-cell RNA data 
27

. This 

innovative approach offers a methodology for inferring gene relationships from image-like 

objects produced from expression data, thereby facilitating the identification of causality, 

gene-disease predictors, and functional assignments. 
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A significant challenge associated with DL models is their black-box nature, which could 

hinder the future incorporation of ML in clinical contexts. This becomes particularly 

problematic when clinicians are expected to take responsibility for decisions influenced by 

ML and the underlying methodology is obscured owing to its inherent modeling complexity. 

To mitigate this black-box issue, Hanczar et al. (2020) proposed a DL approach grounded 

based on Layer-wise Relevance Propagation (LRP) 
28

. LRP, a gradient method for neural 

network interpretation, identifies the most critical neuronal network responsible for 

predicting and pinpointing gene sets that activate the same neuron. Significant neurons and 

genes are subsequently mapped onto translational databases, such as the Kyoto Encyclopedia 

of Genes and Genomes (KEGG), Gene Ontology (GO), and the Disease Ontology Annotation 

List (DOLite), thereby offering a biological context. This methodology surpasses classical 

Machine Learning, which typically measures neuronal effectiveness using the weighted 

average of output connections. Nonetheless, the biological interpretation rendered is that of 

the model, which may not consistently align with actual biological parameters. Additional 

limitations include the fact that DL models primarily search for correlations between inputs 

and outputs rather than causality, and reliance on databases may introduce biases. 

 

Various platforms are available for studying gene expression. Unfortunately, earlier 

platforms, such as Microarray and RNA-seq, produced averaged gene expression results 

because RNA is derived from many cells. Conversely, single-cell RNA sequencing (scRNA-

seq) offers multiple expression profiles at the expense of generating substantial data, while 

maintaining the capability to concentrate on specific cell types. Large datasets obtained by 

scRNA-seq have introduced new computational challenges. However, they also make it an 

ideal application for Deep Learning Neural Networks, which require large amounts of data 

for effective learning. Deep-learning neural networks have been used to interpret mRNA gene 
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expression. For instance, solely from the gene sequences, Deep Convolutional Networks can 

predict 60-80% of human RNA abundance variation
29,30

. By applying Deep Learning 

principles, Magnusson et al. (2022) studied the impact of transcription factors on gene 

regulation 
31

. This methodology is called the ‘advancing past the black box’ machine learning 

model. This allowed the prediction of the relationship between transcription factors and the 

target gene network, thus providing a mechanistic understanding of disease processes. 

Because the training was constrained, the derived predictive models were interpretable. In a 

related study, Yuan et al. (2021) used temporal scRNA-seq data and trained Deep Learning 

models, including recurrent neural networks and convolutional models, to identify regulatory 

and causal gene relationships and assign new functions to genes 
26

. These studies demonstrate 

the potential of Deep Learning Neural Networks in understanding gene expression regulation. 

The authors suggest that this is the first step towards developing fully interpretable white-box 

models. 

 

Deep Learning algorithms have also shown promise in analyzing medical time-series data 

despite the challenge of dealing with sensor- and noise-based errors 
16

. However, small 

sample sizes can lead to overfitting, which can be addressed using self-supervised learning, 

transfer learning, or data augmentation 
32

. Kim et al. (2022) applied a recurrent neural 

network to a time-series dataset using a neural architecture search method to optimize the 

architecture and a genetic algorithm approach to balance the computational resources and 

search efficiency
16

. An auto-encoder was also employed to denoise the data and improve the 

learning process. The model outperformed the standard clinical scores (SOFA, qSOFA, and 

SAPS II) and LSTM, and its performance decreased with extended prediction times, as 

indicated by the lower sensitivity, specificity, and AUROC values. Rafie et al. (2021) used a 

combined Deep Learning approach with LSTM and convolutional and fully connected layers 
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to improve the earliest time of sepsis prediction, achieving better AUROC values than other 

methods
33

. For ML to achieve wider application in clinical sepsis, its interpretability may be a 

happy middle ground. Another option is to combine ML algorithms with clinical inputs, as 

described in the next section on Ensemble ML. 

 

Ensemble Learning Techniques - To Improve Clinical Modelling 

Ensemble learning is a powerful computational technique that combines multiple models 

such as experts or classifiers to solve complex problems. This approach has been shown to 

improve the accuracy of predictions and can incorporate a clinician’s expertise to guide the 

development and validation of machine-learning techniques. Ensemble techniques have broad 

applicability across various domains, including studying biological systems and analyzing 

sepsis as a disease process (Table 3). Ensemble machine learning aims to decrease the 

variance and bias associated with single models by incorporating multiple machine learning 

algorithms into a combined predictive model.  

 

Ensemble techniques have been applied to various problems, including predicting cellular 

dynamics in biological systems and analyzing sepsis as a disease process. Ensemble methods 

combine processes to make sense of data inputs, including different neural networks with 

inherent strengths and weaknesses. These models may be structured in parallel or 

sequentially and can incorporate weightage or ‘learning’ from different models based on 

averaging or regression. Ensemble models may be useful for supervised tasks related to 

classification and unsupervised tasks related to clustering. One particularly novel approach in 

ensemble learning is the "expert in the loop" ensemble method, which incorporates the 

expertise of a clinician to guide the development and validation of machine learning 

techniques. This approach combines deductive analysis with inductive (data-driven) learning 
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and is particularly useful for optimal feature selection, error correction, and incremental 

learning tasks. Additionally, certain algorithms, such as the long short-term memory neural 

network (LSTM), are well-suited for capturing temporal relationships and can remember the 

sequencing of datasets over long periods. Additionally, the process of transforming weak 

learners into strong learners by forming a different algorithm for classifying rules is known as 

‘boosting.’ Boosting is a key aspect of ensemble learning, and has been shown to improve 

model performance by reducing bias and variance. 

 

Discussion 

The discussion section of this paper illuminates key findings and potential implications of 

using Machine Learning (ML) techniques in the study and management of sepsis. These 

encompass potential opportunities, inherent challenges, and various ML applications in 

augmenting our understanding and handling of this complex condition. Sepsis is multifaceted 

and characterised by diverse etiologies and heterogeneous clinical manifestations. 

Conventional methods have limitations in deciphering the complex interplay between the 

host response, pathogen virulence, and various clinical factors. However, ML, given its 

ability to analyze extensive and varied datasets, including gene expression data, has emerged 

as a promising approach to addressing this complexity. Notably, ML algorithms such as 

neural networks and deep learning can discern patterns and relationships within data, 

facilitating more accurate predictions and insights into the pathogenesis of sepsis.  

 

A persistent challenge is the ambiguity in the definition of sepsis, which complicates the 

modeling and analysis of sepsis data. However, ML models, offer a workaround by 

prioritizing endpoint prediction over a predefined understanding of the disease. The 

capability of these models to learn effectively from labeled and unlabeled data enables them 
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to discern sepsis patterns and categorize patients based on their clinical characteristics and 

gene expression profiles. Despite the lack of a definitive sepsis definition, ML models present 

a feasible solution by harnessing the predictive power of gene expression data. 

 

An essential aspect of sepsis research is understanding its temporal dynamics for early 

detection and intervention. ML models can incorporate time-related information by 

considering specific time windows and data sequences. This is particularly relevant in sepsis, 

in which disease progression and host response evolve. Furthermore, gene expression data is 

instrumental in recording the cellular and molecular changes asscociated with sepsis. ML 

models that integrate this information can provide a holistic perspective of sepsis 

pathogenesis and aid in detecting biomarkers for early disease identification and monitoring 

34
. 

 

One major challenge with ML models, particularly those based on deep learning algorithms, 

is their 'black-box' nature, which makes it difficult to interpret their decision-making 

processes. This issue could potentially obstruct the integration of ML models into clinical 

practice. However, ongoing endeavors are to enhance the interpretability of ML modules by 

leveraging techniques such as Layer-wise Relevance Propagation (LRP) and ensemble 

learning.  

 

Despite the promising potential of ML in sepsis research, several limitations of this study 

need to be addressed. Small sample sizes, data representation bias, identifying causal 

relationships are important considerations. Future research should focus on developing 

interpretable ML models, validating the efficacy of ML in sepsis management through 

prospective studies, and integrating clinical expertise with ML algorithms using ensemble 
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techniques. The successful implementation and translation of ML models into clinical settings 

hinge on collaboration between clinicians, data scientists, and researchers. 

 

Conclusion 

ML offers a substantial potential for transforming our comprehension and management of 

sepsis. Although the intricate nature of sepsis poses considerable challenges, ML techniques 

propose pioneering solutions that amalgamate clinical data with gene expression data. These 

techniques facilitate the prediction, classification, and temporal analysis of sepsis. Notably, 

ML in sepsis research overcomes the lack of a universally applicable definition of sepsis, 

shifting the focus toward predicting endpoints and classifying patients. Despite the 

interpretability challenges owing to the black-box nature of ML algorithms, efforts are in 

progress to develop understandable "white-box" models. Further research is needed to fully 

understand the causal relationships in sepsis and develop more interpretable models. 

 

By integrating gene expression data and temporal analysis, ML models aid in early disease 

detection and improve patient outcomes. Temporal considerations play a crucial role in sepsis 

management, and ML excels at capturing temporal relationships in complex datasets. In 

particular, deep learning neural networks have shown promise in analyzing temporal 

sequences and predicting sepsis outcome. ML models can facilitate early detection and 

intervention by integrating gene expression data and temporal analysis, ultimately improving 

patient outcomes. Although ML offers tremendous opportunities, challenges remain. Small 

sample sizes, overfitting, and the search for correlations rather than causality in deep learning 

models must be addressed using self-supervised learning, transfer learning, and data 

augmentation techniques. Ensemble learning techniques offer a powerful approach for 

enhancing the performance and robustness of ML models in sepsis research. By combining 
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multiple models and incorporating the expertise of clinicians, ensemble methods can improve 

prediction accuracy, feature selection, and incremental learning.  

 

ML has immense potential to enhance our understanding of sepsis and boost patient outcomes 

by integrating clinical data, gene expression, and temporal analyses. Collaboration between 

clinicians and data scientists is crucial for the successful implementation of ML models in 

clinical practice, potentially leading to more personalized sepsis management strategies. With 

further advancements, ML can substantially contribute to revolutionizing sepsis care, 

expanding the implementation of precision medicine in sepsis, and reducing the devastating 

impact of this condition. 

 

Pathogen Considerations: Sepsis is a complex disease initiated by various pathogens, either 

singularly or in combination (commensals or newly invading organisms). Different pathogens 

may have differing immunological host effects. Also, if the host is infected by one organism, 

this may weaken the host’s immune system and ease secondary bacterial infection. This is 

known as the two-hit or, when multiple organisms are involved, a multi-hit hypothesis. 

 

Host-Pathogen Interactions:  The transformation from initial bacteremia or viremia to 

clinical infection is contingent upon host-pathogen interactions and the pace of progression 

through various stages, leading from infection to sepsis and eventually septic shock. Timely 

treatment is essential to reverse the infection trajectory. Delayed intervention and host 

susceptibility significantly influence treatment response and the patient's ability to recover 

from infection and respond to sepsis. 
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Port of Entry: The port of entry from infection to sepsis, including the invading entry site, is 

consequential to sepsis progression. In some individuals, pathogens may be commensals, but 

at the same site, in other individuals, the same organisms may be pathogenic. For example, 

Neisseria Meningitides resides in the throat as a commensal in some cases, whereas in others, 

it is responsible for invasive Meningococcal Sepsis and Meningitis. 

 

Host Factors: Transformation of the initial bacteremia or viremia progressing to clinical 

infection depends on host-pathogen factors and the rate of progress through the different 

stages. Age may play an important role in sepsis in neonates, infants, and the elderly, causing 

higher morbidity and mortality. Host co-morbidities and genetic variation may also be key 

factors in determining disease progression.  

 

Sepsis Treatment: There are only a few immunomodulators used in sepsis, with the mainstay 

of treatment being early intervention, according to the principles of ‘Sepsis-6. ’ Early 

antibiotic treatment and stabilization of bacterial sepsis remain cornerstones of treatment. 

Steroids may have value in septic shock as part of various treatments to maintain 

hemodynamics and treat Diffuse Intravascular Coagulopathy (DIC).   

 

Treatment variation: Despite protocolized approaches, several factors, such as late patient 

arrival, clinical inexperience, and treatment inequities related to location or patient 

demographics may result in delayed sepsis treatment. Furthermore, aligning patients 

according to the onset of infection can be complex, leading to heterogeneity in the clinical 

presentation. 
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Genetic Implications for both the Host and Pathogen: The genetic profiles of both the host 

and pathogen significantly affect the development, progression, and treatment response of 

sepsis. Host genetics influence susceptibility to infection, response to treatment, and 

prognosis, largely due to gene variations associated with the immune response and drug 

metabolism. Pathogen genetics determine virulence, antimicrobial resistance, and 

adaptability, with certain genetic elements enabling evasion of the host's immune system, 

resistance to antibiotics, and survival under varying conditions. Understanding these genetic 

influences offers valuable insights for personalized sepsis management, although further 

research is required to translate these findings into clinical practice. 

 

Implications for mRNA research: Owing to the heterogeneity of sepsis mRNA studies. A 

notorious challenge in high-throughput mRNA technologies is the portability of insights from 

one mRNA-based study to another. There can be issues with experimental variation owing to 

the platform itself and the data variance. This may be caused by differences in experimental 

techniques or external factors. Transcriptomic endotyping has been applied to sepsis for 

disease classification, particularly in complex disorders, to categorize patients into 

homogeneous subgroups based on the underlying biological or pathophysiological 

mechanisms that drive sepsis. 

 

Sepsis Definition: The definition of sepsis has been adapted to mirror advances in the 

clinical field. However, such definitions are heavily dependent on clinical interpretation 

rather than on the immunological patterns of the disease. Differences in definitions can affect 

patient selection, diagnosis timing, and input and output characteristics. 
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Though High-throughput gene sequencing has been applied to sepsis, the heterogeneity of 

sepsis may lead to complex and diverse genetic data, challenging interpretation, and 

meaningful applications. Sophisticated bioinformatics and statistical approaches are often 

required to analyze and interpret these data. The advantage of ML is in the ability to model a 

complex, multivariable process, without a detailed understanding of disease mechanism. 
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Figure 1. A Gene Expression-Based Machine Learning Approach for Systems-Level 

Analysis of Sepsis. 

 

 

i.

ii.

iii.

iv.

v.
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i. Sepsis is a complex process where a system-level approach provides an overview of 

multiple disease mechanisms. This can be applied as a part of an omics strategy, such as 

using gene expression information - a transcriptional approach. Data can be handled through 

various methods that are either statistical or machine learning (ML)-based, or a variation of 

the two. This enables the representation of many genes to be analyzed and modeled for a 

system-wide interpretation. ML can be ideal for handling scientific complexity where a 

suitable framework for understanding and objectively interpreting sepsis data is lacking. 

Gene expression studies have focused on ribonucleic acid (RNA), a template for an 

associated deoxyribonucleic acid (DNA) code. Such an approach, using ML, may be useful 

for sepsis prediction and classification problems. 

 

ii. Sepsis analysis and modeling depend upon an accurate definition. For adults, the definition 

of sepsis was revised in 2016 (Sepsis-3). This provides more objectivity to the definition than 

earlier definitions, such as those based on ICD-9. Unlike earlier definitions, Sepsis-3 involves 

the quantification of severe organ dysfunction associated with a decrease in SOFA score of 

greater than 2, which implies a definite physiological change. Although a definition for 

pediatric sepsis exists, it differs from that of adult sepsis, and for neonates, no single 

definition has been agreed upon.  

 

iii. Gene expression datasets can be modeled using different approaches. The classical ML 

approach includes supervised, unsupervised, and mixed methods. A gene-centric approach is 

useful because it delays the mapping stage until the end, thereby preserving the gene 

expression data structure as much as possible. Certain ML have adopted methods related to 

sepsis prediction and classification endpoints. One example is the use of machine-learning 

algorithms to predict the risk of developing sepsis in hospitalized patients. Further, Machine 
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learning algorithms can be trained using data from electronic health records and other sources 

to identify the patterns and risk factors that predict sepsis. This can allow healthcare 

providers to intervene early and potentially prevent sepsis progression. Other applications of 

machine learning in sepsis include the development of diagnostic tools that can accurately 

identify sepsis, identify potential therapeutic targets, and optimize treatment regimens for 

sepsis. Machine learning is useful for modeling large sepsis datasets and assisting with 

prediction and classification problems.  

 

iv. High-throughput gene sequencing techniques such as microarray, RNA-seq, and sc-RNA-

seq generate large datasets. Such datasets are ideal for artificial neural networks (ANN), 

which use the concept of DL to solve classification and prediction problems.  

 

v. The challenge in applying ML to sepsis is that the solutions are mainly black-box because 

the ‘workings’ are hidden from the clinician. The black-box nature of ML may be a reason for 

the paucity of ML in prospective clinical trials. Interpretable (white-box) solutions can also 

be formulated using ML, which may improve the palatability of ML when applied to sepsis. 

Another option is to use clinician-in-the-loop combined with ML algorithms in what is 

known as an Ensemble ML model. 
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Figure 2. Challenges of Genomic Research in Sepsis in Relation to Host-pathogen 

Factors and Implications for High-throughput Gene Experiments. 

 

 

Figure 2. This figure outlines the ‘Challenges of Sepsis Research,’ including the application 

of genomic analysis. The heterogeneity caused by host and pathogen factors, as illustrated, 

impacts the portability of sepsis research across different sepsis studies. ACCEPTED
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Figure 3: Study Search Criteria 

 

Figure 3. This paper adopted a comprehensive search strategy for the narrative review. 

Studies were identified and screened for keywords using the search on the PubMed website 
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maintained by the National Center for Biotechnology Information (NCBI). The eligibility 

criteria were to include studies in the last 10 years in human subjects, with the final inclusion 

criteria selecting research related to gene expression. Supervised and Unsupervised Machine 

learning studies were selected after the search as shown (2A), identifying 53 studies. 

‘Supervised’ or ‘Unsupervised’ was added to the start of the search term, allowing filtering 

into eligible studies consisting of Supervised (n=9) and Unsupervised groups (n=3). The 

NCBI search was also undertaken for Artificial Neural Network Studies identifying 4 studies 

that were all eligible to be included in this paper (2B). Ensemble Machine learning studies 

were selected from the past 10 years, with 18 studies being identified, of which 10 were from 

the last 10 years (2C); 7 studies were deemed eligible for inclusion.  
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Figure 4. Enhancing ML-based Prediction by Closing the Gap Between Internal and 

External Features Associated with the Patient Sepsis Journey 
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Figure 4. Challenges of Genomic Research in Sepsis in Relation to host-pathogen factors and 

Implications for High-throughput gene experiments. 

 

Block figure showing internal and external features. Internally Quantifiable data (IQ-data) 

include molecular, DNA, mRNA, cellular, lipid, or proteomic signals. External data (EQ-

data) encompass clinical descriptors, such as physiological and clinical scores, and physical 

textual data. Data were categorized as Internal and External from the patients’ perspectives. 

Internal data were quantified through blood testing and external data were obtained through 

various data collection processes, such as clinical observations (Figure 4A).  

 

ML specialists have defined time windows to aid in understanding temporal dynamics. The 

observation window is a retrospective period before the index event, based on independent 

variables or features. By contrast, the prediction window samples the outcome or event, a 

dependent variable from which the outcome is derived. This allows the construction of 

various temporal framework structures using the chosen machine learning models. In 

addition, a discussion of the different components of the temporal framework is included. 

This incorporates the index prediction event (sepsis) and the timeframe windows before and 

after the event. The prediction time was calculated using the model, which, in this case, 

involved the time of sepsis diagnosis. The observation window is a retrospective period 

before the index event and relies on independent variables or features. The prediction window 

then samples the outcome of the event. This period was the dependent variable from which 

outcomes were derived. The prediction window starts after the prediction time or is delayed. 

When there is a prediction delay, this is called the lead window, also known as the gap 

window. This allowed various temporal framework structures to be constructed using the 

selected ML models (Figure 4B).  
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Labeling key events can help derive key milestones in the patient journey. Red indicates the 

index event (I), which was the diagnosis of sepsis. The timing of the index event varies 

according to the different patient journeys, and as outlined in the diagram, patients can 

present with sepsis in different clinical contexts. Patient variability is governed by patient 

help-seeking behaviors and the dynamics of the health system. ML can be applied at three 

locations in a hospital setting: the emergency department, ward, or critical care area. The 

pathogenesis from infection to sepsis and then to septic shock varies according to multiple 

factors. Thus, the relationship between sepsis diagnosis and ensuing complications can be 

highly variable (Figure 4C). 
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Figure 5. Sepsis Time and Gene Expression  

 

Figure 5. This figure illustrates the application of transcriptomics in correlating cellular 

changes with critical clinical parameters in sepsis research. Clinical scoring systems such as 

the SOFA, qSOFA, and PELOD scores are used to stratify patients’ risk and monitor disease 

progression. The SOFA score is employed in adult ICUs to evaluate six organ systems and 

the severity of a patient's illness, with higher scores indicating greater dysfunction and 

mortality risk. The qSOFA score is a rapid assessment tool for identifying sepsis risk outside 

the ICU based on low blood pressure, high respiratory rate, and altered mental status. The 

PELOD score, designed for pediatric ICUs, assesses the severity of organ dysfunction in 

critically unwell children, with higher scores signifying severe dysfunction and increased risk 

of mortality death. These scores can be usefully linked to cellular function based on the 
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proxies provided by gene expression data. Gene expression information is often derived from 

the peripheral white cells of patients with sepsis, drawn from patient blood sampling. 

Temporal sequential data may then be used to understand underlying disease processes or to 

classify and predict sepsis-associated phenomena.  
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Figure 6. Sepsis and the Concept of Time 
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Figure 6. A Temporal appreciation of Sepsis is illustrated. Acute sepsis presents a complex 

challenge due to host variability, as depicted in Figure 6A. Further, treating neonates, infants, 

and the elderly presents additional difficulties, as they may display physiological instability 

during the early phase of sepsis. The diagram illustrates that patients have differing time 

characteristics in relation to arriving in the hospital setting. Temporal variations can occur 

due to age differences, comorbidities, and other factors.  Significant delays in the patient 

journey can result in adverse and terminal outcomes. A blue arrow in the diagram represents 

the sepsis process and its evolution, with patients arriving at different time points along this 

trajectory. One key issue is that it is impossible to signpost the progression from bacteremia 

to shock against immunological milestones. Sepsis can progress from sepsis (S) to severe 

sepsis (SS) and then to septic shock (SH). The blue arrow depicts the sepsis process and its 

evolution. To better understand the immunopathological aspects of sepsis, some researchers 

have conducted time-course experiments using peripheral blood sampling. In such 

experiments, a sequence of blood collections is obtained from individual patients (e.g., 

Patients 1, 2, or 3 in Figure A), starting from the initial sample collected at admission (labeled 

'time zero' or T0). Subsequent samples can then be compared to the T0 sample to identify 

differential gene expression. In some cases, a control sample may be nominated from any of 

the patient's samples, such as when a patient is physiologically stable; that sample is 

considered akin to a control. However, control samples can only be used for that patient, as 

each patient will have their own control. However, as illustrated, timing gene expression 

experiments in clinical sepsis is challenging, as patients arrive at various time points along 

the sepsis trajectory. Moreover, the inability to accurately time or categorize sepsis from an 

immunopathological perspective in the clinical setting adds to the complexity. Differences in 

therapies and experimental sites and the potential influence of clinical treatment on disease 

trajectory and transcriptomic profiles can also impact gene expression results. Researchers 
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can focus on a specific pathogen, age group, and treatment plan to mitigate these potential 

confounding factors. However, this approach may limit the sample size. Further research is 

needed to develop effective interventions and protocols that can improve patient outcomes 

while accounting for the heterogeneity of the patient population and potential confounding 

factors in gene expression experiments. Figure 6B. To effectively mitigate the impact of 

experimental design in clinical sepsis studies, it is crucial to consider the temporal dynamics 

of the disease. Sequential sampling is essential since patients may transition between 

different phases of sepsis during their illness. For example, up to 50% of patients have been 

shown to exhibit endotype switching within the first five days of ICU admission 
35

. However, 

determining the optimal timing for sample collection presents a significant challenge. 

Addressing the challenge of Time Zero (T0) through standardization could be useful from a 

temporal sepsis research perspective. Despite efforts to capture changes through regular 

sampling, constructing temporally-resolved clinical studies is beset by numerous challenges. 

A systemic inflammatory response syndrome was described because of the predilection of 

acute sepsis to cause physiological instability (Figure 6C). The different trajectories are 

shown related to host factors, such as host age, the timing of diagnosis, etc. As illustrated, 

sepsis was initially thought to be solely related to an inflammatory component, with anti-

inflammation not featuring in early disease models. However, transcriptomic work has 

suggested that both components may co-exist (Figure 6D). The eventual summated trajectory 

(red dashed line) could vary according to the degree and timing of the pro and anti-

inflammatory components. 

 

Annotation created with BioRender.com 
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Table 1A. Unsupervised Machine Learning 
 

STUDY  DESCRIPTION RESULTS REF* 

Classification of 
patients with sepsis 
according to blood 

genomic endotype: a 
prospective cohort 

study. 

This study identified 
biologically relevant 
molecular endotypes 

in patients with 
sepsis. The study 

involved consecutive 
patients admitted to 
two intensive care 

units in the 
Netherlands and 29 

ICUs in the UK. 
Genome-wide blood 

gene expression 
profiles were 

generated and 
analyzed using 
unsupervised 

consensus 
clustering and 

machine learning. 

Four molecular endotypes 
designated Mars1-4, were identified 

in the discovery cohort and were 
associated with 28-day mortality. 
The worst outcome was found for 

patients classified as having a 
Mars1 endotype, with 39% of 90 

people dying at 28 days.A 140-gene 
expression signature reliably 

stratified patients with sepsis to the 
four endotypes. Only Mars1 was 

consistently significantly associated 
with 28-day mortality across the 

cohorts. A biomarker was derived for 
each endotype, and BPGM and 

TAP2 reliably identified patients with 
a Mars1 endotype. This study 

provides a method for molecular 
classifying patients with sepsis to 
four different endotypes upon ICU 

admission, potentially aiding in 
personalized patient management 

and trial selection. 

36 

Exploration of the 
Shared Gene 

Signatures between 
Myocardium and 
Blood in Sepsis: 
Evidence from 
Bioinformatics 

Analysis. 

This study using 
bioinformatics and 
machine learning 

methods, identified 
1,049 genes 

commonly changed 
in the blood and 
myocardium of 

septic patients. Up-
regulated genes 
were related to 
inflammation 

pathways, while 
down-regulated 

genes were related 
to mitochondrial and 
aerobic metabolism. 

The study divided 
468 sepsis patients 

into two groups 
based on mortality-
related commonly 

A six-gene model was obtained, 
which performed well in classifying 
groups and predicting mortality. The 

study highlighted the potential of 
genes as biomarkers for septic 

cardiomyopathy and the potential 
impact of co-occurring pathological 

processes on sepsis prognosis. 

37 
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changed genes. 

Revealing novel 
pyroptosis-related 
therapeutic targets 
for sepsis based on 
machine learning. 

This study aimed to 
uncover pyroptosis 
genes associated 
with sepsis and 

provide early 
therapeutic targets 
for treatment. The 

GSE134347 dataset 
was used to mine 

sepsis-related 
genes, and a 

protein-protein 
interaction (PPI) 

network was 
constructed. 

Unsupervised 
consensus 

clustering of sepsis 
patients was 

performed, and 
machine learning 
prediction models 

were used to identify 
PRGs mostly 

associated with 
sepsis. The prolactin 

signaling pathway 
and IL-17 signaling 
pathway were the 

primary enrichment 
pathways. 

Unsupervised consensus clustering 
of sepsis patients was performed, 
and machine learning prediction 

models were used to identify PRGs 
mostly associated with sepsis. The 
prolactin signaling pathway and IL-

17 signaling pathway were the 
primary enrichment pathways. 
NLRC4, the PRG most strongly 

associated with sepsis, was 
considered a potential target for 
treatment. The ceRNA network 

around NLRC4 could serve as a 
further research direction to uncover 
the deeper pathogenesis of sepsis. 

 

38 

 
TABLE 1A. Above showed are examples of unsupervised ML approach in sepsis 
research as data labelling is not required. That is, allowing analysis without a pre-
conceived understanding of a disease mechanism. This methodology can be helpful 
in sepsis management at various stages in the patient journey. Once the analysis is 
generated, one can engage with the mapped to understand clusters, groupings, or 
the utility of prediction models.    
 
*REF is the Reference citation in the literature 
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Table 1B. Supervised Machine Learning 

STUDY  DESCRIPTION RESULTS REF 

Identification of a 
novel four-gene 

diagnostic 
signature for 
patients with 

sepsis by 
integrating 

weighted gene 
co-expression 

network analysis 
and support 

vector machine 
algorithm. 

This study aimed to identify 
sepsis-related diagnostic 
genes using integrated 

analysis, weighted gene 
co-expression network 

analysis, and gene 
regulatory networks. 
Results showed a 

significantly lower immune 
score in patients with 

sepsis compared to normal 
samples. 

The identified genes were 
associated with functions like 

neutrophil degranulation, 
activation, and immunity. The 

study also identified a four-gene 
signature, including hub genes 

LCK, CCL5, ITGAM, and 
MMP9, which could be used to 
diagnose patients with sepsis. 

39 

The use of gene-
expression 
profiling to 

identify candidate 
genes in human 

sepsis. 

A genomewide study 
examined gene-expression 
profiling of neutrophils to 
identify signature genes 
and pathways in sepsis 
clinical syndrome. The 

study used oligonucleotide 
microarrays on peripheral 

blood samples of 94 
critically ill patients. 

The molecular signature of 
sepsis was generated from 44 
samples and validated in 50. 
The diagnostic performance 
was high, regardless of age, 
comorbidities, or antibiotic 

treatment. The study found that 
genes involved in immune 

modulation and inflammatory 
response had reduced 

expression in patients with 
sepsis, with the activation of the 
nuclear factor-kappaB pathway 
reduced and its inhibitor gene, 

NFKBIA, significantly up-
regulated. 

40 

Fungal biomarker 
discovery by 
integration of 

classifiers. 

The study utilized Mixed 
Integer Linear 

Programming (MILP) 
classifiers to generate a 

gene signature for 
distinguishing fungal and 

bacterial infected samples. 
Combining classifiers 

increased the consistency 
of the biomarker gene list, 

with a 43% increase in 
pairwise overlap.  

The refined gene list ranked 19 
genes based on consistency in 
expression, most linked to the 
ERK-MAPK signaling pathway. 

The method achieved an 
average accuracy of 83% on 

unseen datasets. 

41 
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A six gene 
support vector 

machine classifier 
contributes to the 

diagnosis of 
pediatric septic 

shock. 

A study using four 
microarray datasets 

(GSE26378, GSE26440, 
GSE13904, and GSE4607) 
from the Gene Expression 

Omnibus database 
explored the mechanisms 
of pediatric septic shock 

(PSS). The MetaDE 
package screened 

consistently differentially 
expressed genes (DEGs) 
in the datasets, while the 

WGCNA package identified 
disease-associated 

modules and genes. The 
caret package selected 

optimal feature genes, and 
a support vector machine 
(SVM) classifier was built 
using the e1071 package.  

The study found 2,699 
consistent DEGs across the 

four datasets, and four stable 
modules were enriched with 

consistent DEGs. These 
modules selected six optimal 

feature genes, and an effective 
SVM classifier was constructed 
based on the six optimal genes. 

This classifier can potentially 
improve early PSS diagnosis 

accuracy and suggest 
molecular intervention targets. 

42 

Patient-specific 
early 

classification of 
multivariate 

observations. 

The Early Classification 
Model (ECM) is a novel 

approach for early, 
accurate, and patient-

specific classification of 
multivariate observations. It 
combines the widely used 

Hidden Markov Model 
(HMM) and Support Vector 

Machine (SVM) models. 
ECM has shown promising 

results in datasets, 
outperforming baseline 

models that required full-
time series classification. In 

experiments involving 
Multiple Sclerosis patients, 
ECM used only an average 

of 40% of a time series, 
outperforming some 

baseline models. 

In sepsis therapy datasets, 
ECM outperformed standard 

threshold-based methods and 
state-of-the-art methods for 
early multivariate time series 

classification. 
 

43 

A generalizable 
29-mRNA neural-
network classifier 
for acute bacterial 

and viral 
infections. 

A generalizable 29-mRNA 
neural network classifier 
has been developed for 
acute bacterial and viral 
infections. The classifier 

uses training data from 18 
retrospective 

The IMX-BVN-1 AUROCs are 
0.86 for bacterial infections and 

0.85 for viral infections. In 
patients enrolled within 36 

hours of hospital admission, the 
IMX-BVN-1 AUROCs are 0.92 

for bacterial infections and 0.91 

44 
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transcriptomic studies and 
has a bacterial-vs-other 

AUROC of 0.92 and a viral-
vs-other AUROC of 0.85. 

The classifier, inflammatix-
bacterial-viral-noninfected-
version 1 (IMX-BVN-1), is 
applied to an independent 

cohort of 163 patients. 

for viral infections. With further 
study, IMX-BVN-1 could provide 

a tool for assessing patients 
with suspected infection and 
sepsis at hospital admission. 

Personalized 
identification of 

differentially 
expressed 

pathways in 
pediatric sepsis. 

Identifying core pathways 
in an individual is crucial 
for understanding septic 

mechanisms and applying 
custom therapeutic 

decisions.  

A study using samples from a 
control group and a pediatric 
sepsis group identified 277 

enriched pathways as 
attractors, with 81 pathways 

with P<0.05 and 59 with 
P<0.01. The individualized 
pathway aberrance score 
(iPAS) was calculated to 
distinguish differences. 

 
Cluster analysis of pediatric 

sepsis using the iPAS method 
identified seven pathway 
clusters and four sample 

clusters, indicating that core 
pathways can be detected in 

most pediatric sepsis samples. 
This novel procedure identifies 

dysregulated attractors in 
individuals with pediatric sepsis, 

potentially improving the 
personalized interpretation of 

disease mechanisms and 
potentially useful in the era of 

personalized medicine. 

45 

Prediction of 
feature genes in 
trauma patients 

with the TNF 
rs1800629 A allele 

using support 
vector machine. 

This study predicted 
feature genes in trauma 

patients with the TNF 
rs1800629 A allele using a 

support vector machine 
(SVM) classifier. The study 
used 58 gene expression 

data sets from Gene 
Expression Omnibus to 

predict the TNF rs1800629 
A allele in trauma patients. 
The SVM classifier model 

was applied, combined 
with the leave-one-out 

Functional annotation revealed 
that HMOX1 and RPS7 were 
mainly enriched regarding cell 
proliferation and the ribosome. 
HMOX1 and RPS7 may be key 
feature genes associated with 
the TNF rs1800629 A allele, 
playing a crucial role in the 
inflammatory response in 
trauma patients. The cell 

proliferation and ribosome 
pathways may contribute to the 
progression of severe trauma. 
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cross-validation method. 
Functional annotation of 

feature genes was carried 
out to study their biological 

function. A total of 133 
feature genes were 

screened out, and the SVM 
classifier peaked in 

predictive accuracy with a 
100% correct rate in the 
training set and 86.2% in 

the testing set. 

The study 
investigates the 
mechanisms of 

sepsis, a 
systemic 

inflammatory 
response 
syndrome 
induced by 

infection in the 
lungs, abdomen, 
and urinary tract.  

The expression profiles of 
E-MTAB-4421 and E-

MTAB-4451 leukocytes 
were downloaded. 

Differentially expressed 
genes (DEGs) were 

identified and performed 
with hierarchical clustering 
analysis. A protein-protein 
interaction (PPI) network 

was constructed using the 
BioGRID database and 

Cytoscape software. A total 
of 384 DEGs were 

screened in the survival 
group. The PPI network 

was divided into four 
modules, involving 11 

DEGs, including 
microtubule-associated 
protein 1 light chain 3 
alpha (MAP1LC3A), 

protein kinase C-alpha 
(PRKCA), metastasis 
associated 1 family 

member 3 (MTA3), and 
scribbled planar cell 

polarity protein (SCRIB). 
Functional enrichment 

demonstrated that 
MAP1LC3A in module D 

was enriched in autophagy 
vacuole assembly.  

 
 

The SVM classifier correctly 
identified the samples in E-
MTAB-4451. In conclusion, 
DEGs such as MAP1LC3A, 
PRKCA, MTA3, and SCRIB 
may be implicated in sepsis 

progression and require further 
confirmation. 

47 
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TABLE 1B. Research studies using a Supervised ML approach are shown. 

Supervised techniques are useful for predictive purposes when distinct groups are 

known and thereby already classified. 

 
*REF is the Reference citation in the literature 
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Table 2. Artificial Neural Network Applied to Sepsis 

 

STUDY  DESCRIPTION RESULTS REF* 

Using machine 
learning 
algorithms, 
developing an 
autophagy-
related gene 
classifier for early 
diagnosis, 
prognosis, and 
prediction of 
immune 
microenvironment 
features in 
sepsis. 

The study focuses on the model 
developed using a systematic 
search in ArrayExpress and Gene 
Expression Omnibus cohorts 
from 2005 to May 2022. The ARG 
classifier was analyzed using 
multi-transcriptome data and 
correlated with immunological 
characteristics, including immune 
cell infiltration, immune and 
molecular pathways, cytokine 
levels, and immune-related 
genes.  
 
 

The model exhibited 
excellent diagnostic values 
(AUC > 0.85) and superior 
differentiation of sepsis from 
other critical illnesses. The 
identified hub ARGs were 
significantly associated with 
immune cell infiltration, 
immune and molecular 
pathways, and cytokine 
levels. The ARG classifier 
exhibited superior 
diagnostic performance 
compared to procalcitonin 
and C-reactive protein in 
patients with sepsis. The 
ARG classifier can assist 
clinicians in diagnosing 
sepsis and identifying high-
risk patients, guiding 
personalized treatment, and 
facilitating personalized 
counseling for specific 
therapy. 
 

48 
 

Studying a 
bioinformatical 
framework for the 
identification and 
validation of 
biomarkers in 
SIRS, sepsis, and 
septic shock 
patients 

A methodologic framework for 
identifying and validating gene 
biomarkers in sepsis, sepsis, and 
septic shock patients was 
described, using a 2-tier gene 
screening and ANN data mining 
technique. 

Eight key hub markers were 
identified, which could 
delineate distinct core 
disease processes and 
inform underlying 
immunological and 
pathological processes. 
These markers do not show 
enough fold change 
differences between 
different disease states to 
be useful as primary 
diagnostic biomarkers but 
were instrumental in 
identifying candidate 
pathways and other 
associated biomarkers for 
further exploration. 
 

49 
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Table 2. Above are examples of Artificial Neural Networks (ANNs) applied to Sepsis. 
ANNs are machine learning algorithms which use interconnected nodes or neurons 
in a layered structure that resembles the human brain. 
*REF is the Reference citation in the literature 
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Table 3. Ensemble Learning Technique in Sepsis Research 

 

Ensemble Algorithm Types Study Details REF 

WGCNA and Gene Ensemble Noise 
Reduction 

Training a gradient-boosted regression 
tree model to classify Covid-19 severity. 
They argued that genes do not function 
in isolation but act as ensembles 
representing biological pathways and 
protein complex subunits. Further, they 
suggested that an imbalance in the 
expression of the gene ensemble 
results in disease pathology. Then they 
inferred that variance in gene 
expression of the ensemble or ‘gene 
ensemble noise’ is related to gene 
alteration. The model accurately 
predicted patients with mild and severe 
Covid-19. Using gene ensemble noise 
versus WGCNA demonstrated equal 
accuracy. 

50 

Four ML algorithms (random forest, 
recursive feature elimination using 
support vector classifier, logistic 
regression with lasso, and Boruta 

A machine learning ensemble approach 
was used to analyze the gene 
expression data identifying 239 genes in 
urine, which effectively classified septic 
patients from those with other chronic 
conditions. 

51 

 
Table 3. The use of an Ensemble Machine Learning approach applied to sepsis is 
shown. The ensemble machine learning methods combine the insights from multiple 
learning models to improve the accuracy of decisions. 
*REF is the Reference citation in the literature 
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