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   Abstract—Federated Learning (FL) allows data owners to train 

neural networks together without sharing local data, allowing the 

Industrial Internet of Things (IIoT) to share a variety of data. 
However, traditional federated learning frameworks suffer from 

data heterogeneity and outdated models. To address these issues, 

this paper proposed a dual-blockchain based multi-layer grouping 

federated learning architecture (BMFL). BMFL divides the 

participant groups based on the training tasks, then realizes the 

model training combining synchronous and asynchronous 

through the multi-layer grouping structure, and uses the model 

blockchain to record the characteristic tags of the global model, 

allowing group-manners to extract the model based on the feature 

requirements and solving the problem of data heterogeneity. In 

addition, to protect the privacy of the model gradient parameters 

and manage the key, the global model is stored in ciphertext, and 

the chameleon hash algorithm is used to perform the modification 

and management of the encrypted key on the key blockchain while 

keeping the block header hash unchanged. Finally, we evaluate the 

performance of BMFL on different public datasets and verify the 

practicality of the scheme with real fault dataset. The experimental 

results show that the proposed BMFL exhibits more stable and 

accurate convergence behavior than the classic FL algorithm, and 

the key revocation overhead time is reasonable.  

 

Index Terms—Federal Learning, multi-level grouping, editable 

Blockchain, data Heterogeneity, Industrial Internet of Things 

(IIOT) 

 

I. INTRODUCTION 

HE Industrial Internet of Things (IIoT) has become a 

prevailing trend in modern industrial development and 

its utilization has led to the rapid development of the 

industrial sector. The IoT enables the connection of 

various smart devices and facilitates rapid and efficient 

applications. Compared with traditional manual production, 

automated manufacturing equipment generates a significant 

amount of data while improving productivity. Smart factories 

utilize automated machines to detect and collect vast amounts 

of complex real-time industrial fault data. In particular, 

industrial big data analytics based on artificial intelligence 

technology offers significant advantages, such as enhancing 

equipment performance, enabling predictive maintenance, and 

minimizing downtime due to failures [1].  

Existing research focuses on privacy-sensitive data 

protection mechanisms in industrial big data [2-3]. Federated 

 
 

learning (FL) [4] as a distributed machine learning method, 

participating devices first use original data for local training, 

and then upload the model gradients to the central server, which 

is responsible for aggregating these models and updating them. 

Since only the model gradient parameters and not the original 

data are shared during the FL process, the data privacy of 

participants can be effectively protected. With the constant 

development of FL, it is gradually widely used in solving 

privacy protection problems in edge computing and industrial 

IoT [5-7]. 

Industrial big data has the characteristics of multi-source and 

heterogeneity, and it poses challenges to data processing and 

analysis compared to general data. When using classical FL in 

IoT scenarios involving a large number of devices, there is a 

problem of training accuracy degradation, the discrepancy is 

mainly caused by factors such as data heterogeneity (uneven 

distribution of local training data) and device heterogeneity 

(hardware resource gap). For the challenges of reduced training 

accuracy and wasted communication resources, FL framework 

research has changed from synchronous FL [8] to asynchronous 

federated learning (AFL) [9]. AFL avoids the device idle state 

and solves the concern of unreliable devices, and in the AFL 

framework, the global aggregation is executed as soon as the 

server receives the local model, thus reducing the accuracy of 

the original stale local model to the global model after 

aggregation. In [10], the AFL scheme is proposed to improve 

the training efficiency of heterogeneous IoT devices under 

unstable communication networks. In [11], to limit the number 

of devices trained simultaneously in the AFL network, a cache 

with a weighted averaging mechanism is introduced to reduce 

the impact of stale models and improve the aggregation 

efficiency. However, none of the above AFL schemes to solve 

the heterogeneity problem consider dealing with the stale 

gradient uploaded by the client and how the local client selects 

the feature-matched global model when the global model is 

updated. 

Blockchain [12] technology serves as a public, digitized, 

distributed ledger built on a peer-to-peer network structure, and 

it has been applied to many network scenarios [13-16], in which 

cryptography technology can provide secure data sharing and 

storage, which ensures data authorization and authentication, 

and manages new participants from transaction records [17]. 

Therefore, it can be combined with federated learning to 

effectively implement decentralized storage or replace the 

central FL server to aggregate model parameters. In [18], the 
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authors propose an adaptive framework for FL and blockchain 

that is able to treat the trust of participants as individual  

probabilities to calculate the trust values of different networks. 

In [19], the authors integrate blockchain and FL to develop an 

Industry 4.0 cognitive computing distributed platform to solve 

the data island problem. The above methods all store model 

parameters on the blockchain, ensuring the auditability of the 

training process and the sharing of models. However, once the 

attacker steals the model parameters on the chain, then the 

original data may be leaked. 

Therefore, in order to solve the problems of asynchronous 

global model aggregation and local data privacy protection 

under the FL framework in IIoT, this paper organically 

combines the blockchain and FL, proposes the BMFL 

architecture. First, participant groups are divided according to 

tasks, synchronously aggregates models within the group, 

asynchronously aggregates the group with the global. To solve 

the problem of asynchronous global model update and 

download due to the grouping structure, a Modelchain is used 

to record the characteristic model. In addition, the global model 

is encrypted and stored in IPFS. Considering the key 

management, this paper introduces the Keychain and uses the 

chameleon hash function to complete the update and 

modification design of the key on the blockchain, while 

ensuring that the block header hash unchanged, ultimately 

realizing the sharing of the global model and the privacy 

protection of local data. In this way, BMFL supports global 

model sharing and local data privacy protection. 

The main contributions are summarized as follows. 

• To address the problem of data heterogeneity affecting 

model training accuracy in IIoT, this scheme improves the 

horizontal FL structure and realizes the asynchronous 

aggregation of global models by multi-layer grouping for local 

clients, so that the local data can satisfy the privacy protection 

without degrading the training accuracy of global models. 

• Combining blockchain and IPFS to achieve model 

characterized record and privacy protection, this paper proposes 

a model tag matching method. Model tags are selected as 

transactions to be uploaded to the Modelchain, in which models 

are stored in ciphertext form. In order to obtain as many 

intergroup features as possible, the group management extracts 

the models that satisfy the feature requirements by tags on the 

Modelchain. 

• An efficient and fine-grained key update management 

method is proposed based on the chameleon hash function. 

When a member of the group exits training, the key of the 

encrypted global model is modified in the key chain. The update 

and re-storage of the key information on the Keychain is 

completed, while the hash value remains unchanged. 

The remainder of this paper is organized as follows. Related 

work is reviewed in Section II. In Section III, the specific 

architecture and design goals of multi-layer federated learning 

and the editable blockchain model sharing scheme are 

described in detail. Section IV presents the experimental results 

and analysis. Section V presents the conclusions and next steps 

of this paper. 

II. RELATED WORK 

2.1. Data heterogeneity 

Existing FL frameworks usually have highly heterogeneous 

hardware and Non-Independent-Identically Distributed (Non-

IID) data. These heterogeneous and unbalanced data will 

seriously affect the training effect of federated learning [20]. 

Researchers have proposed various FL methods to optimize the 

convergence speed and improve the accuracy of training. Li T 

et al. [21] proposed a framework FedProx to solve 

heterogeneity in federated networks, which allows each 

participating device to perform variable workloads, correcting 

the gradient drift due to heterogeneous data by computing 

inexact solutions with proximal terms. Chen Y et al. [22] 

proposed an asynchronous online federated learning (ASO-

Fed) framework, considering the unrealistic assumptions made 

by FedAvg on heterogeneous devices, in which edge devices 

perform online learning using a continuous stream of local data 

to asynchronously update the central model, this can cope with 

the different computing loads of heterogeneous edge devices 

and the challenges related to backward edge devices. He et al. 

[23] proposed a federated learning framework MOON in 2021, 

which uses the similarity between model representations to 

correct the local training of the parties to perform comparative 

learning at the model level. Zhang et al. [24] proposed a FL 

framework called FedSens, which combines reinforcement 

learning strategies to perform high-quality updates on the local 

client, solving the problem of each health data collected by 

individual devices in an abnormal health detection (AHD) 

system, improving the accuracy of the global model. Duan et al. 

[25] proposed a clustered semi-asynchronous federated 

learning (CSAFL) framework, which groups devices with 

similar data distribution for asynchronous communication, 

effectively mitigating the laggard effect and improving the 

accuracy of AFL. Although AFL has inherent advantages over 

synchronous FL because model aggregation can be performed 

without waiting for stragglers, the reliability of the grouping 

basis in the AFL framework in the above scheme is difficult to 

guarantee. The scheme design and performance comparison 

with the literature is shown in Table 1. 

Table1. 

Comparative analysis of heterogeneity problems 

Reference Characteristics Advantages Disadvantages 

Li T[21] It relies on a 

proximal term to 

help stabilize the 

method and 

improve the 

convergence 

behavior of 

federated learning 

High training 

accuracy 

High 

computation 

overhead and 

No 

consideration 

for data 

privacy. 

Chen Y[22] A decay coefficient 

balancing the 

previous and the 

current model. 

Converging 

fast and 

preventing 

user dropouts 

High 

communication 

efficiency 

Duan M[25] A clustered semi-

asynchronous 

federated learning 

Mitigating the 

straggler 

effect and 

improving the 

accuracy of 

the AFL 

The basis for 

grouping is 

unclear and 

low privacy 

protection 

 

2.2. Privacy-preserving federated learning 
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During the FL model training and aggregation process, 

although the medium of transmission between participants and 

servers is mostly model parameters or gradients, current FL 

schemes are not completely secure due to the fact that 

centralized servers can be attacked or leak models during model 

parameter uploads, thus exposing sensitive information about 

the training data through inference attacks [26]. In addition, 

current FL are difficult to effectively prevent poisoning attacks 

by malicious nodes [27]. To further improve the security of IoT 

data, Wei et al. [28] proposed a user-level differential privacy 

(UDP) method to achieve local differential privacy at different 

privacy-preserving levels by changing the variance of the 

artificial noise process. Bonawitz et al. [29] proposed an 

efficient and privacy-preserving aggregation protocol that 

combines key agreement protocol and secret sharing to ensure 

the privacy of gradients and allow users to exit. Zero 

Knowledge Proof (ZKP) is a cryptographic technique that is 

also widely used for user identity or data verification. For 

example, Guan et al. [30] proposed BlockMaze, a ZKP-based 

privacy-assured account model blockchain that protects 

account balances and information about interactions between 

traders. Blockchain acts as a distributed ledger that stores 

historical operations and prevents information from being 

tampered with. Recently, work combining FL with blockchain 

has been proposed in scenarios that are distributed and require 

privacy protection. Xue et al. [31] proposed an efficient 

privacy-preserving and traceable federated learning framework 

(PPTFL), using hierarchical aggregation federated learning 

(HAFL) and combining blockchain and IPFS to achieve secure 

data sharing in IoT, which is efficient in real-world applications 

with large numbers of users and high-dimensional gradients. 

Chen J et al. [32] applied deep learning, blockchain, and full 

homographic encryption (FHE) to an in-vehicle self-organizing 

network and proposed a decentralized privacy-preserving deep 

learning model (DPDL), which effectively protected the 

network privacy and trustworthiness. The comparison table 

between the scheme design and performance and the literature 

is shown in Table 2. 

 

Table 2. 

Comparative analysis of privacy-preserving mechanisms 

Reference Characteristics Advantages Disadvantages 

Wei[28] Each user adds 

noise to the 

parameters 

based on 

differential 

privacy 

High efficiency Adding noise 

reduces the 

accuracy of 

model  

Bona[29] All users 

collaborate to 

protect privacy 

Good accuracy 

and low 

computational 

overhead 

High 

communication 

overhead and 

vulnerability to 

drop-out users 

Xue[31] All users 

protect privacy 

and make the 

parameters 

traceable and 

tamper-proof 

Better accuracy 

and low 

communication 

Keys are not 

managed and 

the existence of 

user revocation 

Chen J[32] All nodes fully 

homomorphic 

encrypt local 

updates and 

aggregate 

ciphertexts 

High security 

and credibility   

High 

computation and 

communication 

overhead 

In summary, the FL of the differential privacy mechanism in 

the above method will protect the data while affecting the model 

quality, although HE has a sound mathematical theory to ensure 

the privacy and security of encrypted data, the huge amount of 

calculation in the encryption and decryption process will 

occupy the equipment in IIoT resources, ZKP can verify the 

authenticity of user information without accessing specific data. 

However, the assertion proof process requires multiple 

interactive verifications by the user, which affects the user 

experience [33]. Among existing distributed training solutions, 

few solutions take into account both data heterogeneity and 

client data privacy. 

Therefore, a single privacy protection technology cannot 

solve the local data privacy problem well, and a framework 

based on the combination of FL and blockchain technology can 

be used to solve the problem of global model storage and 

accurate delivery on the one hand, and on the other hand can 

realize the client effective management. 

III. MULTI-LAYER GROUPED FEDERATION  

LEARNING MODEL 

This section designs a multi-layer grouping federated 

learning framework that combines synchronous and 

asynchronous, and then detail its components. 

3.1. Network Structure 

The structure of the multi-layer federated learning network is 

shown in Fig.1, which consists of three main roles: 

manufacturers, group managers (GM), and global server. 

Manufacturers complete the update of the local model and 

group model through communication with the GM. When the 

group model reaches preliminary convergence, the group 

management sends the group model to the global server, and 

the global server asynchronously aggregates the models sent by 

each group management. Each component is described in detail 

in the following sections. 

Manufacturers: Manufacturers have raw industrial failure 

data to predict possible failures of industrial equipment and 

provide maintenance recommendations. Specifically, in order 

to effectively reduce convergence difficulties caused by data 

heterogeneity, each manufacturer (𝑃𝑎𝑟𝑡𝑦𝑖) will be divided into 

groups according to the training task, which is determined by 

the adopted datasets. Because this paper uses the strip surface 

defect dataset for experiments, the 𝑃𝑎𝑟𝑡𝑦𝑖 are categorized into 

groups according to the types of defects in the strip images they 

have, and the same manufacturer can belong to more than one 

group. Local model training is performed by the FedAvg 

aggregation algorithm used locally by the manufacturers. 
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Party 1 Party 2

Asynchronous 
aggregation

 synchronization 
aggregation

Party M

GM 1

GM 2

Industrial failure data

Global Server

In-group models

Group Model

Global Model

  

 
Fig. 1.   Multi-layer federation learning network structure 

GM: The group elects the GM by consensus algorithm in 

different groups generated by multiple manufacturers. GM 

communicates with the manufacturer to complete the update of 

the local and group models, and when the group model reaches 

the convergence target, the GM sends the group model to the 

global server. During the federated learning process GM can 

request the global model from any node with different feature 

distributions on the blockchain on demand. 

Global: The global server collects the models sent by each 

group management, aggregates them according to weights to 

obtain the global model, and uploads the global model 

information to the blockchain. The global server uses 

asynchronous aggregation for model collection and 

aggregation. 

We assume that the federated learning scenario consists of 

multiple geographically distant regions. An arbitrary number of 

global servers can be used as global servers for each region. Let 

𝑀  participant groups exist in each independent region as 

similarly geographically distributed participant units, and the 

model communication between each group can be independent 

and asynchronous. Let 𝑃1, ⋯ , 𝑃𝑁 be the𝑁participants present in 

each group. Participant 𝑃𝑖 provides the local dataset 

𝐷𝑖 containing several samples {𝑥, 𝑦} . The goal of federated 

learning is to learn an in-group prediction model 𝑤𝑔𝑟𝑝  as a 

generalized model with generalization properties using an in-

group central server through the dataset 𝐷 ≜ ⋃ 𝐷𝑖
𝑖∈𝑁  provided 

by all participants. Each participant then trained the in-group 

prediction model 𝑤𝑔𝑟𝑝 with local private data 𝐷𝑖 to obtain the 

private prediction model 𝑤𝑖 available to the participants. The 

training objective of the in-group prediction model 𝑤𝑔𝑟𝑝 

should be Eq. (1), and the in-group participant model converges 

uniformly as follows: 

arg min 𝐿(𝑤𝑔𝑟𝑝) = ∑
|𝐷𝑖|

|𝐷|
𝐿𝑖

𝑁
𝑖=1 (𝑤𝑖)            (1) 

where 𝐿𝑖(𝑤𝑖) = 𝐸(𝑥,𝑦)~𝐷𝑖  [𝑙𝑖(𝑤𝑖; (𝑥, 𝑦))]is the empirical loss 

function of the participant 𝑃𝑖. 

3.2. The multi-layer federation structure 

The multi-layer federation structure classifies the models 

obtained from different levels of node training into three 

categories: local models, group models, and global models, 

which have different training objectives and aggregation 

methods. 

Local Models: The local model is used for the prediction 

task, and its training goal is to have a high accuracy rate and 

low loss value when the manufacturer uses the feature sample 

set. The update of the local model depends on the shared data 

set within the group and the local model within the group, and 

due to the problem of local each participant's devices computing 

power difference, to simplify the calculation, let the network 

structure of each participant's personalized model training be 

consistent with the adoption of FedAvg, Thus, its learning goal 

is defined as: 

arg min 𝐿𝑙𝑜𝑐(𝑤𝑖) ← 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝐹
𝑤𝑡

𝑖(𝑥), 𝑦)      (2) 

that minimizes the cross-entropy loss function 𝐿𝑙𝑜𝑐(𝑤)of the 

local model 𝑤𝑖. 

Group Models: To update local models and perform 

prediction tasks with stronger generalization requirements, the 

goal is to characterize the models in the group and reduce the 

impact of data drift on the models. The update of the group 

model is subject to both the local model of the group and the 

global model of the server, so its aggregation algorithm faces 

the challenge of heterogeneity. To solve this problem, we add 

proximal terms [21] to the local subproblem to effectively limit 

the impact of the local update of the variables. Considering that 

the dataset used by the group model during the training process 

contains some of the datasets of the group's participants, the 

direction of the correction converges to that of the global 

model's distance from the group model. 

    min ℎ𝑖(𝑤; 𝑤𝑡) = 𝐹𝑖(𝑤) +
𝜇

2
‖𝑤 − 𝑤𝑡‖2                         (3)        

Eq. (3) is the addition of a proximal term to the group objective 

function, where device 𝑖 uses a local solver to approximate the 

minimization objective ℎ𝑖, ‖𝑤 − 𝑤𝑡‖2 is the distance between 

the local and global models, and 𝜇 is the penalty strength of the 

correction term. 

Based on the above design, the learning objectives of the 

group model are defined in Eq. (4): 

arg min 𝐿𝑔𝑚(𝑤) ← 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 (𝐹𝑤𝑔𝑚
(𝑥), 𝑦) 

                + 𝜆‖𝑤𝑔𝑙𝑏 − 𝑤𝑔𝑚‖2                        (4) 

𝐿𝑔𝑚(𝑤)  is the cross-entropy loss function derived from the 

group model trained on the shared data within the group plus 

the distance correction to the global model. Eq. (4) is the new 

loss function of the group model, ‖𝑤𝑔𝑙𝑏 − 𝑤𝑔𝑚‖2 is the 

distance between the local model and the global model as a 

correction term to the original loss function to reduce the degree 

of bias caused by the heterogeneous data to the model, 𝜆 is the 

penalty strength of the correction term. 
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Global Model: The aggregation goal of the global model is to 

extract features that are as common among all group models as 

much as possible and store them on the blockchain for easy 

extraction by GM. Each update of the global model is 

immediately trained with the global shared samples and the 

group shared samples, and the new global model will be 

uploaded to the chain after training. To make the global model 

have stronger common feature extraction capabilities, the 

feature extraction capability of the global model is enhanced by 

data augmentation or augmentation. Since the global 

aggregation algorithm is asynchronous in the multi-layer 

federated learning design, there is no need to consider 

communication costs and synchronization issues between 

group nodes. When the global model receives the model sent by 

any GM, it first performs data amplification on the group shared 

samples to generate positive sample pairs, and data 

augmentation on the global shared samples to generate negative 

sample pairs. The distance between the same part of the group 

features and global features decreases, and the distance between 

the global features and different parts of the group features 

increases. In this paper, we follow the global objective function 

in MOON [23] and define the global model aggregation 

learning objective as Eq. (5): 

                                 arg min 𝐿𝑔𝑙𝑜𝑏 ← 𝐿𝑠𝑢𝑝 + 𝐿𝑐𝑜𝑛                    (5) 

𝐿𝑠𝑢𝑝 is the loss term of the group model in model training, 

and 𝐿𝑐𝑜𝑛  is an additional loss term defined to measure the 

distance between the global model and group model features. 

The model-contrastive loss 𝐿𝑐𝑜𝑛 is defined as Eq. (6): 

𝐿𝑐𝑜𝑛 ← −𝑙𝑜𝑔
exp (𝑠𝑖𝑚(𝑟,𝑟𝑔𝑚)/𝜏)

exp (𝑠𝑖𝑚(𝑟,𝑟𝑔𝑚)/𝜏)+exp(𝑠𝑖𝑚(𝑟,𝑟𝑔𝑚−)/𝜏)
                    (6) 

where 𝑟 is the global model feature, 𝑟𝑔𝑚 is the group model 

feature, 𝑟𝑔𝑚−  is the last round feature of the group model, 

𝑠𝑖𝑚(. ) is the cosine similarity function and 𝜏 is the temperature 

coefficient. The meaning of 𝐿𝑐𝑜𝑛 measures the similarity 

between the global model features and group model features. 

3.3. Blockchain Multi-layer Federation 

In order to solve the problem of differential update of the 

global model caused by asynchronous aggregation of group 

models. In this section, we design the data tags to annotate the 

global model of different features, and combine it with 

blockchain technology and IPFS [34] for storage. An adaptive 

global model sharing scheme is proposed, allowing GM to 

adaptively extract characteristic global models from the 

blockchain through data labels. 

In this paper, we use Proof-of-Work (PoW) [35] as the 

consensus mechanism in the blockchain to select an appropriate 

GM. In each training iteration, the miner receives the global 

model and other information from the adjacent servers, the GM 

receives the local model from the manufacturers, and the 

blockchain cross-validates this information and is finally stored 

in the distributed ledger as hash index. the blockchain rewards 

both GMs and miners according to the workload, with the 

reward for GMs being linearly correlated with the training 

activity. This approach can incentivize miners and GMs to 

participate actively in blockchain mining and FL. Blockchain 

can also use other consensus algorithms, such as byzantine fault 

tolerance (PBFT), which may require more upfront preparation 

to reach consensus among miners and different GMs. 

The global server asynchronously aggregates the group 

models sent by the GM and generates a new global model after 

each effective aggregation. The scheme uses IPFS to store these 

global models, when the global models are uploaded to the IPFS 

system, the unique corresponding model will be returned. Hash 

index through which the original data can be retrieved. 

This scheme uses a Modelchain to store the data tags of the 

models and the model index value hash index returned by the 

IPFS system so that the global models can be shared accurately. 

The Modelchain consists of multiple blocks Block𝑖, and each 

Block𝑖 can be divided into two parts: the block body and the 

block header. The specific structure of model Block𝑖 is shown 

in Fig.2. The block header contains the index value Index、
representing the block identity, the timestamp Time, The hash 

value PreHash of the previous block, random Nonce value, and 

the Merkle Tree. The block body contains the entire Merkle tree 

with the content of the model transaction txcj, containing the 

model adaptive tag and the corresponding hash index of the 

global model. 

Index:MBn-1 PreHash Nonce Time

Merkle  Tree 

hash1234

hash12 hash34

htx1 htx2 htx3 htx4

tx1
cj tx2

cj tx3
cj tx4

cj

tagn-2MBn-2 tagnMBn

Model blockchain 

 
Fig. 2.   Modelchain block structure 

After the server completes the training of the global model, it 

first encrypts the global model with the AES key of GM and 

stores the encrypted model in the IPFS system, which returns a 

hash index of the corresponding location to the server, which 

stores the hash index and the tag provided by the GM in the 

Modelchain. When the group model needs to be updated, the 

latest adapted global model is found in the Modelchain using 

tag information, and the target model is obtained according to 

the corresponding hash index. 

Adaptive tag: Due to the asynchronous updates between the 

global model and the group model can cause the global model 

to be affected by the stale group model, we design a form of 

data tags to solve this problem. After the global model 

aggregates the group of models, The global model will add the 

tag of the group model to the global model tag after aggregating 

the group model, so that when other users need to download the 

global model, the global model suitable for the prediction task 

can be automatically matched based on the global model tag 

and times tamp. 

The adaptive tag structure is shown in Fig.3. At the beginning 

of training, the server generates 16 bits tag encoding rules for 

mainstream tasks, of which the first 4 bits represent the 

attributes of the task (such as structured data classification, 

image recognition, speech recognition, semantic segmentation, 

etc.), 4-7 bit are the coding of the model used, 8-15 bit are the 

coding of the specific prediction task, The tag encoding rules 
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are published to all participating groups and distributed to each 

participant by the group management GM. 

 

Parameters

Length
(Bytes)

Task
Properties

0~3

Model code

4~7

Predictive task 
code

8~15

16-bit tag encoding rules

Fig. 3.   Schematic diagram of tag structure 

The BMFL system architecture is shown in Fig.4. Each 

participant needs to code the prediction task first. After 

completing the local training, it sends the 𝑡𝑎𝑔 along with the 

local model to the group management GM, it receives the local 

model and 𝑡𝑎𝑔 from all the participants and then sorts all the 

tags according to the weight of the dataset size of the 

participants in the group. GM uses the global consensus DCT 

discrete cosine transform compression algorithm to compress 

the group model weight into a low-dimensional matrix and 

encodes it as the summary of group model features 𝑏𝑦𝑡𝑒𝐺𝑀
𝑚𝑡𝑥 , 

which merges the group tag 𝑡𝑎𝑔 and the summary of group 

model features 𝑏𝑦𝑡𝑒𝐺𝑀
𝑚𝑡𝑥  into group tag 𝑡𝑎𝑔𝐺𝑀 =

{𝑡𝑎𝑔1||𝑡𝑎𝑔1|| … ||𝑡𝑎𝑔𝑛||𝑏𝑦𝑡𝑒𝐺𝑀
𝑚𝑡𝑥}. 

 

           

Model blockchain 

                 

Party 1 Party 2

GM 1
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Party M

The adapted Global model is aggregated with 
the group model to get a new 

  

 
Fig. 4.   Multi-layer federal blockchain system architecture 

When the GM communicates with the global server, the 

group model 𝑤𝑔𝑚and the group tag 𝑡𝑎𝑔𝑔𝑚 are sent to the global 

server together. The server searches for a suitable global model 

on the Modelchain according to the weight from the largest to 

the smallest, and trains it with the group model to obtain a new 

global model 𝑤𝑔𝑙𝑏 . The server also uses the compression 

algorithm to generate the summary 𝑏𝑦𝑡𝑒𝑔𝑙𝑏
𝑚𝑡𝑥 and merges the tags 

of the original global model with the tags of the group model. 

The tags are  reordered with reference to the contribution value 

of the group management GM to obtain the new 𝑡𝑎𝑔𝑔𝑙𝑏 =

{𝑡𝑎𝑔1||𝑡𝑎𝑔1|| … ||𝑡𝑎𝑔𝑛||𝑏𝑦𝑡𝑒𝑔𝑙𝑏
𝑚𝑡𝑥} , then the server uploads the 

new global model tag 𝑡𝑎𝑔𝑔𝑙𝑏 and hash index corresponding to 

the encrypted global model in IPFS. When GM needs to use the 

global model update, the desired target global model is located 

on the Modelchain according to the matching degree of 

𝑡𝑎𝑔𝐺𝑀and 𝑡𝑎𝑔𝑔𝑙𝑏 with the sequence of timestamps. 

The entire architecture's model training and blockchain 

upload process can be divided into an initialization phase and 

four training phases.  

Initialization phase: When training starts, the global server 

creates a Modelchain and generates tag encoding rules, and 

broadcasts them to all GMs along with the initial global model 

𝑤0
𝑔𝑙𝑏

. 

(1) Global model aggregation phase: Whenever the global 

server receives 𝑤𝐺𝑀 with the corresponding 𝑡𝑎𝑔𝐺𝑀  sent by a 

GM, it weights and aggregates 𝑤𝐺𝑀 to obtain a new 𝑤𝑔𝑙𝑏. The 

global server uses the AES key of GM to encrypt to obtain 𝐶𝑤𝑔𝑙𝑏, 

store 𝐶𝑤𝑔𝑙𝑏  in the IPFS and obtain the storage location hash 

index. Finally, the global server uploads the hash index and 

𝑡𝑎𝑔𝑔𝑙𝑏 to the Modelchain. The AES key used for the encryption 

model and stored on the editable Keychain using the RSA 

algorithm in Section 3.4 to prevent key leakage. 

(2) Group model optimization phase: GM can download the 

global model on Modelchain to optimize the group model, and 

the hash-index of the most matching 𝐶𝑤𝑔𝑙𝑏  will be obtained 

according to the degree of matching between 𝑡𝑎𝑔𝐺𝑀  and 

𝑡𝑎𝑔𝑔𝑙𝑏. The decrypted AES key can be obtained by applying to 

the server, Algorithm1 describes the (1) and (2) phase in detail. 

 

Algorithm 1: Multi-layer federal GM to Global 

Input: Global shared data sets 𝐷，batch size 𝑏，learning ra

te 𝜂，number of global epoch 𝐸𝑔𝑙𝑏，number of grou

p epoch   𝐸𝑔𝑚，hyper-parameter 𝜇，temperature 𝜏 

Output：The final model 𝑤𝑛
𝑔𝑙𝑏

 

1 Server executes: 

2 Find suitable global model 𝑤𝑛
𝑔𝑙𝑏

in the Modelchain by 𝑡𝑎𝑔𝑡
𝐺𝑀 

3 initialize 𝑤0
𝑔𝑙𝑏

, (𝐺𝑀𝐼𝐷, 𝑤𝑡
𝐺𝑀, 𝑤𝑡−1

𝐺𝑀 , 𝑡𝑎𝑔𝑡
𝐺𝑀) 

4 for epoch 𝑒 = 1,2, … , 𝐸𝑔𝑙𝑏 
5    for each batch 𝑏 = {𝑥, 𝑦} of 𝐷 do 

6        𝐿𝑠𝑢𝑝 ← 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠(𝐹
𝑤𝑛

𝑔𝑙𝑏(𝑥), 𝑦) 

7        𝑟 ← 𝑅
𝑤𝑛

𝑔𝑙𝑏(𝑥) 

8        𝑟𝑔𝑚 ← 𝑅𝑤𝑡
𝐺𝑀(𝑥) 

9        𝑟𝑔𝑚− ← 𝑅𝑤𝑡−1
𝐺𝑀(𝑥) 

10        𝐿𝑐𝑜𝑛 ← −𝑙𝑜𝑔
exp (𝑠𝑖𝑚(𝑟,𝑟𝑔𝑚)/𝜏)

exp (𝑠𝑖𝑚(𝑟,𝑟𝑔𝑚)/𝜏)+exp(𝑠𝑖𝑚(𝑟,𝑟𝑔𝑚−)/𝜏)
 

11        𝐿 ← 𝐿𝑠𝑢𝑝 +  𝜇𝐿𝑐𝑜𝑛 

12        𝑤𝑛
𝑔𝑙𝑏

← 𝑤𝑛
𝑔𝑙𝑏

− 𝜂∇ℓ 

13    end for 

14 end for 

15 send 𝑤𝑛
𝑔𝑙𝑏

on the Modelchain 

GM optimizes the group model: 

1 Find suitable global model 𝑤𝑛
𝑔𝑙𝑏

in the Modelchain by 𝑡𝑎𝑔𝑡
𝐺𝑀 

2 for epoch 𝑒 = 1,2, … , 𝐸𝑔𝑚 
3    for each batch 𝑏 = {𝑥, 𝑦} of 𝐷𝐺𝑀  do 
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4      𝐿𝑔𝑚 ← 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 (𝐹𝑤𝑡
𝑔𝑚(𝑥), 𝑦) + 𝜆‖𝑤𝑔𝑙𝑏 −

𝑤𝑔𝑚‖2 

5      𝑤𝑡
𝑔𝑚

← 𝑤𝑡
𝑔𝑚

− 𝜂∇ℓ𝑔𝑚 

6    end for 

7 end for 

8 return 𝑤𝑡
𝑔𝑚

 to party in group 

 

(3) Local model training phase: Participating node  𝑃𝑎𝑟𝑡𝑦𝑖 

preprocesses and annotates the local fault image dataset, which 

is stored in local dataset 𝐷𝑖. The local model 𝑤𝑖
𝑡of the round 𝑡 

round of 𝑃𝑎𝑟𝑡𝑦𝑖 is trained by the participating nodes through 

SGD using the local dataset 𝐷𝑖 and 𝑤𝑡−1
𝑖 (𝑡 > 0), and when the 

loss value 𝐿𝑖(𝑤) satisfies the condition 𝐿𝑖(𝑤) < 1 and 𝑎𝑐𝑐 > 0.8 

or the training round has reached the maximum round 𝑡 = 𝑡𝑚𝑎𝑥, 

the training is stopped and the local model 𝑤𝑡_𝑙𝑎𝑠𝑡
𝑖  of the last 

round is sent to GM. The local model 𝑤𝑡_𝑙𝑎𝑠𝑡
𝑖 . Meanwhile, 

according to the characteristics of the local dataset 𝐷𝑖 , the 

participant uses the local model with 𝑡𝑎𝑔  and sends them 

together with the model 𝑤𝑡_𝑙𝑎𝑠𝑡
𝑖  to the GM. 

(4) Group model training phase: After the group management 

GM receives the local models 𝑤𝑡_𝑙𝑎𝑠𝑡
𝑖∈𝑈  and 𝑡𝑎𝑔 sent by all group 

participants, it aggregates all local models on average to obtain 

𝑤𝐺𝑀  and generates the corresponding 𝑡𝑎𝑔𝐺𝑀 . Finally, 𝑤𝐺𝑀  is 

sent to the global server along with 𝑡𝑎𝑔𝐺𝑀 . Algorithm 2 

describes the (3) and (4) phase in detail. 

 

Algorithm 2: Multi-layer federal Party to GM 

Input: Global shared data sets 𝐷，batchsize 𝑏， learing rate

 𝜂，number of local epoch 𝐸𝑙𝑜𝑐，hyper-parameter 

𝜇，temperature 𝜏，𝑁 ← |𝑃𝑖|𝑖∈𝑔𝑟𝑜𝑢𝑝𝐺𝑀𝐼𝐷 

Output：The final model 𝑤𝑡
𝑔𝑚 

1 GM executes: 

2 initialize 𝑤0 

3 for 𝑡 = 0,1, … , 𝑇 − 1 do 
4    for 𝑖 = 1,2, … , 𝑁 in parallel do 

5        send the group model 𝑤𝑡
𝑔𝑚

 to 𝑃𝑖 

6        𝑤𝑒
𝑖 ← PartyLocalTraining(𝑒, 𝑤𝑖) 

7    𝑤𝑡
𝑔𝑚

←
1

𝑁
∑

|𝐷𝑖|

|𝐷𝐺𝑀|

𝑁
𝑖=1 𝑤𝑡

𝐺𝑀 

8 return 𝑤𝑡
𝑔𝑚

 and calculate 𝑡𝑎𝑔𝑡
𝐺𝑀as 

{𝑡𝑎𝑔1|| … ||𝑡𝑎𝑔𝑁||𝑏𝑦𝑡𝑒𝑚𝑡𝑥
𝑖 ||𝑝𝑜𝑠} 

9 PartyLocalTraining(𝑒, 𝑤𝑖): 

10  𝑤𝑒
𝑖 ← 𝑤𝑖 

11 for epoch 𝑒 = 1,2, … , 𝐸𝑙𝑜𝑐 
12    for each batch 𝒃 = {𝑥, 𝑦} of 𝐷𝑖 do 

13    𝐿𝑙𝑜𝑐 ← 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐿𝑜𝑠𝑠 (𝐹𝑤𝑒
𝑖 (𝑥), 𝑦) 

14    𝑤𝑒
𝑖 ← 𝑤𝑒

𝑖 − 𝜂∇ℓ𝑙𝑜𝑐 

15 return 𝑤𝑒
𝑖 to GM 

3.4 Editable Keychain 

Considering the issues of key management and data 

validation of the global model, we apply cryptography 

technology to achieve efficient model encryption. In addition, a 

key chain is introduced to store and manage GM’s AES keys. 

However, in IIoT scenarios, there are situations such as a 

change of GM or manufacturers leaving FL training, Therefore, 

the information on the keychain needs to be modified to achieve 

changes in GM access control rights. In order to solve the above 

problems, this section combines the chameleon hash function 

[36] to design a Keychain with the editable attributes. 

 

Index:MBn-1 PreHash Nonce Time

Merkle  Tree 

hash1234

hash12 hash34

htx1 htx2 htx3 htx4

Ktx1
cj Ktx2

cj Ktx3
cj Ktx4

cj

GMIDKBn-2 GMIDKBn

Key blockchain 

AES AES

Chameleon 
Hash

 
Fig. 5.   Keychain block structure 

Each Block𝑖 in the Keychain can be divided into two parts, 

the block body and the block header, however the PreHash of 

the Keychain is designed using the chameleon hash. The 

specific structure of the Keychain Block𝑖 is shown in Fig.5. The 

block header contains the block identity index value Index, a 

timestamp Time, the hash value PreHash of the previous block, 

a random Nonce and the Merkle Tree. the block body contains 

the entire Merkle Tree, and the key transaction 𝐾𝑡𝑥𝑐𝑗  in the 

block body contains the chameleon hash, the encrypted AES 

key 𝐶𝑘𝑒𝑦 , and the AES key belongs to the identity sequence 

number GMID of the GM. 

The Keychain contains four main phases: (1) GM identity 

registration, (2) GM key uploading, (3) GM key modification, 

and (4) user key request. The four steps are described in detail 

below. 

 

(1) GM identity registration: GM generates a pair of keys 

through the RSA key generation function 𝐾𝑒𝑦𝐺𝑒𝑛𝑅𝑆𝐴(𝑝𝑝) →

(𝑝𝑘, 𝑠𝑘), and secretly saves its own private key 𝑠𝑘. The GM 

generates its own AES key through AES key generation 

function  𝐾𝑒𝑦𝐺𝑒𝑛𝐴𝐸𝑆(𝑝𝑝) → 𝑘𝑒𝑦 , and secretly saves the 𝑘𝑒𝑦 . 

GM sends a key registration application to the server, the 

private key is used to sign its own GMID, 𝑆𝐼𝐺(𝐺𝑀𝐼𝐷, 𝑠𝑘) → 𝜎, 

and the signature result σ is sent to the server. The server 

verifies the correctness of the signature 𝑉𝐸𝑅(𝜎, 𝑝𝑘) → 𝐺𝑀𝐼𝐷 , 

and if the verification is successful, the server uses the server 

private key 𝑠𝑘𝑠𝑒𝑣𝑒𝑟 to sign the identity serial number SID and 

the GM's identity serial number GMID, 

𝑆𝐼𝐺(𝐺𝑀𝐼𝐷, 𝑆𝐼𝐷, 𝑠𝑘𝑠𝑒𝑣𝑒𝑟) → 𝜎′ and returns the result to the GM. 

After GM verifies the correctness of the signature, 

𝑉𝐸𝑅(𝜎′, 𝑝𝑘𝑠𝑒𝑣𝑒𝑟) → (𝐺𝑀𝐼𝐷, 𝑆𝐼𝐷) , the server and GM send 

signatures to each other to achieve two-way verification and 

establish a secure and trusted channel with the server. 

(2) GM key upload Keychain: GM generates the chameleon 

hash public key 𝑦𝑝 and trapdoor key 𝑥𝑠, and broadcasts the key 

𝑦𝑝. GM uses public key 𝑝𝑘𝑠𝑒𝑟𝑣𝑒𝑟 to encrypt its own AES key 
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𝐸𝑁𝐶𝑅𝑆𝐴(𝑘𝑒𝑦, 𝑝𝑘𝑠𝑒𝑟𝑣𝑒𝑟) → 𝐶𝑘𝑒𝑦 , and generates chameleon hash 

random number 𝐶𝐻_𝑢𝑝𝑑𝑎𝑡𝑒((𝐶𝑘𝑒𝑦||𝐺𝑀𝐼𝐷), 𝑥𝑠, ℎ) → (𝑟, 𝑠) to the 

server. The server verifies whether the GM identity is valid, and 

cancels the key upload request if it does not pass the identity 

verification. Otherwise, it sends 𝑚 = {𝐶𝑘𝑒𝑦, 𝐺𝑀𝐼𝐷} and (𝑟, 𝑠) to 

the miner, which generates the chameleon hash 

𝐶𝐻(𝑚, 𝑦𝑝, 𝑟, 𝑠) → ℎ  and uploads the key transaction 𝐾𝑡𝑥 =

{ℎ, 𝐶𝑘𝑒𝑦, 𝐺𝑀𝐼𝐷} as the content in the block. 

 

Modify GM Key

GM 1

Verify identity

Minner

GMIDKBn AES
GMIDKBn+1 AES

Modify the transaction of the target block 
Chameleon hash collision

 
Fig. 6.   Keychain Chameleon Hash Modification 

(3) GM key modification: As shown in Fig.6, when GM 

needs to change access control authority, it can change its own 

key ciphertext 𝐶𝑘𝑒𝑦 in the Keychain. GM first generates a new 

AES key through the AES key generation function 

𝐾𝑒𝑦𝐺𝑒𝑛𝐴𝐸𝑆(𝑝𝑝) → 𝑘𝑒𝑦′  and encrypts the new AES key 

𝐸𝑁𝐶𝑅𝑆𝐴(𝑘𝑒𝑦′, 𝑝𝑘𝑠𝑒𝑟𝑣𝑒𝑟) → 𝐶𝑘𝑒𝑦′. GM calculates the new random 

𝐶𝐻_𝑢𝑝𝑑𝑎𝑡𝑒((𝐶𝑘𝑒𝑦′||𝐺𝑀𝐼𝐷), 𝑥𝑠, ℎ) → (𝑟′, 𝑠′) using the trapdoor 

key 𝑥𝑠 with the chameleon hash function, and sends a random 

(𝑟′, 𝑠′) to the server. The server verifies whether the GM identity 

is valid and cancels the key modification request if it does not 

pass the identity verification. Otherwise, 𝑚′ = {𝐶𝑘𝑒𝑦′ , 𝐺𝑀𝐼𝐷} 

and (𝑟′, 𝑠′) will be handed over to  the miner, who verifies the 

chameleon hash, 𝐶𝐻(𝑚′, 𝑦𝑝, 𝑟′, 𝑠′) → ℎ  and replaces the key 

transaction 𝐾𝑡𝑥′ = {ℎ, 𝐶𝑘𝑒𝑦′ , 𝐺𝑀𝐼𝐷} in the block to complete the 

modification of the AES key on the  Keychain. 

(4) User request key: When other nodes obtain an encrypted 

global model from the IPFS system, they need the AES key of 

the GM participating in the training to decrypt the model. Other 

GMs locate the key transaction 𝐾𝑡𝑥 issued by the target GM on 

the Keychain through GMID, obtain the 𝐶𝑘𝑒𝑦  and establish a 

trusted channel with the server. The server decrypts 𝐶𝑘𝑒𝑦  to 

obtain 𝐷𝐸𝐶𝑅𝑆𝐴(𝐶𝑘𝑒𝑦, 𝑠𝑘𝑠𝑒𝑟𝑣𝑒𝑟) → 𝑘𝑒𝑦  and sends it to the GM 

requesting the key, which extracts the corresponding hash index 

through the Modelchain and obtains 𝐶𝑤𝑔𝑙𝑏 in IPFS, and uses the 

AES key to decrypt the ciphertext of the global model 

𝐷𝐸𝐶𝐴𝐸𝑆(𝐶𝑤𝑔𝑙𝑏 , 𝑘𝑒𝑦) → 𝑤𝑔𝑙𝑏 to obtain the target global model. 

Significantly, the chameleon hash function in steps (2)(3) can 

only edit the blockchain if the GM holds the trapdoor key. This 

edit will also be recorded and is undeniable. Therefore, BMFL 

ensures that the block header hash on the Keychain remains 

unchanged while modifying and editing the AES key. 

IV. PERFORMANCE EVALUATION  

In this section, we will demonstrate the performance of the 

proposed BMFL scheme through comparative experiments. In 

addition, the key upload blockchain time overhead based on 

different hash algorithms is tested to evaluate the effectiveness 

of the editable blockchain. First, we obtain the testing accuracy 

of BMFL through extensive experiments on representative 

datasets. The experiment was deployed in Windows 10 OS with 

AMD Ryzen5 5600X 6-Core Processor@3.70GHz CPU, 16GB 

of RAM on board and NVIDIA GeForce RTX3070 8G GPU. in 

Python 3.8.12, PyTorch 1.10.0, and CUDA 10.0. 

4.1. BMFL Performance Analysis 

4.1.1. Performance of BFML on general datasets 

(1) This paper selects four real data sets widely used for data 

classification, MNIST, EMNIST, CIFAR-10, and CIFAR-100, 

to evaluate BMFL, and compares it with two classic algorithms, 

FedAvg and FedProx, to demonstrate the convergence process 

of local and global training and test accuracy. In order to better 

characterize the impact of this scheme on convergence that 

effectively solves the problem of heterogeneity, the Non-IID 

settings that we adopt is Dirichlet: Label distribution on each 

device follows the Dirichlet distribution. First, common 

hyperparameters are set under different data sets. The network 

structure uses ResNet18, the global training rounds are 30 

rounds, the local training rounds are 5 rounds, the number of 

participants is 5, the batch size is set to 16, and the learning rate 
𝜂  is set to 0.001 and uses stochastic gradient descent with 

momentum. 

As shown in Fig.7, the iterations end after 150 rounds of local 

training among 5 participants and 30 rounds of global training. 

With the simple handwritten digit picture MNIST dataset, three 

aggregation algorithms all locally reached convergence after 50 

rounds of iterations, and the final global accuracy of BMFL 

reached 99.46%; On the derived EMNIST dataset, the global 

accuracy of BMFL reaches 95.69%, and it basically reaches 

convergence after 50 rounds of local training iterations. The 

other two algorithms also have good accuracy, but the 

convergence process is very unstable. On the CIFAR-10 

dataset, a small data set for recognizing universal objects, the 

BMFL global model accuracy finally reached 81.42%. Due to 

the previous division of the dataset into non-IID, the training 

accuracy of FedAvg was only able to reach 70.04%, and the 

convergence process was unstable. The accuracy of FedProx 

( 𝜇 = 1 ) was on par with our scheme. On the CIFAR-100 

dataset, which has a variety of label types, the accuracy of 

BMFL and the other two aggregation algorithms decreased. The 

final accuracy of the BMFL global model reached 60.05%. 

Compared to FedAvg, the accuracy increased by about 20%, 

and compared to FedProx, the improvement was about 5%. 

Furthermore, the convergence process of our scheme was 

relatively stable with almost no oscillation. Therefore, when 

facing heterogeneous data in public datasets, BMFL has better 

test accuracy and stable convergence, which proves the 

effectiveness of our scheme. 
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Fig. 7. Comparison of accuracy between BMFL and different FL algorithms

(2) We compare the test accuracy of BMFL with three 

synchronous and asynchronous FL schemes under the above 

four datasets. Among them, FedHiSyn [37] uses a hierarchical 

synchronous model update, FedAT [38] uses a semi-

asynchronous FL model update. SCAFFOLD [39] solves the 

client-drift when local clients update synchronously by adding 

correction terms. Here we only focus on the situation where all 

devices participate and there is no disconnection, and the Non-

IID is set to Dirichlet (0.8). As shown in Table 3, BMFL is not 

as effective as the other three schemes on the EMNIST dataset, 

but the accuracy in the remaining three datasets is on average 

0.14%, 1.49% and 1.38% higher. It shows that it has better 

performance under most data sets. BMFL can help train high-

accuracy models by grouping local clients, combining 

synchronous and asynchronous training methods, and matching 

feature-based models on the model blockchain. In comparison 

to these three solutions for heterogeneity issues, this paper also 

considers the privacy protection of local data. 

 

Table 3. 

Comparison of training accuracy with related work 

Schemes Dirichlet (0.8) 

MNIST EMNIST CIFAR-

10 

CIFAR-

100 

BMFL(ours) 98.15% 88.02% 80.41% 40.52% 

FedHiSyn[37] 97.98% 90.50% 80.14% 42.85% 

FedAT[38] 97.83% 89.32% 77.80% 38.05% 

SCAFFOLD[39] 98.22% 90.95% 78.99% 36.25% 

4.1.2. Performance of BFML on general datasets 

(1) To demonstrate the usefulness of BMFL, the steel surface 

defect dataset "SeverStal" were used to compare the accuracy 

of BMFL and FedAvg. Each image in the fault dataset can 

contain no defects, contain defects of a single class or multiple 

classes. We segmented the defect classes (Class Id = [1, 2, 3, 

4]) and the segments for each defect class were coded as one 

row. As shown in Fig.8, the BMFL local model reaches 

convergence after 15 rounds of iterations and the accuracy is 

stable at about 70%, while the accuracy of FedAvg after 

convergence is about 40% and fluctuates significantly. The 

global test accuracy of BMFL is 72.09%, which is about 26% 

higher than FedAvg, which proves that BMFL has better results 

in the IIoT. 
 

 
Fig. 8. Accuracy performance of BMFL on SeverStal 

(2) Considering the limitations of computing power and 

communication resources in the IIoT, we compare the residual 

network ResNet18 used in this solution with the multi-layer 

perceptron (MLP) [40]. The hyperparameter settings are the 
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same as in Section 5.1.1 above. Analyze the experimental 

performance of these two different training networks on the 

BMFL architecture under the fault data set. The results are shown 

in Fig.9. 

 
Fig. 9. Comparison of accuracy of BMFL under different network 

In order to comprehensively demonstrate the performance 

under different training networks, under the same premise of 

hyperparameter settings and data set preprocessing in Section 

5.1.1, the training accuracy of BMFL under the two network 

structures is shown in Table 4, In the MNIST dataset, which 

only has one image channel of grayscale images, the process of 

feature extraction is relatively easy. The global training effects 

of the two network structures both reach 95%. However, the 

derived EMNIST dataset causes a decrease in the training 

accuracy of the two models. In the CIFAR dataset, which has 

more categories and 3-channel RGB images, the accuracy 

performance of the two networks is average. However, the 

ResNet18 network used in our scheme outperforms MLP in 

terms of training results. 

 

Table 4. 

Comparison of training accuracy with different network 

Network 
Datasets 

MNIST EMNIST CIFAR-

10 

CIFAR-

100 

Severstal 

ResNet18 99.41% 94.79% 81.51% 56.37% 73.33% 

MLP 96.92% 76.25% 50.40% 30.32% 24.79% 

 

4.2. Editable Keychain analysis 

In order to verify the feasibility of the editable Keychain, this 

section compares the key uploading time overhead of the 

commonly used hash algorithm in the blockchain and the 

chameleon hash algorithm. In the blockchain simulation, a 

Keychain is first built, a total of 10 nodes are set to be uploaded 

at the same time, and tested the time overhead of hash 

calculation for AES key with lengths of 128 bit ~ 1024 bit 

(ignoring communication overhead). As shown in Fig.10, as the 

growth of the key length hash computation overhead increases, 

the traditional hash operation in the key length of 1024 bit, the 

time overhead is within 0.14 ms, of which SHA256 time 

overhead is minimum.  The chameleon hash algorithm reaches 

10.6519 ms, the key length of 256 bit chameleon hash 

calculation time is only 1.86 ms. this shows that in the key 

length of the smaller hash operation, the time overhead of the 

chameleon hash is within the acceptable range. Therefore, in 

this scheme, the chameleon hash is used in the Keychain when 

there is a need for modification, and the SHA256 hash 

algorithm is used in the Modelchain, which has a reasonable 

time overhead under the premise of realizing the key 

management and access control functions. 

 
Fig. 10.   Time cost for different hash of the Keychain 

V. CONCLUSION 

This paper designs a multi-layer group federation scheme 

based on dual-blockchain to solve the problems of data 

heterogeneity and privacy protection in the IIoT. Through the 

multi-layer grouping structure to divide the feature data 

according to the geographical region, the same feature model 

within the group is trained synchronously, the inter-group and 

global aggregation is trained asynchronously. In order to solve 

the problem of asynchronous update of the global model, a 

model chain is introduced to store global model labels to 

optimize the convergence efficiency of the group model, and 

the model is stored in IPFS in ciphertext. In addition, an editable 

Keychain is introduced, using the chameleon hash to achieve 

key update and management on the chain. Experimental results 

show that the proposed BMFL scheme can improve the 

accuracy of model training in heterogeneous data environments, 

while conducting simulations under real industrial fault datasets, 

significantly improving the convergence behavior under 

heterogeneous data compared with traditional federated 

learning framework. In the future, it is necessary to solve the 

problem of time overhead of model uploading to improve the 

efficiency of the overall solution. 
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