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A B S T R A C T

Honeybees are the most specialized insect pollinators and are critical not only for honey production but, also,
for keeping the environmental balance by pollinating the flowers of a wide variety of crops.

Recording and analyzing bee sounds became a fundamental part of recent initiatives in the development
of so-called smart hives. The majority of researches on beehive sound analytics are focusing on swarming
detection, a relatively simple binary classification task (due to the obvious difference in the sound of a
swarming and a non-swarming bee colony) where machine learning models achieve good performance even
when trained on small data.

However, in the case of more complex tasks of beehive sound analytics, even modern machine learning
approaches perform poorly. First, training such models would need a large dataset but, according to our
knowledge, there is no publicly available large-scale beehive audio data. Second, due to the specifics of beehive
sounds, efficient noise filtering methods would be required, however, we could not find a noise filtering method
that would increase the performance of machine learning models substantially.

In this paper, we propose a dynamic noise filtering method applicable on spectrograms (image repre-
sentations of audio data) which is superior to the most popular image noise filtering baselines. Further, we
introduce a multi-class classification task of bee sounds and a large-scale dataset consisting of 10.000 beehive
audio recordings. Finally, we provide the results of a large-scale experiment involving various combinations of
audio feature extraction and noise filtering methods together with various deep learning models. We believe
that the contributions of this paper will facilitate further research in the area of (beehive) sound analytics.
1. Introduction

Despite the importance of honeybees in the ecosystem and agricul-
ture (Goulson et al., 2015; Patrício-Roberto & Campos, 2014) as well
as extensive research on apiculture and honeybee health, honeybee
colonies have suffered significant declines in recent years due to various
diseases and irresponsible agricultural practices (Neumann & Carreck,
2010).

In the majority of apiaries, identification of the health condition of
a bee colony is done manually by opening and inspecting the hive.
Opening the hive, however, introduces certain stress to the colony
while changing the micro-climate within the hive. Afterward, bees
have to expend considerable energy to re-establish the equilibrium
within the beehive. Consequently, frequent manual inspection of a hive
reduces the amount of honey the given bee colony produces.

Several IoT-based research were addressed to non-invasive investi-
gation of within hive processes and colony health monitoring without
its physical intervention. Early works have utilized various technolo-
gies to measure some quantitative parameters of the hive, such as
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temperature (Zacepins et al., 2013), mass (Zacepins et al., 2015) and
humidity (Ferrari et al., 2008).

A very important qualitative parameter one can measure within the
hive, which is in the focus of this paper, is the sound of the colony.
Analyzing the colony’s sound might reveal certain anomalous events
within the hive, like the presence of an intruder or the preparation
of the colony for swarming, which might be hard or even impossible
to detect from the above-mentioned quantitative parameters. The first
technological approaches used for monitoring bees’ condition via audio
analysis were conducted in the late 20th century using spectral analysis
in the range of 0–3 kHz (Dietlein, 1985).

Recent works on beehive audio analysis are focusing mostly on bee
queen presence detection (Soares et al., 2022) and swarming predic-
tion (Bencsik et al., 2011; Cejrowski et al., 2018; Ferrari et al., 2008;
Howard et al., 2013; Zgank, 2020), two correlating factors related to
the strength of the colony. Translated into the terminology of machine
learning (ML), these two problems correspond to a rather basic binary
classification task, i.e. predicting if the queen is present or not and if
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Fig. 1. A general audio data analytics workflow used in our experiments.
the colony is swarming or not. Moreover, the sound of a bee colony
in a ‘‘queenless’’ or swarming state is well distinguishable, even for
human ears, from its sound when a queen is present or the colony is
not swarming (Allen, 1956; Hord & Shook, 2013). In the light of the
above facts, it is not surprising that many ML techniques achieve good
prediction accuracy on these tasks (Soares et al., 2022; Zgank, 2021).

There are other problems important in beekeeping, such that, for ex-
ample, assessing the health status of the colony (Robles-Guerrero et al.,
2017), detecting the exposure of bees to chemicals (Sharif et al., 2020),
identifying the presence of predators (Zahid Sharif et al., 2020) and
pests in the hive (Chao & Shouying, 2022) or monitoring the bees’ daily
activity (Dietlein, 1985; Mezquida & Martínez Llorente, 2009). These
problems are approached in the literature by either (manually) analyz-
ing audio features in bee sounds (Shostak & Prodeus, 2019) and/or as a
binary classification task (i.e. predicting if the colony is healthy, if bees
have been exposed to chemicals or if predators/pests are present in the
beehive). Moreover, in each of these use-cases, similarly to swarming or
queenless states described before, the stress level of the colony exposed
to an ‘‘anomaly’’ likely implies a substantially different sound from its
sound when being in a normal state. An important issue, contravening
the approaches found in the literature, is that these problems might
not necessarily correspond to binary classification tasks. For example,
identification of various (more than two) types of diseases, intrusion
detection by different pests, or estimation of exposure of bees to diverse
palettes of chemicals, naturally, calls for multi-label or even multi-
class approaches. An assumption here, posing possible difficulties for
application of ML techniques, is that bee sounds corresponding to
various classes (labels) might not be so easily distinguishable from each
other as they usually are in the before mentioned binary cases where
‘‘anomalous’’ and ‘‘normal’’ states are well-detectable even for humans.

Problem 1. There is a huge gap in the literature considering multi-
label or multi-class classification of bee audio data. According to our
knowledge, also listing through recent literature surveys by Zacepins
et al. (2015), Hadjur et al. (2022) and Abdollahi et al. (2022), the
only work related to multi-label bee sound classification, published
by Gradišek et al. (2017), is focused on identifying 12 bumblebee
species from their buzzing sounds (from a small-scale dataset using
traditional ML techniques, such that naïve Bayes decision trees, support
vector machines, and random forests).

Usually, the classification accuracy of the audio data analytics work-
flow, shown in Fig. 1, does not only depend on the discriminative power
of the used ML techniques but, also, on the used pre-processing steps
which play a crucial role. The first step is to filter out irrelevant infor-
mation from the audio file, such that non-essential frequency ranges.1
One of the basic problems of audio signals is that, even after filtering
out irrelevant information, the audio information represented as time-
series have very high dimensionality. Feature extraction (FE) methods

1 Meaningful information in bee sounds are carried in the 0–4 kHz
frequency range (Collison, 2018; Hord & Shook, 2013; Qandour et al., 2014).
2

are utilized to extract and represent the most important features within
the audio signal in a compact form, such that in form of time-series
or spectrograms, by preserving a significant portion of its original
information content. After FE, ML techniques can be applied on the
data depending on the amount of the data, its dimensionality and the
concrete task which is intended to be solved. Usually, the data resulting
from FE still contains lots of noise, causing problems in the optimization
of a reliable ML model. For such, time-series or image noise filtering
(NF) methods can be applied on the data, depending if FE resulted in
time-series or spectrograms (images). Given the number of possible
FE and NF methods, the decision of how to set up a bee sound data
analytics workflow (Fig. 1) would benefit from a comparative survey
study on the influence of its various settings on its performance.

Problem 2. According to our knowledge, there is no reference in the
literature to a survey article comparing various combinations of audio
FE, (image or time-series) NF and ML (image or time-series classifi-
cation) techniques for bee sound analytics, including thorough hyper-
parameter (HP) tuning and validation procedures as well as utilizing
large datasets. Related comparisons are either focused on certain FE
or ML techniques, are using relatively small amount of data, lack a
thorough HP tuning or do not utilize proper validation procedures for
the resulting ML models.

Such a survey would need large-scale publicly available bee sound
data, crucial for training a more complex ML model (Bae et al., 2016;
Zgank, 2021), such that a convolutional neural network (CNN), in
case of spectrogram data (Nolasco et al., 2019), or a long–short term
memory (LSTM) model, in case of time-series data (Ruvinga et al.,
2021), on their inputs. Preferably, bee sound data corresponding to
multi-label or multi-class problems would be welcome.

Problem 3. According to our knowledge, there is no large-scale publicly
available bee sound benchmark data suitable for research on multi-
label or multi-class bee sound classification approaches. Available data
are either small-scale or recordings were not gathered under similar
circumstances, mainly concerning same time frames, locations and
recording devices.

Several ML approaches, e.g. various deep learning (DL) models,
have been developed recently which work efficiently on specific prob-
lems related to audio processing like, for example, human speech
recognition. However, our experiments showed that these methods
are not performing well in case of a multi-label bee sound classi-
fication problem in which the difference between various classes is
inconspicuous.

Problem 4. The main reason for the poor performance of state-of-the-
art ML models for multi-label bee sound classification (with marginal
differences between classes), identified by us, lies in the poor perfor-
mance of the used NF methods which seem to be not suitable for bee
sound data.

Reflecting to the identified problems, the contributions of this paper
are the following:
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• Collection of large-scale beehive audio data consisting of 10.000
recordings, recorded from 10 beehives (From 700 to 1050 record-
ings were used from each hive) in the same apiary and in the same
season by the same recording tools;

• Introduction of a multi-label beehive audio classification task, in
which the 10 class labels correspond to the 10 different beehives.
The goal in this use-case is to predict to which of the 10 hives the
given sound record belongs to2;

• Development of a simple but efficient NF method for beehive audio
data, which substantially increases the performance of ML models
while reducing their training time;

• Extensive experimental study, comparing the performances of var-
ious combinations of state-of-the-art audio FE and related NF
methods as well as ML models;

The rest of the paper is organized as follows: In the next section, var-
ious FE, NF and ML methods utilized in a general audio data analytics
workflow, as well as in our experiments, are described. Following, re-
lated works including publicly available data in beehive sound analytics
are presented in Section 3. In the following two short Sections 4 and 5,
respectively, the proposed dynamic audio noise filtering method and
the collected large-scale bee sound data are introduced. Experiments
and results are described in Sections 6 and 7, respectively, followed by
a discussion (Section 8) and concluding remarks (Section 9).

2. Beehive sound analytics

The beehive sound analytics workflow used in this paper, illustrated
in Fig. 1, consists of three main steps, such that FE, NF and ML (namely,
multi-label classification), discussed in the subsections below.

In our experiments, despite the suggested frequency range of 0–
4 kHz by Hord and Shook (2013) and Qandour et al. (2014), for
the sake of investigation, the frequency range of 0–8 KHz has been
considered. Thus, before the FE step, frequencies beyond this range are
filtered out.3

2.1. Audio feature extraction (FE)

Formally, the input of FE is an audio file in the form of a real-valued
time-series data 𝑥(𝑡) = {𝑥𝑡 | 0 ≤ 𝑡 < 𝑁} = {𝑥0, 𝑥1,… , 𝑥𝑁−1} of length
𝑁 , where each 𝑥𝑡 represents the amplitude of the signal in time 𝑡, as
illustrated in Fig. 2.

The goal of FE is to transform or represent 𝑥(𝑡) via features carrying
important information, such that the values of the magnitude spectrum
at a certain time or time interval (preferably, the whole time interval
of the recording). The main FE methods are briefly introduced below.

2.1.1. Short-Time Fourier Transform (STFT)
Discrete-Time Fourier Transformation (DTFT) (Winograd, 1978)

transforms 𝑥𝑛 into another complex series 𝑦(𝑘) = {𝑦𝑘 | 1 ≤ 𝑘 ≤ 𝐾} =
{𝑦1, 𝑦2,… , 𝑦𝐾}

𝑦𝑘 =
𝑁−1
∑

𝑛=0
𝑥𝑛 ⋅ 𝑒

−𝑖 2𝜋𝑁 𝑘𝑛 =
𝑁−1
∑

𝑛=0
𝑥𝑛[cos(

2𝜋
𝑁

𝑘𝑛) − 𝑖 ⋅ sin( 2𝜋
𝑁

𝑘𝑛)] (1)

which represents the audio data 𝑥(𝑛) in the frequency domain instead
of the time domain, thus, revealing important information. In case of
STFT, 𝑥(𝑛) is broken up to windows 𝑤(𝑛 − 𝑚), with a window size 𝑚,
which might overlap. DTFT is applied on each window, recording the

2 While such a use-case might seem ‘‘synthetic’’, the goal is to provide a
ertain challenge, i.e. a complex ML task, to the community.

3 This filtering does not indicate noise filtering for which a novel approach
s proposed later in this paper, but, it refers to irrelevant frequency range
iltering.
3

v

magnitude (and phase) of 𝑥(𝑛) for each frequency and time. STFT can
be expressed as DTFT on 𝑥(𝑛)𝑤(𝑛 − 𝑚), such that

𝑘 =
𝑁−1
∑

𝑛=0
𝑥𝑛𝑤(𝑛 − 𝑚) ⋅ 𝑒−𝑖

2𝜋
𝑁 𝑘𝑛 (2)

The information of the magnitude of the signal can be represented in
a 2D ‘‘time–frequency’’ matrix called spectrogram, visualized using a
heat map in Fig. 3.

2.1.2. Chroma
Chroma features (Kattel et al., 2019) represent the tonal content

of an audio signal 𝑥(𝑛). Extraction includes the following steps: (1)
roviding STFT for frequency analysis; (2) Filtering frequency: keeping
he range between 0 and 8 KHz; (3) Peak detection: only the local
aximum values of the spectrum are considered; (4) Reference fre-

uency computation: estimate the deviation with respect to 440 Hz,
hich is the frequency of the A4 chord, often used as a standard for

uning musical instruments; (5) Pitch class mapping: with respect to
he estimated reference frequency (for determining the pitch class value
rom frequency values) using a weighting scheme with a cosine func-
ion4; (6) Normalizing the feature: frame by frame, dividing through the
aximum value to eliminate dependency on global loudness. Result of
hroma FE for the audio data from Fig. 2 is shown in Fig. 4.

.1.3. Mel-frequency Cepstral coefficients (MFCC)
Extracting MFCC (Kattel et al., 2019) starts with computing DTFT

f the signal 𝑥(𝑛), resulting in 𝑦(𝑘), as introduced in Eq. (1). Then,
he Mel spectrum of the magnitude spectrum is computed as 𝑠(𝑚) =
𝑁−1
𝑘=0 [|𝑦(𝑘)|2ℎ𝑚(𝑘)], where 0 ≤ 𝑚 ≤ 𝑀 − 1, 𝑀 is the total number

f triangular Mel weighting filters (Fang et al., 2001; Ganchev et al.,
005) and ℎ𝑚(𝑘) is the weight given to the 𝑘th energy spectrum bin
ontributing to the 𝑚th output band, expressed as ℎ𝑚(𝑘) =

2(𝑘−𝑓 (𝑚−1))
𝑓 (𝑚)−𝑓 (𝑚−1)

for 𝑓 (𝑚−1) ≤ 𝑘 < 𝑓 (𝑚), ℎ𝑚(𝑘) =
2(𝑓 (𝑚+1)−𝑘)
𝑓 (𝑚+1)−𝑓 (𝑚) for 𝑓 (𝑚) ≤ 𝑘 < 𝑓 (𝑚+1) and

𝑚(𝑘) = 0 otherwise. Finally, Discrete Cosine Transformation is applied
uch as 𝑐(𝑛) =

∑𝑀−1
𝑚=0 𝑙𝑜𝑔(𝑠(𝑚))𝑐𝑜𝑠( 𝜋𝑛(𝑚−0.5)𝑀 ), where 0 ≤ 𝑛 ≤ 𝐶 − 1, 𝑐(𝑛)

re the Cepstral coefficients and 𝐶 is the number of MFCCs. Result of
FCC FE for the audio data from Fig. 2 is shown in Fig. 5.

.1.4. MFCC differential coefficients (MFCC delta)
The first order derivative of MFCC (differential) coefficients (Hossan

t al., 2010) are defined as 𝑑𝑡 =
∑𝑁

𝑛=1 𝑛(𝑐𝑡+𝑛−𝑐𝑡−𝑛)

2
∑𝑁

𝑛=1 𝑛
2 where 𝑑𝑡 is the delta

coefficient of the frame 𝑡 in terms of MFCCs from 𝑐𝑡+𝑛 to 𝑐𝑡−𝑛. Result of
FCC Delta FE for the audio data from Fig. 2 is shown in Fig. 6.

.1.5. Spectral centroid (SC)
SC (Giannakopoulos & Pikrakis, 2014), a measure used to charac-

erize the spectrum, is defined as 𝑆𝐶(𝑛) =
∑𝑁−1

𝑚=0 𝑚⋅|𝑋[𝑛,𝑚]|2
∑𝑁−1

𝑚=0 |𝑋[𝑛,𝑚]|2
. SC indicates

he ‘‘gravity centrum’’, in other words, the center frequency of the 𝑛th
rame. Result of SC FE for the audio data from Fig. 2 is shown in Fig. 7.

.1.6. Zero-crossing rate (ZCR)
ZCR (Giannakopoulos & Pikrakis, 2014), indicating the number of

ign changes in the 𝑛th frame, is defined as 𝑍𝐶𝑅(𝑛) =
1
2𝑁

∑𝑁
𝑚=1 |𝑠𝑔𝑛(𝑥[𝑛 + 𝑚]) − 𝑠𝑔𝑛(𝑥[𝑛 + 𝑚 − 1])|. ZCR can be interpreted as

measurement of noisiness. The higher the ZCR in a frame, the noisier
he signal. Result of ZCR FE for the audio data from Fig. 2 is shown in
ig. 8.

The SC and ZCR FE result in a time-series type output, and not in a
pectrogram as in case of the other FE methods introduced above.

4 It considers the presence of harmonic frequencies (harmonic summation
rocedure), taking into account a total of 8 harmonics per frequency. To map
he value on one-third of a semitone, the size of the pitch class distribution
ectors must be equal to 36.
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Fig. 2. The recorded audio (.wav) data.
Fig. 3. The spectrogram related to audio data from Fig. 2. The magnitude spectrum at the time 1.51 is on the left while the whole magnitude spectrum is on the right.
Fig. 4. Chroma feature representation of the audio data from Fig. 2.

2.2. Multi-label audio data classification using machine learning (ML)

Depending on which method is being used, FE might result in two
different types of output, time-series data or a 2D feature matrix, a
spectrogram, which can be seen as an image. According to these two
types of outputs, the most suitable ML techniques can be used (as
illustrated in Fig. 1).

2.2.1. Time-series classification
One of the best performing ML model for (multi-label) classification

of long time-series, in which some trends might occur, is the LSTM,
an artificial recurrent neural network (RNN) architecture built up by
so-called LSTM units (Yuan et al., 2019). The architecture of our LSTM
network contains an LSTM layer as input layer with 𝑛𝑢 number of LSTM
units. Then come 𝑛 number of deep layers, with 𝑛 number of LSTM
4

𝑑𝑙 𝑢
Fig. 5. MFCC feature representation of the audio data from Fig. 2.

units. The next layer is the last LSTM layer with 𝑛𝑢 number of LSTM
units. To avoid the burnout of the training process, a dropout layer
with 25% dropout rate is the following layer. The output layer of the
network is a dense layer with 10 neurons (corresponding to the 10
labels/classes), using an 𝑎𝑐𝑡𝑜 activation function. The training process
is using an 𝑜𝑝 optimizer. These HPs are related to the architecture of
the network and are being fine-tuned during the learning process (the
fine-tuned values are reported in Section 6). The general architecture
of the used LSTM network is shown in Fig. 9.

2.2.2. Image classification
Following the latest years’ research trends, it is clear that CNN is one

of the best performing tools for (multi-label) image classification (Wang
et al., 2021). CNN contains a ‘‘convolutional–max pooling’’ layer pair
as input layers. The convolutional layer contains 𝑛𝑢 number of 3 × 3
convolutional filters with 𝑎𝑐𝑡 activation function and all filters are
𝑑
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Fig. 6. MFCC delta feature representation of the audio data from Fig. 2.

Fig. 7. SC feature representation of the audio data from Fig. 2.

Fig. 8. ZCR feature representation of the audio data from Fig. 2.

followed by a 2 × 2 max pooling unit. After the first layer pair, 𝑛𝑑𝑙
number of convolutional–max pooling layer pair is present with 𝑛𝑢
number of 3 × 3 convolutional filters using 𝑎𝑐𝑡𝑑 activation function
and all filters are followed by a 2 × 2 max pooling unit. All units are
using stride value (2, 2). To avoid the burnout of the training process,
a dropout layer with 25% dropout rate is the following layer. The last
deep layer is a dense layer with 𝑛𝑢 number of units using 𝑎𝑐𝑡𝑑 activation
function. The output layer of the network is a dense layer with 10
neurons (corresponding to the 10 labels/classes), using 𝑎𝑐𝑡 activation.
5

𝑜

The training process is using an 𝑜𝑝 optimizer. These HPs are related to
the architecture of the network and are being tuned during the learning
process (the tuned values are reported in Section 6). Since Chroma FE
results in a 2D feature set with the dimensionality of 12 × 132, the
structure of the network in this case is simpler than in the case of other
FE methods. The general architecture of the created CNN is shown by
Fig. 10.

2.3. Noise Filtering (NF)

According to the presented methodology (Fig. 1), NF is applied after
the FE and before the ML steps. Since FE results in a time-series or
in an image (histogram), relevant NF methods are utilized. According
to the experiments, FE resulting in time-series, i.e. SC and ZCR, have
shown inferior performance compared to FE resulting in spectrograms
(more details in Section 6). Thus, the focus of NF in this paper is on
spatial filters with a focus on smoothing and/or eliminating noise in
spectrograms.

A spatial filter consists of a kernel corresponding to the neighbor-
hood of the analyzed pixel (𝑥, 𝑦) and an operation, which can be linear
or non-linear.

In Fig. 11, there is a schematic example of how a two-dimensional
filter operation takes place, where 𝑓 is the original signal
(image/spectrogram), 𝑔 is the kernel to be convoluted by the points of
the original signal and ℎ is the resulting signal. Therefore, ℎ generates
a new value for each (𝑥, 𝑦) coordinate as the kernel 𝑔 operates on each
pixel 𝑓 (𝑥, 𝑦).

2.3.1. Laplacian filter
Laplacian (Forsyth & Ponce, 2011) is a linear filter based on the

discrete second derivative (Wang, 2007) 𝜕2𝑓
𝑥2

= 𝑓 (𝑥+1, 𝑦) +𝑓 (𝑥−1, 𝑦) −
2𝑓 (𝑥, 𝑦) In the two-dimensional case, the filter is obtained with the sum
of the partial derivatives in both directions

𝑔𝐿(𝑥, 𝑦) =
𝜕2𝑓
𝑥2

+
𝜕2𝑓
𝑦2

(3)

Eq. (3) can be generated by the kernels (Gonzalez & Woods, 2008)
[

0 1 0
1 −4 1
0 1 0

]

[

1 1 1
1 −8 1
1 1 1

]

taking into account, if preferable, to use so-called 4 or 8-neighboring.
As it is an operator that uses derivatives, the effect is to highlight

intensity discontinuities, that is, edges, as the face areas have much
smoother intensity transitions when they occur at all. This makes the
edge lines stand out against the background, creating a sharpening
filter.

2.3.2. Gaussian filter
The Gaussian filter (Dougherty, 2020) works like a weighted aver-

age where the weight values decrease with the distance from the pixel
being evaluated. Convolution kernel generation follows the equation

𝑔𝐺(𝑥, 𝑦) = 𝑒−
𝑥2+𝑦2

2𝜎2

where 𝜎 is the standard deviation and, as usual, (𝑥, 𝑦) integers for kernel
center coordinates, that is, the pixel being analyzed. Because it is an
average, the value is divided by the sum of weights, just as the Gaussian
is divided by the area of the circle to which it is distributed.

The standard deviation in the function controls how far the maxi-
mum value will influence neighbors, that is, how much of the distance
causes a significant decrease.
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Fig. 9. The general LSTM structure used in the proposed methodology.
Fig. 10. The general CNN structure used in the proposed methodology.
Fig. 11. Basic convolution scheme.
2.3.3. Laplacian of Gaussian filter
Adjustments can also be performed with a combination of filters.

The strategy at this point is to use a Laplacian operator to enhance fine
details and the gradient for prominent edges. The Laplacian of Gaussian
filter (Dougherty, 2020) 𝐿𝑜𝐺(𝑥, 𝑦) of a 2D image 𝑓 (𝑥, 𝑦) for (𝑥, 𝑦) pixel
is given by:

𝑔𝐿𝑜𝐺(𝑥, 𝑦) = − 1
𝜋𝜎4

[1 −
𝑥2 + 𝑦2

2𝜎2
]𝑒−

𝑥2+𝑦2

2𝜎2

The Laplacian operator is very effective for fine adjustments because
it is a second derivative, but it also enhances the noise. The gradient
has a lesser action in plain areas where noise is more unwanted, having
a greater action in areas of significant transitions. The gradient action
is less than the Laplacian for fine adjustments and noise while can
still be smoothed out with a mean filter. In this case, the average
filter to be used is the Gaussian one, which acts like a weighted mean
filter (Gonzalez & Woods, 2008).

2.3.4. Median filter
2D median filtering (Pratt & Wiley, 1978; Tukey et al., 1977) is

a non-linear order statistic filter, where the resulting pixel ℎ(𝑥, 𝑦) is
6

replaced by the median value of the pixel being analyzed and its
neighbors

ℎ(𝑥, 𝑦) = 𝑚𝑒𝑑
⎛

⎜

⎜

⎝

(𝑥 − 1, 𝑦 − 1) (𝑥, 𝑦 − 1) (𝑥 + 1, 𝑦 − 1)
(𝑥 − 1, 𝑦) (𝑥, 𝑦) (𝑥 + 1, 𝑦)

(𝑥 − 1, 𝑦 + 1) (𝑥, 𝑦 + 1) (𝑥 + 1, 𝑦 + 1)

⎞

⎟

⎟

⎠

The median of a set of values, by definition, is the value at which half
of the values are greater than or equal to it and the other portion is less
than or equal to it. For this reason, the filter is widely used for noise
removal, as noise tends to be positioned at the ends of the range, that
is, being higher or lower than most of the values in the set.

2.3.5. High pass filter
The high pass filter (or low band reject) is a filtering done in the

frequency domain Jensen (1986), that is, the intensity of the channel
is converted to the frequency domain (using the Fast Fourier Transform,
for example) in which the pass or reject filter is applied and later the
image is converted back to spatial domain. When filtering is performed
at high frequencies, the effect caused is edge sharpening.

Another way of performing edge sharpening is to operate on the
Gaussian distribution, as plains tend to be areas where the points
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have not changed much, the Gaussian filter does not cause much
distortion on them, but on the edges, as they are distinguished from
the remainder, the Gaussian filter causes distortion.

So when the original image is operated with the Gaussian filtered
image, the result is an image with sharpened edges. These operations
can be performed by convoluting the matrix
[

−1 0 −1
0 8 0
−1 0 −1

]

hich includes the Gaussian distribution and the subtraction of the
aplacian operation in the same matrix.

. Related work

.1. Publicly available bee sound datasets

The Zenodo (Nolasco & Benetos, 2018) dataset is an open and
abeled dataset containing two classes of audio recordings, those be-
onging to bees and those not belonging to bees. This dataset can be
sed to build classification models for distinguishing bee noises from
ther noises.

The Open Source Beehives (OSBH) project (Smith, 2021) shared a
reely accessible dataset labeled by the states of the hives. Recording
nd labeling were performed by several professional and amateur bee-
eepers. However, they have used different tools for recordings which
akes the development of a uniform data processing method difficult.

Mukherjee (2018) shared a publicly available dataset containing
ee, cricket and ambient noise audio data. Favre (2020) has created
n open access dataset that contains 6 recordings of honeybees on New
ear’s Eve 2019.

Several researchers have recognized that the small amount of freely
vailable datasets hinders the research and development of the area of
ee audio analytics (Al-Turjman, 2019; Badenhorst & de Wet, 2019;
erenzi et al., 2020; Zgank, 2020, 2021), a factor which needs to be
hanged.

.2. Related work on bee audio FE

Audio analysis of honeybees has been in focus since the mid of
0th century. Pre-processing, including FE, is a particularly important
tep in the entire process. Seasonal characteristics using frequency
ecomposition with a 10-filter standard audio analyzer were observed
y Dietlein (1985), identifying three relevant frequencies, such that
00, 410 and 510 Hz. A research to differentiate between European
nd African honeybees using Fourier analysis was introduced by Kerr
t al. (1988), noticing that the European honeybee signature has a
undamental power peak between 210 to 240 Hz while the African
oneybee signature has a fundamental power peak in the 260 to 290 Hz
ange. The process of swarming was studied and the audio signal was
ecomposed to frequencies in Ferrari et al. (2008), to identify that
warming is indicated by an increase in the power spectral density at
bout 110 Hz and, approaching to swarming, the sound augments in
mplitude and frequency to 300 Hz. Frequency analysis for hive mon-
toring with the help of Fourier transformation was used by Brundage
2009). Wavelet transform for colony collapse disorder analysis was
sed in Mezquida and Martínez Llorente (2009). Linear predictive
oding (LPC) has been done to classify ‘‘queenless’’ and ‘‘queenright’’
tates by Cejrowski et al. (2018). Bromenshenk et al. (2007) used fast
ourier transform and created a complex monitoring system to identify
he health state of a hive. Robles-Guerrero et al. (2019) used MFCC
o identify sound patterns in queenless bee colonies, while MFCC, Mel
pectrogram and Hilbert–Huang transform (HHT) have been utilized
o identify swarming and the presence of a queen in a hive by Nolasco
t al. (2019). HHT has been used for monitoring the beehive’s condition
sing temperature, humidity, CO2, hive weight, and external weather
7

ata in Cecchi et al. (2018), while (Terenzi et al., 2019) applied
HT on both STFT and MFCC for non-invasive monitoring of health
ondition of a beehive. S-transform and FFT (Stockwell et al., 1996) was
sed by Howard et al. (2013) to identify queenless states in beehives.
amsey et al. (2017) identified that a signal similar to a stop signal
ccurs quite frequently by using simple discriminant function analysis
n the scores of principal component analysis (PCA) (Wold et al.,
987). MFCC and LPC features have been used for swarm detection in
n IoT-based classification framework (Zgank, 2020, 2021) utilizing a
idden Markov model (HMM). Two comprehensive studies have been
resented by Kulyukin et al. (2018) and Amlathe (2018), respectively,
sing various features such that MFCC, Chroma, Mel Spectrogram,
pectral contrast, STFT and Tonnetz (first described in Euler (1739)),
o separate ambient noise, bee buzzing, and cricket chirping.

.3. Related work on bee sound classification

Several researches have already dealt with the distinction between
ifferent types of sounds, e.g. speech, music and environmental sounds
Purwins et al., 2019). Among these studies, several have dealt with the
lassification of bee sounds and other natural sounds. Comprehensive
tudies using various feature types were introduced by Kulyukin et al.
2018) and Amlathe (2018) using classification via logistic regres-
ion (LR), random forest (RF), k-nearest neighbor (kNN) and support
ector machine (SVM) classifiers and, also, CNN (the traditional ML
echniques, other than CNN, were executed with the one-vs-rest classi-
ication approach to separate ambient noise, bee buzzing, and cricket
hirping). Singular value decomposition (SVD) for a multi-label classi-
ication problem has been utilized to identify similarities in queenless
tates in a strong and in a weak hive by Robles-Guerrero et al. (2019).
olasco et al. (2019) used SVM with RBF kernel and CNN to identify
ives with or without a queen. Self-organizing map (SOM) was used
n Howard et al. (2013) to separate the sounds of hives with and
ithout a queen. SVM and CNN classifiers have been utilized by Terenzi
t al. (2019) for a non-invasive health monitoring system to separate
‘orphaned bees’’ and bees with a queen. Gaussian mixture model
GMM) and HMM were used in Zgank (2020) and Zgank (2021), respec-
ively, to separate audio samples from swarming and normal conditions
f a bee colony. Bae et al. (2016) introduced a parallel combination of
NN and LSTM for acoustic scene classification, achieving approx. 85%
ccuracy. LSTM, multi-layer perceptron (MLP) and LR have been used
n Ruvinga et al. (2021) to distinguish hives with ‘‘queen-absent’’ and
ith ‘‘queen-present’’ states.

.4. Related work on noise filtering in bee sound analytics

The articles related to bee audio analysis which include some NF
n the audio data (Dietlein, 1985; Ferrari et al., 2008) have focused
olely on filtering out relevant frequencies outside the range of 0 Hz
nd 2 kHz. Other researches (Cecchi et al., 2018; Nolasco et al., 2019;
erenzi et al., 2020) have utilized two microphones in their approach:
ne for internal sounds of the beehive and another one for external
ounds (like wind noise, passing vehicle noise, etc.) to filter out the
ounds not belonging to the beehive.

. Dynamic audio noise filtering

As our results show (Section 7), when using the introduced FE
ethods, the selected state-of-the-art ML algorithms performed poorly

n the collected data (see Section 5). The reasons for it might be the
ollowing:

• STFT, one of the most common and applicable FE methods, is a
domain-independent technique with a linear resolution, meaning
that the bins are evenly spaced. Although the technique works
very well on a large set of problems, it does not work efficiently
on bee sound data since the relevant information can be ex-
tracted from the low frequencies. Human hearing has much better
resolution in the lower frequencies than in the higher ones.
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• The above described recognition is applied by MFCC where the
resolution is exponential. However, MFCC features are sensitive
to background noise of which the bee audio recordings contain a
lot. Additionally, the quality of extraction heavily depends on the
number of bins.

• MFCC delta is examining the change of MFCC coefficients, how-
ever, bringing the disadvantages mentioned for MFCC features.

• Chroma features represent the tonal content of an audio signal in
a solid form and perform well in high-level semantic analysis, like
chord recognition or harmonic similarity estimation, but results
show that these examinations can be performed with only strong
limitations in such a noisy environment.

• Other baseline methods, like SC or ZCR, are just simple descrip-
tors of an audio signal and are only suitable for analysis of simple
features.

Moreover, also referring to our results (Section 7), using the intro-
uced NF methods did not improve the performances of the selected
tate-of-the-art ML algorithms as much as we expected. This can be
ainly because of the following reasons:

• High pass filtering is also called sharpening in image processing.
If the intensity value of a pixel is the same as the intensity of its
neighbors the filtering does not change the image. If the intensity
is changing between a pixel’s intensity and one of its neighbor’s
intensity, high pass filtering increases the difference between
the two intensity values, resulting in a greater and sharper in-
tensity change. This filter is not changing fundamentally the
characteristics of an image, just sharpening its intensity changes.

• Median filtering is a filtering method that preserves sharp edges
and filters out spike-like noise (‘‘salt and pepper’’ type noise) quite
effectively (Justusson, 1981). If the noise is not spiky, but has
expanse, median filtering is not effective.

• Gaussian filtering or Gaussian smoothing is very effective for re-
moving Gaussian noise, a noise that has a density function similar
to the normal distribution. The weights give higher significance
to pixels near the edge (reduces edge blurring). If the noise is not
Gaussian noise, the filtering is just moderately effective.

• Laplacian filtering is using the second derivative of intensity
i.e. highlights regions of rapid intensity change and is therefore
often used for edge detection. The method is sensitive to noise.

• The Laplacian over Gaussian (LoG) filtering is Laplacian applied
to an image that has first been smoothed with a Gaussian smooth-
ing filter in order to reduce its sensitivity to noise. If the noise is
not Gaussian then the result of LoG is moderate.

Motivated by the analysis of limitations of state-of-the-art FE and NF
ethods, we propose a simple NF method for bee audio data. The pro-
osed heuristic is called DANi, as an abbreviation for ‘‘Dynamic Audio
oise Filtration’’, requiring a spectrogram on its input, as illustrated in
ig. 3. DANi consists of the following 4 steps:

1) Z-score normalization. The first step is to perform a Z-score nor-
alization on the spectrogram-per-time window. All coefficients of
ifferent frequency components belonging to the same time window
re handled as one array of values. Fig. 12 shows the absolute values
f the normalized coefficients of the time window at 1.51 min and the
bsolute value of the normalized coefficients for the whole signal as
ell.

2) First thresholding. The Z-Score normalized data is thresholded. All
alues below the mean, i.e., negative values after normalization, are
onsidered as noise and are replaced by 0, as shown in Fig. 13.

(3) Smoothing. In the next step, the idea that the main characteristics
of the signal are mainly determined by the low-frequency compo-
nents is taken into account. These components define a signal with
similar characteristics but significantly smoother and simpler, while
8

high-frequency components are responsible for signal refinement. The
next step is to take a Fourier Transform (DTFT) of the normalized
and thresholded data again, keeping only the coefficients belonging to
the first 𝑘 components. The coefficients belonging to the rest of the
frequency components are set to 0. A result of the smoothing step is
illustrated in Fig. 14. The HP of this step is the number of selected
components 𝑘.

(4) Second thresholding. To overcome the distortion of the signal com-
ing from the smoothing step, the final step is another thresholding
according to the mean of the values-per-time window. Each value
smaller than the mean is set to 0, and all values above the mean remain
nchanged, as shown in Fig. 15.

. The naturami dataset

It is essential to have a sufficiently large and labeled dataset for
esearch purposes in the area of honeybee audio analytics. Such a
atabase should include audio recordings of sufficient length and sim-
lar quality. The reason is that, unfortunately, if the quality or the
ength of recordings contained in different databases or even within
ne database differ significantly, the usage of these datasets for audio
nalytics research is cumbersome.

Data has been collected in one Hungarian apiary (see Fig. 16) by
ur partner, the Natura Mérnökiroda Kft.,5 a Hungarian SME working
n IoT technologies for Agriculture. The beehives of the same type
made from extra hardened, expanded polystyrene) were located near
o each other. All hives were sensed with a separate and externally
nstalled microphone, illustrated in the bottom right picture in Fig. 16.
icrophones were managed by a micro-controller (top right picture in

ig. 16). The microphones were taking an 8.2 s long recording every
0 minutes and each recording has 65625 samples sampled at 8 kHz.
he microphones recorded audio data in pulse code modulation (pcm)
ormat ITU (1988) which is converted to wav file with the help of the
ython wave library (Python Software Foundation, 2021) using the
ollowing settings: number of channels = 1 (mono), sample width =
and frame rate = 8000.

From all the recordings we have selected 700–1050 samples from
ach of the 10 hives with matching recording times, i.e. from 7 to 10
ecordings in the same time.6

The collected data,7 10000 recordings, are large enough to pro-
ide sufficient support for further research in the area of bee sound
nalytics. Opposite to OSBH data, our recordings were gathered in
he same apiary, with the same types and orientation of hives, the
icrophones were placed in similar places within the hives and each

atch of (7 to 10) recordings correspond to the same time interval
nd weather conditions. Also, even looking a bit ‘‘synthetical’’, the
0 labels, corresponding to the 10 hives, provide opportunities for
onducting large-scale experiments with multi-label classification as
ell as various clustering or pattern mining approaches. Besides multi-

abel classification, after selecting a subset of the data, the Naturami
ataset can serve for further research in binary classification models
or bee audio data as well.

. Experiments

Experiments have been done according to the methodology pre-
ented in Section 1 and illustrated in Fig. 1.

5 https://naturami.hu/
6 The goal was to have one record per hive for the same time, i.e. 10

ecordings per time slot. However, due to technical issues, it was not always
ossible.

7
 Available at https://zenodo.org/record/7052981#.YxnJ3NKxVD8.

https://naturami.hu/
https://zenodo.org/record/7052981#.YxnJ3NKxVD8
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Fig. 12. Z-Score normalized values (of the data from Fig. 3) at the time 1.51 (on the left) and the whole Z-Score normalized data (on the right).
Fig. 13. Thresholded components (of the normalized data from Fig. 12) at the time 1.51 (on the left) and the whole thresholded data (on the right).
Fig. 14. Smoothed data (of the thresholded data from Fig. 13) at the time 1.51 (on the left) and the whole smoothed data (on the right).
Fig. 15. Thresholded data (of the thresholded data from Fig. 14) at the time 1.51 (on the left) and the whole thresholded data (on the right).
6.1. HP settings

The candidate HPs have been selected to meet the objectives of
this study, i.e. to identify the best performing bee audio FE methods
and related ML techniques while keeping in mind the simplicity of
the used models. The requirement of simplicity is due to the fact
9

that, in many cases, bee audio analytics should run on remote sites
(hives located near the fields with blooming crops, e.g. sunflower) with
limited access to the internet and/or electricity. Thus, models suitable
for offline computations conducted on ‘‘small’’ devices (e.g. a Raspberry
PI) are desirable considering the trade-off between performance and
complexity.
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Fig. 16. The data collection site and the audio recording devices.
Due to the large number of HPs appearing in the used analytics
workflow (Fig. 1) and the computational demand of the majority of
FE, ML and NF methods, conducting an exhaustive search of the HP
space would be intractable given the available computational resources.
Thus, the HPs of various FE, ML and NF methods have been tuned using
the following heuristic: Those HPs which are considered to be the most
influential on the performance have been tuned using grid search.8 The
other HPs have been set either according to the information from the
literature or empirically, based on initial runs of the related FE, ML or
NF methods.

6.1.1. HPs of FE methods
FE was controlled by the following common HP values, deter-

mined empirically based on information found in the literature, basic
principles of these methods and the main characteristics of bee sounds:

• The selected windowing type is Hann windowing;
• Hop length was set to 500 samples, which represents 1∕16 seconds

offset for the windows;
• The window length was set to 1∕8 seconds which means that there

is a 50% overlap between the windows;
• The number of features was set to 499 for STFT and DANi, 128 for

MFCC and MFCC Delta, 12 for Chroma filtering and 1 for SC and
ZCR;

• Since the length of original WAV data is 65625 and hop length
was set to 500, the number of windows for all feature sets is
⌊65625∕500⌋ + 1 = 132.

We decided to choose a very detailed representation of the audio
data, thus, the number of features for STFT and DANi filtering is set to
499. Theoretically, the number of features is unlimited, but in the used
Librosa implementation the number of features for MFCC and MFCC
delta is limited to 128. The generally used values are between 10 and
30. Chroma results in 12 different features, while SC and ZCR describe
each window by one number (1 feature).

Although there is a space for fine-tuning these HPs, the used settings
result in detailed enough features to provide sufficient representations
of bee audio data (according to our expectations, the performance of
various FE-ML combinations depend more on the type of the used FE
method than on its HP setting).

6.1.2. HPs of ML methods
According to our experiments, the HPs of the used ML methods

have a considerable influence on the performance of a given FE-ML
combination. Thus, we have been focusing on HP tuning of the used
DL methods utilizing grid search.

8 In grid search, a systematic search over all the combinations of
pre-specified values for each HP is conducted.
10
Table 1
Number of samples (in the 2nd row) per labels (hive numbers, in the 1st row).

1 2 3 4 5 6 7 8 9 10

1038 1020 1046 1036 1013 702 1023 1023 1044 1055

• Following the thought on the trade-off between the performance
and complexity, the number of deep layers 𝑛𝑑𝑙 were set to 3,
except for the Chroma-CNN combination where 𝑛𝑑𝑙 was chosen to
1 (the low dimensionality of the input data makes a simpler struc-
ture sufficient). Even such low number of deep layers resulted
in a structure that reached the 16 GB memory limit set up for
simulating capacities available on remote sites;

• The number of units 𝑛𝑢, in case of CNN, has been chosen from the
set of values {1, 2, 4, 8, 12, 16, 20, 25, 50} while, in case of LSTM, 𝑛𝑢
has been chosen from the set {1, 2, 4, 8, 16, 32, 64, 128, 256};

• Two optimizers, 𝑆𝐺𝐷 and 𝐴𝐷𝐴𝑀 , have been used in grid search
for both CNN and LSTM;

• The out activation functions 𝑎𝑐𝑡𝑜 have been either Sigmoid or
Softmax for both CNN and LSTM. In case of CNN, the deep
activation function 𝑎𝑐𝑡𝑑 was either ReLu or Sigmoid;

• The remaining two HPs, the number of training epochs and the
batch size, not related to the architecture of the network, were
set as follows: the number of training epochs was set to 500 for
LSTM and 100 for CNN, while the batch size was set to 100 for
both LSTM and CNN.

6.1.3. HPs of NF methods
• The High pass filter’s cutoff frequency was set to 150 Hz (by

counting with some tolerance since, based on the literature, the
lowest interesting frequency for drone buzzing is 190 Hz) and the
order of the ‘‘Butterworth’’ filter was set to 1;

• For both Gaussian and Laplacian of Gaussian filters the sigma HP
was set to 0.5;

• Median filter is controlled by the radius (in which the median is
calculated) which was set to 2;

These settings seemed to be the most reasonable based on the
literature review.

6.2. Data

The dataset contains 10000 audio recordings with 10 different labels
the distribution of which is shown in Table 1. The dataset is considered
to be balanced, and therefore no balancing technique has been applied.
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6.3. Grid search and validation

As mentioned before, a grid search has been performed to tune the
HPs of the used ML methods for each FE-NF-ML method combination
in the used workflow, while the HPs of the involved FE and NF method
have been set up empirically. The following process, illustrated in
Fig. 17, has been implemented:

For each HP setting of the used ML model, a separate scenario was
executed: The 10000 recordings were divided into 𝑘 folds such that
one fold (marked by gray color in Fig. 17) was used for testing the
performance of the ML model trained on the other 𝑘− 1 folds (marked
by white color in Fig. 17). Allocation of audio recordings into the 𝑘
olds has been made in a stratified manner, to avoid an imbalanced
istribution of labels in the resulting folds.

In each of the 𝑘 folds, in every training iteration (using the given
rain folds) the accuracy of the actual ML model has been evalu-
ted by the accuracy metric expressing the ratio of correctly classified
ecordings to all recordings in the given test fold (i.e. the percentage
f recordings correctly labeled by the number of hive to which they
elong). The maximal values of the accuracies throughout the itera-
ions have been registered, resulting in 𝑘 (maximal accuracy) values
orresponding to the 𝑘 folds. To keep track of the maximal accuracies
chieved throughout the learning process might resemble a kind of
‘early stopping’’, well-known in ML, and is chosen because the purpose
f the experiment is to determine the achievable best performing FE-
F-ML combination. At the end of the grid search process, the final

cenario (HP setting) chosen for reporting (see the results in Section 7)
s the one the maximal accuracies of which reached during the itera-
ions in the 𝑘 folds were the best in average. In the results, besides the
verage (AVG), also the minimal (MIN) and maximal (MAX) values as
ell as the standard deviation (STD) of maximal accuracies achieved
uring the training process are reported.

Altogether, 72 unique scenarios (HP settings) for each 2D fea-
ure type (for CNN), and 36 unique scenarios (HP settings) for each
D feature type (for LSTM) have been launched for each FE-NF-ML
ombination, defining unique deep network structures and training
rocesses.

Memory usage of CNN is significantly lower than of LSTM with
omparable architecture. Thus, the value of 𝑘 differs for CNN and
STM. Computations in the different folds have been executed in paral-
el with shared memory used to store input dataset between the folds.
lassification via CNN was executed with 10 folds, while classification
ia LSTM was performed only with 5 folds.

. Results

.1. SC and ZCR results

The performances of the two FE methods resulting in time-series,
C and ZCR, in combination with the LSTM model and no NF method
as discussed in Section 3.4) are plotted in Fig. 18 on which (according
o Fig. 17) the maximal accuracies found during the learning epochs
veraged on the 5 folds are depicted. All the statistics, such that the
VG, MAX, MIN and STD of these maximal accuracies are listed in
able 2. The accuracies are plotted against the number of units in the
STM model to better express the complexity of the related models.

The results related to SC and ZCR show the poor performance of
hese FE methods for the given multi-class classification problem of
eehive audio data, even in case of relatively complex ML models.
oreover, SC became competitive to ZCR only in case of large ML
odels.

Since the achieved performance using these FE methods, ranging
rom 10 to 20% accuracy, is not satisfactory, the remaining experi-
ents, introduced in the next Section 7.2, were focused on FE methods
11

esulting in spectrograms.
Table 2
Statistics for SC and ZCR FE in combination with LSTM and no NF (in %).

FE type Statistics Number of units

4 8 16 32 64 128 256

SC

MIN 10.1 10.3 10.1 10.3 19.3 19.0 20.8
AVG 11.0 11.0 15.2 18.4 20.3 20.9 21.2
MAX 13.0 11.7 21.4 21.2 20.8 22.4 21.6
STD 1.0 0.5 5.0 4.1 0.5 1.2 0.3

ZCR

MIN 20.7 20.9 21.4 21.3 20.1 19.0 20.6
AVG 21.4 22.3 22.8 22.6 21.8 21.8 22.2
MAX 22.0 23.5 24.9 24.2 23.5 23.3 23.5
STD 0.5 0.9 1.1 1.0 1.3 1.6 0.9

7.2. Spectrogram-type FE results

Experiments have been done with 28 different FE-NF-ML method
ombinations, including 4 (STFT, MFCC, MFCC Delta and Chroma) FE
nd 6 (Median, High Pass, Gaussian, Laplacian, Laplacian of Gaussian
nd the proposed DANi) plus 1 (‘‘No NF’’, as usual in the recent
iterature) methods combined with the CNN ML model. For each of the
8 combinations the before described HP tuning and result reporting
ere performed (see Fig. 17), resulting in 12 weeks of computing time,

ncluding running the FE and NF run-times as well as the time needed
o provide the grid search for tuning the (HPs of) CNN on a computing
erver with a GPU (Nvidia Tesla v100 16 GB).

The best accuracies, according to the reporting methodology
Fig. 17), are depicted in Fig. 19. More detailed statistics including MIN,
AX and STD, can be found in Tables 4, 5–7 in the Appendix.9

It is important to mention that the reported accuracies are the
maximal accuracies reachable by ‘‘early stopping’’ when fine-tuning a
CNN model with the given number of units in its hidden layers and the
optimal HP settings found by grid search over various HP values (see
Section 6.1).

In general, utilizing spectrogram-type FE methods (with CNN) re-
sulted in higher accuracy values than using FE methods resulting in
time-series (with LSTM). This is, most probably, because of the richer
2D representation of the audio data by spectrograms (resulting from
the MFCC, MFCC Delta, STFT or Chroma) than their 1D representation
by time-series (resulting from SC or ZCR).

Chroma FE performed the best from the baselines, followed by
MFCC and STFT while using MFCC Delta achieved the worst results.
However, according to the statistics from Tables 4, 5, 6 and 7, STFT
seems to have the highest variance amongst the baselines.

Results show that using the proposed DANi NF method leads to
performances that are superior to every baseline by a large margin
(about twice as good), even in case of very simple models consisting
of only 8 units per layer.

8. Discussion

Several questions might arise regarding the proposed DANi NF
method, which are discussed in this section pointing out relevant
issues to be taken into consideration during its deployment and further
development.

8.1. Efficiency

Compared to the baseline FE methods resulting in a 2D output
(spectrogram), each starting with computing the STFT of the input
audio data (time-series), DANi has an additional DTFT step. This step,
however, is performed on smaller data (normalized and thresholded)

9 The values in Fig. 19 are the AVG values from Tables 4, 5, 6 and 7 in the
Appendix.
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Fig. 17. The used methodology for reporting the results for each FE-NF-ML combination in the used audio data analytics workflow (see Fig. 1.).
Fig. 18. Results for the SC and ZCR FE in combination with LSTM and no NF.

and, thus, can be computed efficiently. Results showed that the dif-
ference between the efficiency of DANi and the other baseline FE
methods were similar when using the same HPs (number of frequency
components, length of a window, window type and hop length).

8.2. Slicing

A fundamental question when using DANi is by which axis do we
perform normalization and thresholding? Normalizing by time slices,
i.e. windowing according to the time axis, means that all coefficients
belonging to the same time window, but different frequencies, are
handled as one unit and express the intensity change through all the
frequencies at a specific time window (see the left side of Fig. 20). On
the other hand, normalizing by frequency values (see the right side
of Fig. 20) means that the signal is divided into separate frequency
12
windows, handled as one unit while looking at them as a function of
intensity change through all time steps at a specific frequency window.

After the normalization step, the relationship between the coeffi-
cients from different slicing units (time or frequency slices) fundamen-
tally changes while the relationship between the coefficients from the
same unit still remains.

If the chosen policy is time slicing then the ratio of coefficients of a
certain frequency before normalization and after the normalization may
completely change due to the fact that the average of the normalizing
(time slice) unit can be different. Normalizing via time slices means
that those frequencies in which there are no significant activities due
to their small coefficients are considered as irrelevant frequency ranges
or, in other words, noise.

If the data is normalized via frequency values (frequency slices),
then a value around, below or above the mean means usual, irrelevant
or relevant activity, respectively. For example, a bee queen is ‘‘piping’’
around 400–500 kHz frequency (Collison, 2018). If the goal is to find
such an activity when the queen is active, looking at a certain frequency
window, frequency-wise separation can be a good approach.

To decide on which approach is more suitable, i.e. time or frequency
slicing strongly depends on the goal of the analytics and the charac-
teristics of the signal. For example, if there is an activity at all the
frequencies and the maximum draws a similar value over time, then
the frequency slicing leads to good results, as shown in Fig. 21.

On the other hand, if there is an activity only at certain frequency
ranges, and the respective coefficient values belong to a narrow scale,
then using frequency slicing can change the characteristics of the signal
so that it becomes essentially meaningless, as shown in Fig. 22.

Audio signals of bee hives show activity only in the lower frequency
ranges so DANi filtering via time slicing is the good approach for
audio FE and information highlighting. On the other hand, frequency
slicing can be a good approach if the goal is to find activities in
certain ranges, for example searching for queen activities knowing the
frequency ranges where these can be found.
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Fig. 19. Results containing the averaged best accuracies (vertical axes) over the learning of the used CNNs with various number of units (horizontal axes) in their inner layers,
grouped by the 4 used FE methods (STFT, Chroma, MFCC and MFCC Delta).
Fig. 20. Normalizing spectrograms by time slices (A) and by frequency values (B).
8.3. Smoothing

The smoothing step of DANi is controlled by one HP, that is the
number of Fourier components not set to 0. Smaller values result in
a smoother and simpler signal, while higher values result in a spiky
signal which is closer to the original one. The smoother and simpler
the representation of the signal, the greater the loss of information and
greater the distortion. Figs. 23 and 24 show the result of smoothing in
cases when 5%, 10%, 25%, 50%, 75% and 100% of the components have
been kept.
13
If only a small proportion of the components are kept (5%–25%),
significant distortion occurs and the characteristics of the signal change
fundamentally after smoothing. Keeping approximately half of the com-
ponents (40%–60%) will result in a signal with similar characteristics
but a simpler representation. While using more than 60% of the com-
ponents will not change the characteristics of the signal but make the
representation more accurate and spiky. During our experiments, the
value of 50% has been chosen, which kept the original characteristics
but resulted in a simpler signal.
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Fig. 21. Example of a sonograph image (left) pre-processed via frequency slicing (right).

Fig. 22. The results of a bee audio sample using time slicing (left) and frequency slicing (right).

Fig. 23. Result of smoothing for the ratio of selected components set to 5%, 10%, 25%, 50%, 75% and 100%.
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Fig. 24. Result of smoothing for the ratio of selected components set to 5%, 10%, 25%, 50%, 75% and 100%.
Table 3
Accuracy results (in %) and statistics for applying the combination of the Median NF
followed by the Laplacian over Gaussian NF with different FE types.

FE type Statistics Number of units

8 12 16 20 25 50

STFT

MIN 9.7 9.7 10.4 10.4 9.8 10.0
AVG 11.4 18.5 12.3 11.2 19.7 25.9
MAX 12.7 56.3 22.3 11.8 94.6 89.8
STD 0.9 14.5 3.4 0.5 25.0 30.6

MFCC

MIN 30.5 30.8 31.0 31.8 32.2 34.1
AVG 33.0 34.0 34.7 35.8 37.0 40.1
MAX 35.8 39.4 39.8 41.1 41.8 44.1
STD 1.7 2.9 2.1 3.1 3.3 3.7

MFCC delta

MIN 12.9 9.8 10.4 10.6 11.4 9.9
AVG 14.1 13.8 14.0 14.7 14.6 16.4
MAX 16.7 16.7 16.3 17.7 16.6 18.2
STD 1.1 2.1 1.6 2.1 1.4 2.3

Chroma

MIN 36.9 36.3 35.5 37.2 38.4 39.5
AVG 37.7 38.5 39.3 39.4 40.4 42.0
MAX 39.1 42.3 41.0 42.6 41.7 43.9
STD 0.8 1.9 1.4 1.8 0.9 1.2

8.4. Combining NF methods

An important feature of DANi is to make use of elimination and
smoothing processes, as the other common NF methods only eliminate
or smooth (or sharpen).

In addition, two stages of elimination are used, but with a smooth-
ing process in between. The first elimination step gets rid of noise
before the smoothing algorithm spreads the values to its neighbors.
The second step readjusts the elimination threshold to a smoothed
15
distribution and gets rid of values that would not be eliminated in
the first pass (after smoothing, values considered to be noise will be
changed).

Furthermore, DANi uses global methods, that is, it uses information
from the image as a whole. The Median filter, even though it is
a good method for eliminating noise, only acts on its radius. Thus,
information from other areas of the image, that could be useful for
noise elimination, will not be used. This can help to explain the results
obtained by combining the Median filter with the Laplacian over the
Gaussian filter presented in Table 3.

The combination of the Median NF method followed by the Lapla-
cian over Gaussian NF method can reach relatively good maximal
accuracies when using the STFT FE method and more complex net-
works. However, the results of this combination are not as stable as
in the case of utilizing DANi with STFT. According to the results, such
a combination of two NF methods is inferior to DANi, on average. Since
these two NF methods, being the best candidates for ‘‘simulating’’ the
above described characteristics of DANi, did not reach the desirable
(i.e. high and stable) performance, other combinations of NF methods
have not been tested. It can be seen in Table 4 that using the Median
NF method alone has reached better performance than its combination
with the Laplacian over Gaussian NF method.

9. Conclusions

In this paper, a new method for audio noise filtering, called Dynamic
Audio Noise Filtering (DANi), has been proposed that makes bee audio
processing more effective. A large-scale experiment was conducted
using 10000 bee hive recordings and state-of-the-art feature extraction,
noise filtering as well as machine learning methods (including their
hyper-parameter tuning).
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The collected data are available at https://zenodo.org/record/70
52981#.YxnJ3NKxVD8. The source codes, including the used feature
extraction and noise filtering methods, the developed DANi method,
the machine learning models as well as experimental evaluations are
available at https://github.com/varkonyidaniel/behretims.git

Experiments showed that, while performing well for binary classifi-
cation tasks, stat-of-the-art noise filtering methods performed poorly for
multi-label classification of bee sounds. The proposed heuristic allows
fast and efficient processing and, since it works well with simple neural
networks, is suitable for its deployment also in off-line computation
scenarios on small devices.

The classification models resulting from the presented audio an-
alytics workflow (Fig. 1), utilizing the short-time Fourier transform
feature extraction and the proposed DANi noise filtering methods, are
able to identify a bee colony based on its sound with 90% accuracy.
Since these models are small, they are easily interpretable, allowing
to extract useful information from them related to the colonies which
are addressed in the future work. The investigation of the connection
between the resulting models from our experiments (and the ‘‘latent’’
information contained in them) and the so-called ‘‘colony fingerprints’’
introduced by Cejrowski and Szymański (2021) is the subject of future
investigation. The ultimate goal for future work in this direction would
be the development of ‘‘personalized’’ anomaly detection methods on
a colony level, assuming that a colony’s sound in case of swarming,
missing queen, disease, pest, predator, exposure to chemicals, etc. bears
unique characteristics.

Experimental results encourage further investigation of the usability
of the proposed noise filtering method in other application domains as
well, in which the noise resembles audio characteristics of bee buzzing,
e.g. machinery vibration analysis and predictive maintenance (Scheffer,
2004).
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Table 4
Accuracy results (in %) and statistics for STFT FE with different NF types.

NF type Statistics Number of units

8 12 16 20 25 50

No NF

MIN 9.8 10.1 9.8 9.5 9.7 8.1
AVG 12.1 15.7 23.6 26.3 22.9 50.6
MAX 27.3 52.6 79.1 83.2 62.2 82.3
STD 5.1 12.3 25.2 26.6 17.2 28.8

Median

MIN 9.7 9.7 9.5 10.4 11.4 9.7
AVG 24.0 35.8 36.1 20.1 12.0 43.4
MAX 88.0 94.6 96.4 95.8 12.7 96.1
STD 27.1 37.9 38.4 25.2 0.4 32.9

High Pass

MIN 10.3 11.5 11.5 11.5 11.5 11.5
AVG 11.4 11.9 11.9 11.9 11.9 11.9
MAX 12.6 12.7 12.7 12.7 12.7 12.7
STD 0.6 0.4 0.4 0.4 0.4 0.4

Gaussian

MIN 9.7 10.9 11.5 11.5 11.5 11.5
AVG 11.7 11.7 11.9 11.9 11.9 11.9
MAX 12.7 12.6 12.7 12.7 12.7 12.7
STD 0.8 0.4 0.4 0.4 0.4 0.4

Laplacian

MIN 10.6 11.4 11.5 11.5 11.5 11.5
AVG 11.6 11.9 11.9 11.9 11.9 11.9
MAX 12.6 12.7 12.7 12.7 12.7 12.7
STD 0.6 0.4 0.4 0.4 0.4 0.4

Laplacian of Gaussian

MIN 10.4 11.5 11.5 11.5 11.5 11.5
AVG 11.7 11.9 11.9 11.9 11.9 11.9
MAX 12.7 12.7 12.7 12.7 12.7 12.7
STD 0.6 0.4 0.4 0.4 0.4 0.4

DANi

MIN 81.1 84.5 86.9 87.6 88.2 89.5
AVG 82.3 86.7 88.3 89.2 89.5 90.9
MAX 83.9 87.8 90.2 90.7 90.2 92.5
STD 1.0 1.0 1.0 1.0 0.6 0.9

Table 5
Accuracy results (in %) and statistics for CHROMA FE with different NF types.

NF type Statistics Number of units

8 12 16 20 25 50

No NF

MIN 36.2 35.7 38.6 39.8 39.5 40.2
AVG 38.5 39.9 40.7 41.5 41.2 42.0
MAX 40.4 41.9 42.8 43.7 42.9 43.7
STD 1.3 1.8 1.3 1.3 1.2 0.8

Median

MIN 9.7 9.7 9.5 10.4 11.4 9.7
AVG 24.0 35.8 36.1 20.1 12.0 43.4
MAX 88.0 94.6 96.4 95.8 12.7 96.1
STD 27.1 37.9 38.4 25.2 0.4 32.9

High Pass

MIN 32.1 30.3 32.3 31.6 32.9 33.6
AVG 33.6 34.4 34.4 34.8 34.4 35.0
MAX 36.9 36.1 36.4 37.8 35.4 37.1
STD 1.5 1.7 1.3 1.8 0.9 1.1

Gaussian

MIN 29.5 30.6 30.7 31.4 31.6 31.5
AVG 31.7 32.4 32.7 33.1 33.4 33.6
MAX 34.2 34.4 37.0 38.4 37.5 38.0
STD 1.4 1.0 1.8 2.0 1.8 2.0

Laplacian

MIN 32.8 34.0 35.5 36.0 36.9 37.9
AVG 34.8 36.5 37.2 37.1 38.8 39.9
MAX 37.1 40.2 39.2 39.4 40.1 41.5
STD 1.4 1.9 1.2 1.0 1.1 1.1

Laplacian of Gaussian

MIN 33.8 35.7 36.4 37.8 37.0 38.2
AVG 36.9 38.2 39.0 39.6 39.8 41.5
MAX 40.0 40.9 42.4 41.5 42.6 44.2
STD 2.3 1.9 1.8 1.4 1.6 1.8

DANi

MIN 0.0 30.5 32.8 0.0 0.0 34.9
AVG 27.7 34.1 34.7 32.3 32.7 36.8
MAX 33.1 35.5 37.1 37.8 37.3 39.0
STD 9.3 1.5 1.1 10.9 10.9 1.2
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Table 6
Accuracy results (in %) and statistics for MFCC FE with different NF types.

NF type Statistics Number of units

8 12 16 20 25 50

No NF

MIN 10.4 11.1 26.6 34.4 31.5 34.7
AVG 30.5 33.4 32.1 38.9 33.3 37.1
MAX 38.0 39.9 38.9 41.5 38.3 39.7
STD 9.8 8.2 3.0 2.2 1.9 1.5

Median

MIN 9.7 9.7 9.7 32.2 35.7 34.5
AVG 25.3 30.7 31.0 35.3 38.1 39.5
MAX 34.6 41.0 39.0 37.7 40.7 42.7
STD 7.0 10.3 8.9 1.8 1.5 2.3

High Pass

MIN 9.7 14.9 15.8 15.6 9.9 14.6
AVG 15.6 17.5 17.5 17.6 16.6 16.2
MAX 17.8 19.4 18.6 19.4 18.8 17.5
STD 2.7 1.2 0.9 1.1 2.6 1.0

Gaussian

MIN 10.0 14.3 14.0 14.9 12.3 14.3
AVG 14.4 15.5 15.1 15.6 15.4 15.3
MAX 16.5 17.7 16.9 17.0 17.2 17.0
STD 1.7 1.0 0.8 0.7 1.5 0.8

Laplacian

MIN 10.3 9.5 11.1 11.5 11.6 9.7
AVG 26.2 25.1 27.9 32.5 34.2 26.3
MAX 34.6 33.9 41.1 41.7 42.5 43.5
STD 9.9 7.2 11.1 7.7 8.2 12.7

Laplacian of Gaussian

MIN 10.0 33.3 12.6 10.6 35.6 11.5
AVG 27.6 38.1 34.0 32.4 38.9 18.6
MAX 38.6 42.7 40.4 41.9 41.7 35.4
STD 11.5 3.0 7.5 11.1 2.3 10.3

DANi

MIN 7.9 7.9 28.0 37.3 37.7 40.2
AVG 16.2 23.5 35.8 40.7 42.0 42.8
MAX 25.0 34.5 43.2 43.6 44.1 45.1
STD 7.0 9.6 3.8 2.1 2.0 1.5

Table 7
Accuracy results (in %) and statistics for MFCC delta FE with different NF types.

NF type Statistics Number of units

8 12 16 20 25 50

No NF

MIN 11.6 11.9 12.8 13.1 13.8 14.3
AVG 13.3 13.9 14.0 14.9 15.1 15.7
MAX 14.5 14.7 15.3 16.2 16.0 17.7
STD 1.0 0.9 0.7 1.0 0.7 0.9

Median

MIN 10.0 9.8 11.3 10.9 12.1 14.6
AVG 11.1 11.6 12.4 12.8 13.5 15.8
MAX 12.7 18.7 14.4 14.8 14.2 17.4
STD 0.8 2.4 0.9 1.2 0.8 0.8

High Pass

MIN 10.3 10.3 9.7 10.6 12.2 14.4
AVG 11.3 11.5 12.2 12.3 13.1 15.6
MAX 12.9 12.6 14.7 14.6 14.5 16.5
STD 0.8 0.8 1.4 1.2 0.7 0.7

Gaussian

MIN 10.5 9.6 11.3 11.8 12.4 13.1
AVG 11.5 11.3 12.7 13.0 13.4 14.2
MAX 13.2 12.7 15.6 14.0 15.2 15.3
STD 0.9 0.9 1.3 0.7 0.7 0.7

Laplacian

MIN 9.9 9.7 10.7 10.6 12.3 13.7
AVG 11.4 12.2 11.7 12.8 13.9 15.2
MAX 13.3 14.3 12.7 14.0 16.1 16.4
STD 1.0 1.2 0.6 1.0 1.1 0.8

Laplacian of Gaussian

MIN 9.5 10.5 12.1 10.9 12.2 14.4
AVG 11.1 11.4 13.2 13.8 14.6 15.5
MAX 12.1 13.0 14.8 15.2 16.5 17.4
STD 0.7 0.7 0.8 1.2 1.2 1.0

DANi

MIN 12.4 10.6 12.6 10.3 12.5 12.2
AVG 14.1 14.8 15.0 14.8 15.4 14.4
MAX 16.1 16.5 17.6 17.3 17.4 16.2
STD 1.2 1.8 1.5 1.8 1.5 1.3
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