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A B S T R A C T   

Phase Change Materials (PCMs) present cutting-edge technology with substantial promise for advancing sus
tainable and energy-efficient cooling in buildings. These materials can absorb and release latent heat during 
phase transitions, facilitating thermal energy storage and temperature regulation. This comprehensive literature 
review explores various strategies and methods for implementing passive cooling with PCMs in buildings. The 
integration of PCMs enhances multiple passive cooling approaches, including solar control, ground cooling, 
ventilation-based heat dissipation, radiative cooling, and thermal mass-based heat modulation. The analysis 
delves into PCM classifications, encapsulation techniques, melting enthalpies, integration into diverse building 
envelopes, and performance across different climates. The findings from this comprehensive review indicated 
that PCM walls introduce a 2-hour delay in heat transfer and mitigate external temperature fluctuations. Win
dows equipped with PCM panels reduce heat transfer by 66 %. Combining PCMs with nocturnal radiative cooling 
leads to interior surface temperature reductions exceeding 13 ◦C. Natural ventilation with PCMs results in 
notable energy savings of up to 90 % in hot climates. The combination of free cooling and PCM thermal storage 
reduces charging times by 35 % while enhancing heat transfer. Simulations performed in the open literature 
suggested that strategic placement of PCMs in lightweight building walls reduces heat flux and overall energy 
consumption. Despite facing challenges related to scalability, compatibility, reliability, and recycling, PCM so
lutions demonstrate robust potential. When integrated thoughtfully into building design, PCMs significantly 
improve thermal performance and energy efficiency. Experimental validations confirm energy reductions 
ranging from 14 % to 90 %, underscoring the adaptability of passive cooling techniques leveraging PCM thermal 
storage and heat transfer capabilities across various climates.   

1. Introduction 

Over the past three decades, the escalation of energy consumption 
for space cooling has become an alarming global trend, more than 
tripling since 1990 [1]. This surge bears substantial ramifications, 
reaching beyond the strain on electricity grids to impact greenhouse gas 
(GHG) emissions and the emergence of urban heat islands. The world 
has witnessed new records of temperature rise in the last few years, 
underlining the urgency of addressing this trajectory [1]. The re
percussions of inadequate access to indoor cooling reverberate across 

the globe, placing a significant portion of the population at elevated risk 
of heat stress. This not only adversely affects thermal comfort but also 
poses threats to labor productivity and human health [2]. 

As our planet undergoes a warming trend, addressing cooling needs 
equitably and sustainably assumes paramount significance. Our Net 
Zero Emissions by 2050 initiative lays out a comprehensive strategy 
with three key goals for 2030 [3]. First and foremost is the imperative to 
“build better” through policy support, targeting 20 % of the total 
existing building floor area globally and ensuring that 100 % of new 
building constructions are zero-carbon-ready by 2030, with a particular 
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emphasis on prioritizing passive solutions for cooling. The second goal 
involves a necessary shift in behavior, advocating for the moderation of 
air-conditioning temperature set points within the range of 24–25 ◦C. 
The third goal focuses on improving efficiency, with a commitment to 
achieving the highest available efficiency rating for new air- 
conditioning equipment by 2035 [3]. 

In the realm of global buildings, heating and cooling constitute a 
substantial portion of energy consumption, posing formidable chal
lenges to sustainability and environmental conservation [4]. The 2022 
International Energy Agency (IEA) report paints a stark picture, 
revealing that energy demand in buildings soared to a staggering 133 
exajoules (EJ) in 2022. Fig. 1 depicts energy consumption in buildings 
by fuel in the Net Zero Scenario from 2010 to 2030, illustrating a crucial 
transition period in the pursuit of sustainable energy practices [4]. The 
evolving dynamics of fuel usage within buildings are highlighted, of
fering valuable insights into the progress toward achieving net-zero 
emissions by 2030. 

To counteract the trajectory of increasing energy usage and its 
environmental consequences, the implementation of tighter building 
codes retrofits for existing structures, and investments in passive solu
tions and energy-efficient technologies are deemed indispensable [5]. 
These actions aim to address the growing need for thermal comfort 
while mitigating environmental impacts. Passive cooling methods 
emerge as promising alternatives to traditional energy-intensive cooling 
systems, leveraging natural elements and strategic design principles to 
regulate indoor temperatures effectively. Fig. 2 categorizes diverse 
passive ideas for heating and cooling, documenting various techniques 
[6]. By disseminating data on these passive cooling methods, their po
tential to transform building energy use is underscored, fostering a shift 
towards more sustainable and resilient built environments. 

2. Passive cooling concepts 

Passive cooling principles are integral to sustainable building design, 
utilizing natural mechanisms to uphold thermal comfort while mini
mizing energy consumption. In convective cooling, the air functions as 
the cooling medium, and diverse forms of natural ventilation are utilized 
to remove surplus heat from structures [7]. This process harnesses the 
buoyancy effect or natural wind speed as a driving force, exemplified in 
techniques such as solar walls, solar chimneys, and cross ventilation [8]. 
Adequate indoor air quality is crucial for occupant well-being, and 
ventilation becomes paramount in removing pollutants like CO2 [9]. 
Nevertheless, the difficulty lies in finding equilibrium, as conventional 
ventilation methods have the potential to undermine thermal comfort by 
depleting heat and escalating the requirement for heating [10]. While 
mechanical ventilation with heat recovery can function independently 
as a ventilator for a singular room, in instances involving conventional 
centralized ventilation systems, integration with the pre-existing air- 
handling unit (AHU) is necessary [11]. 

Natural ventilation stands out as a key passive cooling strategy, 
allowing the movement of air through building openings to enhance 
indoor air quality and decrease reliance on mechanical cooling systems 
[12]. Another approach, night ventilation (NV), optimizes cooler 
nighttime temperatures to dissipate accumulated heat efficiently, 
aligning with energy-efficient practices [13]. Complementary strategies 
involve shading techniques, such as overhangs and vegetation, which 
mitigate solar heat gain and contribute to internal temperature control 
[14,15]. Similarly, the use of thermal mass materials, like concrete or 
stone, aids in absorbing and gradually releasing heat, promoting a stable 
indoor environment [16]. 

2.1. Passive cooling classification 

The categorization of diverse passive ideas for heating and cooling 

Fig. 1. Net Zero Scenario: Building Energy Consumption by Fuel (2010–2030) [4].  
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has been carried out and documented in Fig. 2. In the pursuit for sus
tainable and energy-efficient approaches to heating and cooling, a va
riety of passive strategies has surfaced. These strategies can be broadly 
categorized into five classes, each with distinct approaches to optimize 
indoor climate control [6,17]. 

Solar control strategies focus on managing solar radiation impact by 
techniques like building orientation, shading devices, wall/window 
design, and climate [18]. Passive desiccant systems use desiccant ma
terials to naturally control humidity levels, enhancing comfort without 
relying on energy-intensive systems [19]. Heat dissipation is crucial for 
creating comfortable indoor environments while reducing energy con
sumption [20]. Passive ventilation systems, evaporative cooling, and 
convective cooling facilitate heat removal naturally [21,22]. Mechanical 
ventilation systems, nocturnal ventilation, and radiative cooling com
plement these methods [23]. 

Heat modulation encompasses free cooling and thermal mass tech
niques [24]. Free cooling utilizes natural processes like cross- 
ventilation, while thermal mass focuses on storing and releasing heat 
using PCMs in windows, roofs, ceilings, and wallboards [25]. 

2.2. Pcms classification 

PCMs showcase a variety of features, and their classification can be 
considered from four primary viewpoints: chemical composition, tem
perature range, microstructure, and application, as depicted in Fig. 3 
[26]. PCMs are broadly classified according to their chemical compo
sition into two main groups: organic and inorganic [27]. Derived from 
carbon-based compounds, organic PCMs, including paraffins, fatty 
acids, esters, and bio-based materials, are recognized for their notable 
latent heat storage capacity. [28]. These materials find widespread 
application in building materials and textiles [29]. Inorganic PCMs, on 
the other hand, are composed of non-carbon-based substances like salts 
and metals [30]. Inorganic PCMs, characterized by high thermal con
ductivity, find frequent applications in areas such as electronics cooling 
and solar energy storage [31]. This chemical composition-based 

classification serves as a foundational framework for understanding and 
leveraging the diverse thermal properties of PCMs in various industries. 

Another significant classification is based on the temperature at 
which PCMs undergo phase transitions [32]. This includes low- 
temperature PCMs, which operate below room temperature, medium- 
temperature PCMs suitable for typical room conditions, and high- 
temperature PCMs designed for applications above room temperature. 
This categorization enables the selection of PCMs tailored to specific 
thermal requirements [33–35]. PCMs can be classified based on their 
microstructure, distinguishing between microencapsulated and macro- 
encapsulated PCMs [36]. Microencapsulated PCMs are encapsulated in 
tiny particles, providing enhanced dispersibility and integration into 
various materials [37]. Macro-encapsulated PCMs involve larger con
tainers, offering controlled release properties for specific applications 
requiring a more controlled heat exchange [38]. 

PCMs exhibit a versatile range of applications across multiple sec
tors, playing a pivotal role in enhancing thermal management. While 
finding utility in electronics for cooling applications [39] and textiles to 
improve comfort [40], PCMs have a pronounced focus on revolution
izing building and construction practices [41]. In this sector, PCMs are 
seamlessly integrated into diverse applications, including building ma
terials, insulation, windows, wall and roofing systems [42]. Building 
materials enhanced with PCMs play a role in passive temperature con
trol, optimizing indoor comfort and decreasing the dependence on 
active heating and cooling systems [43]. This emphasis on the building 
and construction sector aligns with the broader goals of achieving en
ergy efficiency, sustainability, and enhanced thermal performance in 
structures, thereby establishing PCMs as integral components in the 
quest for innovative and environmentally conscious building solutions 
[44]. 

In Fig. 4, the relationship between PCM melting enthalpy and tem
perature is visually represented for distinct groups of PCM [45]. This 
graphical depiction serves as a valuable tool for the classification of 
PCMs based on their thermal properties. Each group—organic, inor
ganic, and eutectic mixtures—exhibits a characteristic melting enthalpy- 

Fig. 2. The categorization of diverse Passive Cooling Techniques [6,17].  

Fig. 3. The categorization of PCM [26].  
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temperature profile. Organic PCMs, such as paraffin waxes, tend to 
showcase lower melting enthalpies at moderate temperatures, suggest
ing a propensity for efficient energy absorption and release within this 
range [46]. Inorganic PCMs, such as salt hydrates, are likely to display 
higher melting enthalpies at elevated temperatures, indicating their 
suitability for applications requiring substantial heat storage capabilities 
[47]. Eutectic mixtures, combining elements from both organic and 
inorganic categories, manifest a balanced relationship between melting 
enthalpy and temperature, underscoring their versatility across a 
broader spectrum of thermal conditions [48]. This classification, derived 
from the data presented in Fig. 4, facilitates a nuanced understanding of 
how different PCMs respond to temperature variations. 

2.2.1. Temperatures 
PCMs can be classified into four temperature ranges based on their 

melting points, with consideration given to working temperature ranges. 
This review focuses on four distinct working temperature intervals: (1) 
the low temperature range from − 35 ◦C to + 5 ◦C, typically employed 
for domestic and commercial refrigeration; (2) the medium low tem
perature range from + 5 ◦C to + 40 ◦C, commonly applied in heating and 
cooling applications within buildings; (3) the medium temperature 
range from + 40 ◦C to + 80 ◦C, utilized for solar-based heating, hot 
water, and electronic applications; and (4) the high temperature range 
from + 80 ◦C to + 300 ◦C, suitable for absorption cooling, waste heat 
recovery, and electricity generation [49]. 

Within the medium low temperature range, often falling between +
5 ◦C and + 40 ◦C, PCMs play a crucial role in buildings, effectively 
moderating indoor temperatures through the storage and release of heat 
during phase transitions. 

2.2.2. Microstructure 
An effective PCM thermal storage system relies heavily on the 

encapsulation process, which entails confining PCMs within a suitable 
container [50]. Two primary encapsulation methodologies, macro- 
encapsulation, and microencapsulation have undergone extensive 
exploration for their applications in energy-efficient building systems. 
Macro-encapsulation involves enclosing a significant amount of PCM 
within distinct units, typically exceeding 1 cm in diameter [45]. The 
encapsulating shells can take various forms such as tubes, cylinders, 
pouches, and cubes [51]. Known for its adaptability, this approach 
easily conforms to diverse shapes and sizes, making it suitable for 

various energy storage requirements [52]. In contrast to microencap
sulation, the macro process offers flexibility by not requiring a pre
defined approach [50]. Macro-capsules are typically integrated into 
exterior walls and precast slabs, optimizing exposure to weather con
ditions and solar radiation [53]. 

Microencapsulation involves techniques where small PCM particles 
or droplets are enclosed within a sealed, continuous shell, typically 
crafted from thin, high molecular weight polymeric or inorganic films 
[42]. Despite its advantages in preventing PCM leakage and enhancing 
heat transfer through a generous surface-to-volume ratio, microencap
sulation proves to be a costlier method compared to alternatives [54]. 
Microencapsulated PCM particles can be dispersed in a powdered form 
or carrier fluid compatible with the encapsulating film [55]. The mor
phologies of microcapsules are diverse, encompassing irregular shapes, 
spheres, tubular structures, and matrix particles [56]. Organic PCM 
cores, particularly paraffin, are favoured due to their suitable melting 
points within the thermal comfort range of humans [57]. Challenges in 
this process include the potential breakage of microcapsules in active 
systems, indicating an area for future refinement [58]. The integration 
of carbon additives in building materials featuring PCM microcapsules 
has demonstrated improved efficiency and heat transfer rates [59]. 

both macro-encapsulation and microencapsulation play pivotal roles 
in advancing PCM applications within buildings, contributing signifi
cantly to sustainability and durability enhancements [60]. The ongoing 
exploration and innovations in encapsulation processes highlight the 
potential for heightened energy efficiency across a spectrum of con
struction materials [61]. 

2.2.3. Chemical composition 
In the pursuit of optimizing thermal comfort within building appli

cations, the selection of PCMs is integral, especially for maintaining 
desirable room temperatures throughout the changing seasons. The 
ASHRAE-defined thermal comfort parameters, with recommended 
temperatures ranging from 23.5–25.5 ◦C in the summer to 21.0–23.0 ◦C 
in the winter, underscore the need for effective solutions. PCMs, with 
their ability to store and release thermal energy during phase transi
tions, offer a promising avenue to achieve consistent and comfortable 
indoor environments. Key parameters influencing the efficacy of PCMs 
include their melting point, latent heat, and thermal conductivity 
[62,63]. These factors determine the suitability of PCMs for specific 
applications, ensuring they align with the desired temperature ranges 

Fig. 4. PCM Melting Enthalpy-Temperature Relationship Across PCM Groups [45].  
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and thermal performance requirements. 
Melting point (◦C) is a critical parameter that defines the tempera

ture at which a PCM undergoes a phase transition, shifting from a solid 
to a liquid state. This characteristic is essential for ensuring that the PCM 
activates and deactivates within the desired temperature range, aligning 
with the seasonal thermal requirements of a given space. Latent heat 
(kJ/kg) represents the amount of energy absorbed or released during the 

phase change process. It signifies the PCM’s capacity to store and release 
thermal energy efficiently. Higher latent heat values indicate a greater 
energy storage potential, allowing PCMs to better regulate indoor tem
peratures and contribute to enhanced thermal comfort. 

Thermal conductivity (W/m.K) is a measure of a material’s ability to 
conduct heat. In the context of PCMs, high thermal conductivity facili
tates the efficient transfer of heat between the PCM and its surroundings, 

Table 1 
PCM Characteristics.  

PCM Model Melting Point 
(◦C) 

Latent Heat (kJ/kg) Thermal conductivity 
(W/m.K) 

Study 

Organic PCMs Paraffins C 16, n-Hexadecane 18 –19 200–236 0.14–32 [65,66] 
Hexadecane + diatomite 24 120 solid (s), 118 

liquid (l) 
0.38 [67] 

C 17, n-Heptadecane 18–21 214 0.14 (l), 0.26 (s) [65,68] 
C 18, n- Octadecane 22–28 244 0.15 (l), 0.18–0.26 (s) [65,68,69] 
Glycerin 18 199 − [69] 
RT 20 22 117–172 0.25 [70–72] 
RT 25 25 117–147 0.56(l), 1.02(s) [70–72] 
RT 26 26 232 0.20 [70,71] 
RT 27 27 179 0.20 [70,71] 
RT 30 28 206 0.20 [70,71] 
STL 27 27 213 − [70,71] 
Octadecane + diatomite + Graphite 
nanoplatelets 

30 112 (l), 126 (s) 0.35 [67] 

Hexadecane + diatomite + Graphite 
nanoplatelets 

22 120 (l), 121(s) 0.42 [67] 

5913 (n-paraffin) 23 189 0.21 [65] 
Fatty Acids and 
Esters 

CA (Capric acid) 32 152–163 0.15 [73,74] 
Capric– lauric acid + fire retardant/gypsum 17 28 − [75] 
Capric + Lauric (82: 18) 19–20 147 − [65] 
Capric + Lauric (61.5: 38.5) 19 240 0.28 [65,76] 
Capric-palmitate 75.2/24.8 22 153 − [77] 
Capric-myristic / perlite 21 85 − [78] 
Capric-lauric 45/55 21 143 − [79] 
Capric-lauric/ gypsum 19 35 − [80] 
TH 29 29 188 1.09 (s),0.53 (l) [70,71,81] 
MP (Methyl Palmitate) 29 230 0.19 [82] 
Butyl stearate 19 140 0.15 [79,83–85] 
Butyl stearate/gypsum 18–19 30 − [70,75,80] 
Vinyl stearate 27–29 122 − [85] 
Emerest 2325 (butyl stearate + butyl 
palmitate) (50: 48) 

18–22 140 − [65] 

Emerest 2325 (butyl stearate + butyl 
palmitate 49/48) 

17–21 138–140 − [86] 

Propyl palmitate/gypsum 19 40 − [75] 
1-Dodecanol 20 191 0.18 [87] 
Dodecanol/gypsum 20 17 − [75] 
Polyglycol E600 22 127 0.1897 [69,73,88] 
Propyl palmitate 19 186 0.60 [70,71] 
SP 22 A 17 22 150 0.60 [70,71] 
SP 25 A 8 25 180 0.60 [70,71] 
SP27 27 180–190  [70,71,89] 
SP 29 29 157 0.60 [70,71,90] 
Dimethyl sebacate 21 120–135 − [69,85,91] 
Dimethyl sulfoxide 16 85 − [69] 

Inorganic/Salt 
PCMs 

Salt Hydrates KF, 4H2O 18 231 − [87,92–94] 
45 % Ca(NO3)2 6H2O + 55 % Zn(NO3) 2 
6H2O 

25 130 − [91] 

66.6 % CaCl2 6H2O + 33.3 % MgCl2 6H2O 25  − [91] 
47 % Ca(NO3)2⋅4H2O + 53 % Mg(NO3) 
2⋅6H2O 

30 136 − [92] 

Na2SO4,10H2O 21–32 198–251 0.45 [65,92–94] 
LiNO3 3H2O 30 215–296 − [93,95] 
Mn(NO3)2,6H2O 26 126 − [64] 
CaCl2⋅6 H2O 24–30 171–192 0.45–0.54 (l), 1.09 (s) [64,90] 
CaCl2 6H2O + Nucleat + MgCl2 6H2O(2:1) 25 127 − [64,70] 
48 % CaCl2 + 4.3 % NaCl + 0.4 % KCl +
47.3 % H2O 

27 188 0.54 (l), 1.09 (s) [64,70] 

60 % Na(CH3COO). 3H2O + 40 % CO(NH2) 
2 

30 200 − [96] 

Eutectic Mixtures ClimSel C 21 21 127 0.75(l), 0.93 (s) [97] 
ClimSel C 24 24 126 0.93(l), 0.74 (s) [97] 
ClimSel C 28 28 154 0.72(l), 0.98 (s) [97] 
ClimSel C 32 28 145 1.08 (l), 0.76 (s) [97]  
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promoting quicker response times and improved overall performance. 
This parameter is crucial for ensuring that the PCM effectively absorbs 
and releases thermal energy, contributing to the maintenance of optimal 
room temperatures. 

Table 1 offer a comprehensive compilation of PCMs, with a focus on 
those exhibiting a phase change temperature between 18 and 30 degrees 
Celsius. This temperature range is preferred to address the thermal 
comfort requirements [64]. This temperature range is preferred to 
address the thermal comfort requirements, as it aligns with recom
mended operating temperatures for different seasons. Thermal comfort, 
a crucial aspect in building design, is defined by the ASHRAE and varies 
according to seasonal changes. The inclusion of PCMs with specific 
phase change temperatures becomes pivotal in achieving and main
taining optimal indoor conditions. 

2.2.4. Application 
PCMs are substances with a high heat of fusion which can store and 

releasing large amounts of energy. This makes them useful across a wide 
range of applications including electronics, textiles, energy storage, and 
buildings. The analysis of the application of PCMs in the building in
dustry will be comprehensively reviewed in the following sections. 

2.2.4.1. Electronic. Ensuring electronic components operate within 
specified maximum temperatures is a crucial global consideration [98]. 
The utilization of PCMs in thermal storage systems has been explored by 
employing a one-dimensional thermal model. This investigation aims to 
optimize advanced packages through the implementation of phase 
change cooling This approach is instrumental in alleviating thermal 
transient effects on high-power electronic packages [99]. To address the 
challenge of poor thermal conductivity during PCM melting and solid
ification, Thermal Conductivity Enhancers (TCEs) are incorporated, 
including internal fins, metal networks, PCM-based heat sinks and 
nanoparticles [100–105]. Research on parameters related to heat sink 
geometry contributes to a more nuanced understanding, identifying 
optimal volume fractions for enhanced thermal performance [106,107]. 
The utilization of multiple PCMs in thermal energy storage (TES) sys
tems signifies improved thermal efficiency [39,108]. The incorporation 
of multiple PCMs is shown to reduce exergy loss and enhance overall 
thermal performance. Experimental examinations of various PCM ar
rangements in a heat sink by researchers reveal extended thermal 
regulation periods and reduced temperatures [109]. 

2.2.4.2. Textiles. PCMs can enhance thermo-regulation in textiles by 
absorbing, storing, and releasing heat. As temperature drops, the stored 
heat is expelled as PCM returns to solid form. This regulates temperature 
and maintains thermal comfort. PCMs in textiles have potential appli
cations in clothing, technical, and interior textiles. Since the 1980 s, 
NASA and textile companies have used PCM technology to develop 
thermo-regulated garments that control abrupt temperature changes in 
harsh environments [29]. PCMs can minimize excess heat and sweating 
while doing physical activity or under hot conditions [110]. PCM 
incorporation techniques include filled hollow fibers [111], adding 
during spinning [112], and coating/laminating on fabrics [113,114]. 
Fiber-based approaches allow easy integration but constrain PCM 
loading whereas coating is flexible yet lacks durability. Trade-offs be
tween thermal performance, weight, and endurance should be consid
ered when choosing the method [115]. Overall, PCM textiles show 
promise for temperature regulation across diverse industries from pro
tective clothing to bedding and medical products [116,117]. Further 
research aims to advance encapsulation and heat transfer to leverage 
their energy storage capabilities more effectively. 

2.2.4.3. Energy storage. PCM TES enhances the viability of solar tech
nology, especially in low or no insolation conditions. Key applications of 
PCM TES include solar water heaters, cookers, air heaters, and 

greenhouses [118,119]. In solar water heaters, PCM layers beneath 
tanks play a crucial role by absorbing heat from water during daylight 
hours through latent heat storage [120]. However, the effectiveness is 
hindered by poor heat transfer between the PCM and water. Solar 
cookers utilize PCM TES to capture and store solar energy for evening 
cooking requirements [121]. Solar agricultural greenhouses leverage 
encapsulated PCMs for daytime heat storage and nocturnal heat release, 
regulating temperatures to enhance plant quality [122]. As solar power 
continues to expand, the integration of PCM TES in collectors, receivers, 
and storage tanks is on the rise. PCM TES plays a vital role in balancing 
energy supply and demand fluctuations in solar thermal power plants. 
Additionally, PCM TES units are increasingly employed in home heating 
applications to store heat during off-peak hours for daytime space 
heating needs [123,124]. In summary, PCM TES has the potential to 
improve the performance, efficiency, and reliability of solar technology. 
Ongoing efforts focus on optimizing heat transfer rates and cycling 
stability. To achieve broader adoption, it is essential to address concerns 
related to durability and the cost-performance ratio [125,126]. Never
theless, PCM TES holds promise for significant sustainability benefits 
through more intelligent utilization of solar energy. 

3. Incorporation of PCMs into building envelopes 

The discussion on integrating PCMs into building applications pri
marily focuses on evaluating their impact on human thermal comfort 
and analyzing temperature variations on building envelope surfaces. 
Aligned with the European Union’s ambitious goal of an 80 % reduction 
in primary resource consumption by 2050, the Holistic Energy and 
Architectural Retrofit Toolkit (HEART) aims to contribute to the crea
tion of nearly zero-energy buildings. The HEART toolkit envisions smart 
buildings that integrate electric, thermal, and information flows, 
necessitating a transition to intelligent management systems and 
energy-efficient technologies [127]. Interconnected subcomponents 
within the HEART project encompass a Decision Support System, pre
fabricated insulation, universal Photovoltaic (PV) tiles, power control
lers, heat pumps, storage units, battery packs, and smart fan coils. Given 
that buildings account for 40 % of the European Union’s total energy 
consumption, effectively harnessing renewable energy is imperative 
[128]. To address retrofitting challenges in residential buildings, the 
integration of PCMs into thermal storage aims to enhance energy effi
ciency and sustainability in building applications. 

3.1. Solar control techniques 

The integration of PCMs into passive cooling techniques redefines 
solar control. PCMs, known for their latent heat absorption and release, 
add dynamism to passive cooling. Incorporated into building elements, 
like walls and windows, PCMs act as thermal batteries, absorbing excess 
heat during high solar exposure and releasing it when temperatures 
drop. This transformative approach enhances overall thermal perfor
mance, offering an efficient means of temperature regulation without 
heavy reliance on active cooling. The incorporation of PCMs stands as a 
cutting-edge solution for sustainable and innovative solar control in 
building design. 

3.1.1. Climate 
The examination of the utilization of passive PCM in diverse climates 

has been carried out. The Köppen-Geiger climate classification system, 
which is classified based on temperature, rainfall, and other climatic 
characteristics, has been employed for this investigation [129]. In 
Table 2, several studies have been scrutinized in this context. In Equa
torial Singapore, exterior PCM reduces annual heat gain by 21–32 % 
[130]. Warm Temperate Lleida, Spain, sees PCM mitigate temperature 
swings, leading to a 15 % energy drop and 1–1.5 kg/year/m2 CO2 

reduction in summer [131]. In snowy Beijing, shape stabilized PCMs cut 
daily maximum temperatures by 2 ◦C [132]. Mediterranean Egypt 
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benefits from a 7 ◦C indoor temperature drop and 14 % cooling energy 
savings with PCM in ceiling panels [133]. Rome and Abu Dhabi show
case effective passive cooling in roofing with PCM around 25–31 ◦C 
[134]. Semi-arid and arid Vicuña and Calama experience enhanced PV 
power generation (5.8 % and 4.5 %, respectively) with a 40 mm layer of 
CaCl2–6H2O [153]. 

3.1.2. Building orientation 
Strategic building orientation plays a pivotal role in maximizing 

solar gains during winter while mitigating excess heat in summer, a 
cornerstone of energy-efficient passive design. Integrating PCMs into 
selectively oriented building envelopes and walls further enhances solar 
control and thermal regulation capabilities. Ideally, buildings should be 
oriented to have their longest facades facing south for consistent solar 
exposure without extensive east or west facing walls, prone to excessive 
summer sun. Overhangs and shading devices can further minimize high- 

angle summer sunlight [136]. Enhancing south walls with PCM insu
lation layers, panels, or modules allows for the absorption of intense 
solar gains during the day through latent heat storage as the PCM melts 
[137,138]. The stored heat is then released slowly as ambient temper
atures cool, creating a thermal buffering effect that maximizes winter 
solar gain benefits while curbing overheating risks in summer 
[139,140]. Strategically placing PCM layers in east, west, or roof as
semblies assists in managing solar loads based on orientations. Varying 
PCM melting points and positioning PCMs internally or externally allow 
for tuning thermal inertia, leading to improved occupant comfort and 
energy efficiency [137]. In cooling-dominated climates, an elongated 
east–west axis is preferred to minimize east and west solar exposure. 
External shading projections and high-performance glazing should be 
optimized to meet codes [141]. PCM integration remains beneficial for 
additional solar control. Table 3 summarizes key findings from various 
studies focusing on the impact of PCMs on building orientations for ideal 
solar gain. 

3.1.3. Shading devices 
Shading devices, like overhangs and louvers, are crucial in dimin

ishing the requirement for artificial lighting and internal heat generation 

Table 2 
PCM Integration in Climate Control.  

Location, Climate Classification 
(Köppen-Geiger climate 
classification) 

Key Findings* Ref 

Singapore, Equatorial (Af).  • In exterior applications, resulted in 
substantial annual heat gain 
reduction by 21–32 %  

• Thicker PCM layers exhibited 
diminishing efficiency and cost 
benefits, highlighting the overall 
effectiveness of PCM integration in 
enhancing building envelope 
thermal management. 

[130] 

Lleida, Spain, Warm Temperate 
(Csa).  

• Alleviates daily temperature swings, 
resulting in a considerable 15 % drop 
in energy usage and a notable 
decrease of 1–1.5 kg/year/m2 in 
CO2 emissions during the summer 
season. 

[131] 

Beijing, China, Snow (Dwa).  • Optimized shape stabilized PCM 
(SSPCM) plates, designed with a 
melting temperature of 26 ◦C and a 
thickness of 20 mm, demonstrated a 
significant reduction of up to 2 ◦C in 
daily maximum temperatures. This 
showcases the potential for these 
specific SSPCM attributes to 
contribute to energy-efficient cool
ing in summer. 

[132] 

Egypt, Mediterranean (Csa).  • PCM integration in ceiling panels 
results in a 7 ◦C indoor temperature 
decreases and 14 % total cooling 
energy savings for an office building. 

[133] 

Rome, Italy, Mediterranean 
(Csa) Abu Dhabi, UAE, Arid 
(BWh).  

• The study assessed an innovative 
cool polyurethane-based membrane 
with PCM for roofing, finding that 
PCM integration significantly 
reduced roof surface temperatures, 
with optimal results in the cool 
membrane and PCM around 25 ◦C to 
31 ◦C, demonstrating effective pas
sive cooling potential in peak sum
mer conditions for Rome and Abu 
Dhabi. 

[134] 

Vicuña, Chile, Semi-arid (BSh), 
and Calama, Chile, Arid 
(BWk).  

• Reduces PV temperatures by up to 
17.5 ◦C, leading to a 5.8 % increase 
in power generation in Vicuña and a 
4.5 % increase in Calama. The 
suggested setup involves a 40 mm 
layer of CaCl2–6H2O. 

[135] 

* The percentage savings presented in the table provided in the referenced pa
pers are indicative and should not be used for explicit work. These numbers 
serve as estimations based on the specific contexts of the studies cited and may 
not directly apply to all scenarios. Factors such as building design, climate 
conditions, and PCM properties can significantly influence actual energy 
savings. 

Table 3 
PCM Integration Orientation Strategies.  

Focus Key Findings* Ref 

Innovative Application of PCMs 
for Energy Savings.  

• PCMs in buildings reduce heat loads 
by up to 75 %, especially effective 
for variable load intensity.  

• Limited impact on North-facing 
walls; solar radiation intensity 
crucial for PCM’s effect on energy 
consumption. 

[137] 

Performance of BIPV and BIPV- 
PCM Modules in Experimental 
Room.  

• BIPV-PCM module with inorganic 
glauber salt PCM shows a 10 % 
increase in electrical efficiency.  

• Reduced surface temperature and a 
peak temperature drop of 8 ◦C 
observed.  

• East orientation yields optimal 
results, advocating for BIPV-PCM 
adoption in hot and humid climates. 

[138] 

PCM Impact on Building 
Orientations for Passive 
Cooling.  

• Energy savings of 70–90 % observed 
in South-facing walls during peak 
summer.  

• Limited savings for North and West 
walls, emphasizing the importance 
of strategic PCM placement and 
layer thickness. 

[139] 

Comparative Simulation of Walls 
with and without PCMs.  

• No clear optimum temperature; 
range between 5 ◦C and 35 ◦C.  

• PCM helps reduce maximum heat 
flux, leading to a decrease in power 
requirements for HVAC systems.  

• Unexpected fluctuations in total 
heat attributed to the high thermal 
inertia of standard walls. 

[140] 

Optimization of Thermal 
Management in PV Modules 
using Multiple PCMs.  

• Innovative arrangement of multiple 
PCMs enhances melting time by up 
to 18 %.  

• Extends PV thermal management 
duration by 33 %.  

• Effectiveness influenced by PV 
inclination and the number of PCMs.  

• Lower inclination angle and more 
PCMs augment thermal 
management potential, improving 
electrical efficiency and energy 
storage capacity. 

[142] 

* The percentage savings presented in the table provided in the referenced pa
pers are indicative and should not be used for explicit work. These numbers 
serve as estimations based on the specific contexts of the studies cited and may 
not directly apply to all scenarios. 
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[12,143]. Emphasizing the importance of passive shading instruments in 
enhancing energy efficiency, highlighting their role in sustainable 
architectural design through the endorsement of diverse shading 
methods. This encourages the implementation of various shading stra
tegies (as passive, active and hybrid shading [144]) to maximize energy 
conservation and support passive cooling in buildings. 

Table 4 highlights some of the key studies that have analyzed the 
energy and comfort improvements from integrating PCMs into different 
forms of shading systems. Shading devices incorporating PCMs 
demonstrate substantial benefits, with a 5 % reduction in cooling load 
and variations in angles and length leading to an 8 % increase in savings 
[14]. The application of PCMs to shading systems results in a 

noteworthy 44 % decrease in cooling energy consumption and a 
remarkable 34 % improvement in comfortable hours [145]. Combined 
with other strategies, such as insulation and PV panels, these findings 
underscore the potential of shading devices with PCMs in achieving 
significant energy savings and enhancing building performance 
[146–149]. The studies overall verify promising potential for PCM- 
enhanced shading devices as a passive cooling technique meriting 
further real-world testing and optimization. 

3.1.4. Wall construction 
The integration of PCMs in wall construction has emerged as a 

promising avenue for effectively managing excess solar heat gains and 
enhancing energy efficiency in buildings. The PCM-Enhanced Wall 
System, investigated through theoretical modeling and energy demand 
analysis, explores the nuanced relationship between energy savings and 
factors such as optimal melting points and ventilation strategies 
[150–152]. Double Skin Façades (DSF) take center stage as mathemat
ical modeling and simulations in temperate continental climates un
derscore their potential, emphasizing key configurations like dual-PCM 
melting temperatures, thicknesses, and multistep placements for 
optimal performance [153,154]. Cavity walls, a crucial component in 
building envelopes, play a pivotal role in reducing energy loss. Para
metric studies and numerical models elucidate the importance of PCM 
layer locations within the cavity, with optimal thicknesses and phase 
transition temperatures identified for efficient space cooling [155,156]. 
This thorough examination, as indicated in Table 5, delves into the 
cooperative initiatives aimed at progressing sustainable and energy- 
efficient building methods. 

3.1.5. Window 
Windows play a significant role in a building’s heating and cooling 

load, regardless of advancements in coatings, sealed glazing, and tight 
gaskets [157]. The ventilated window (VW) concept focuses on regu
lating outdoor airflow through the double window cavity, aiming to 
reduce solar heat gain in summer, minimize room heating load, and 
enhance thermal comfort by utilizing solar radiation to preheat venti
lation air in winter [158]. However, challenges arise as the pretreated 
supply air temperature often falls short of reaching room temperature 
[159]. To address this limitation, PCM emerges as a promising solution. 
PCM can provide additional thermal storage in the VW, forming an 
active system for enhanced performance. Table 6 showcases a variety of 
research outcomes associated with the utilization of windows for sun
light exposure in passive cooling techniques. 

3.2. Passive desiccant cooling 

Passive desiccant cooling systems, an innovative answer to energy- 
efficient air conditioning, have gained prominence in recent literature. 
They are highlighted for their potential to achieve precise control over 
indoor temperature and humidity by combining desiccants with other 
passive strategies. Significant progress has been made, particularly in 
integrating PCMs and desiccants. These two elements work together 
synergistically, effectively managing dynamic thermal conditions. 
Table 7 presents research findings on the subject, delving into various 
investigations in this field. 

3.3. Heat dissipation techniques 

3.3.1. Evaporative cooling 
Tailored for hot and arid climates as well as temperate regions, 

evaporative cooling offers an alluring alternative to conventional air 
conditioning systems such as vapor compression, absorption, or ther
moelectric refrigeration, providing not only economic advantages but 
also contributing to environmental sustainability [168]. The funda
mental principle revolves around leveraging the substantial enthalpy of 
water evaporation to effectively absorb heat from the surrounding air, 

Table 4 
PCM Integration with Shading Devices Strategies.  

Shading Type Location Climate Zone Key Findings* Ref 

Horizontal Fins 
with PCM. 

Darwin, 
Australia. 

Hot and 
humid.  

• 5 % reduction in 
cooling load, 
while variations 
in angles and 
length increased 
savings to 8 %. 

[14] 

Horizontal 
louvers with 
PCM. 

South 
Korea. 

Temperate.  • 44 % cooling 
energy savings.  

• 34 % more 
comfortable 
hours. 

[145] 

Generic with 
optimized 
PCM. 

Algeria. Multiple zones.  • Up to 63 % 
heating energy 
savings15% 
cooling savings 
in hot/dry 
climates. 

[146] 

Envelope 
shading and 
exterior wall 
thermal 
insulation 
with PCM. 

Chongqing, 
China. 

monsoonal 
humid 
subtropical.  

• 11.31 % and 
11.55 % savings 
in AC electric 
consumption.  

• When 
combined, 
25.92 % 
reduction in 
annual AC 
electric 
consumption, 
21.08 % cooling 
and 34.77 % 
heating electric 
consumption. 

[147] 

External shading 
and insulation 
including 
PCMs and PV 
panels. 

Madagascar Coastal 
Tropical  

• Enhance 
comfort by 3 %, 
cut cooling 
energy use by 
12 % in coastal 
offices. External 
shading and 
insulation 
reduce cooling 
by 19 %. PV 
panels 
contribute 
43–79 % of total 
energy. 

[148] 

Dynamic Solar 
Shading 
Device with 
alveolar 
polycarbonate 
panels filled 
with PCMs. 

Turin, Italy. Mediterranean  • 40 % reduction 
in cooling 
energy, 
enhanced 
window 
thermal inertia, 
and improved 
indoor comfort. 

[149] 

* The percentage savings presented in the table provided in the referenced pa
pers are indicative and should not be used for explicit work. These numbers 
serve as estimations based on the specific contexts of the studies cited and may 
not directly apply to all scenarios. 
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resulting in a significant reduction in air temperature and a simulta
neous increase in humidity [169]. This technique’s adaptability is 
showcased through its classification into two primary types: direct 
evaporative cooling (DEC) and indirect evaporative cooling (IEC) [170]. 
Experiments conducted in Bangalore, India, exhibit enhanced solidifi
cation behavior, faster-charging duration, and increased heat transfer 
rate in the hybrid system PCM-based storage system, highlighting its 
potential for efficient and sustainable cooling solutions. The integrated 
system outperforms the conventional FC system, presenting a promising 
approach for energy-efficient building cooling or integration with 
existing HVAC systems, with further research avenues identified for 
optimization and parameter analysis [171]. DEC entails direct interac
tion between the air stream and water, utilizing the sensible heat of air 
to facilitate water evaporation. This process induces a drop in air tem
perature and an elevation in humidity, with its efficiency contingent on 
the moisture content of the intake air [172,173]. 

Conversely, IEC employs a heat-exchanging wall to segregate dry and 
wet air streams, preventing additional moisture in the product air [173]. 
Suggested guidance proposes combining IEC with additional cooling 
systems to enhance overall performance, emphasizing factors such as 
cooling effectiveness, temperature reduction, and reliance on climatic 
conditions [174]. The results of a study on a solar-powered solid 
desiccant air conditioning (SPSDAC) with a PCM unit, employing two 
modes of indirect evaporative cooling (IEC), demonstrated energy effi
ciency. COP surpassed the exergy efficiency, ranging from 1.83 % to 
1.99 %, and in mode-2, the mean overall thermal storage capacity 
reached 1817.7 W, highlighting the effectiveness of the system and its 
potential for sustainable cooling solutions [175]. 

3.3.2. Convective cooling 
PCMs are pivotal in enhancing convective cooling across various 

ventilation strategies. In Natural Ventilation, PCMs strategically inte
grated into building materials optimize cooling by absorbing and 
releasing heat, stabilizing indoor temperatures and enhancing overall 
comfort [176]. Mechanical Ventilation systems, including Trombe walls, 
Solar chimneys, and Buoyancy-driven stack ventilation, incorporate 
PCMs to absorb and release solar heat, facilitating convective airflow. 
PCM-enabled Solar chimneys strategically release stored heat to 
enhance cooling, and in Buoyancy-driven stack ventilation, PCMs opti
mize air circulation [177]. Nocturnal Ventilation, designed for night
time cooling, benefits significantly from PCMs, which absorb excess heat 
during the day and release it at night, improving air exchange and 
thermal radiation. PCM-enabled nocturnal ventilation enhances energy 
efficiency by utilizing the material’s capacity to store and release en
ergy, contributing to effective convective cooling methods [178]. 
Table 8 reviews multiple studies in this field and provides a condensed 
overview of their findings. 

Table 5 
PCM Integration in Wall Construction.  

Type of wall Research Approaches Key Findings* Ref 

PCM-Enhanced 
Wall System. 

Theoretical 
Modeling, Energy 
Demand Analysis.  

• Optimal PCM melting 
point varies 
(18–19.5 ◦C), yielding 
minimum energy 
demand at 19 ◦C. 
Highest savings for 
pattern C at 18 ◦C 
without ventilation, 
reduced with active 
ventilation. 

[150] 

PCM integration in 
building walls 
and roof studied 
in hot climate of 
Aswan, Egypt. 

Experimental 
Employed a 2D 
thermal model in 
ANSYS 2020 R1.  

• PCM achieves 2 ◦C 
Average Indoor 
Temperature Reduction, 
up to 8.71 % Thermal 
Load Levelling 
Reduction, 56 W 
Average Heat Gain 
Reduction, 1.35 kg/day 
CO2 Emissions Saving, 
and 80.64 IQD/day 
Energy Cost Saving. 
Roof application proves 
more effective. 

[151] 

PCM on inside and 
outside of 
exterior walls. 

Parametric and 
economic analysis 
Sichuan hills, China.  

• Inside wall PCM 
placement achieves 
16.89 % higher energy 
savings. Optimal combo 
cuts demand by 21.07 
%. PCM thickness, 
conductivity key for 
energy and economic 
benefits. Investment 
balanced in 25 years 
below 6.75 CNY/kg. 

[152] 

DSF Mathematical 
modeling, 
simulation, 
evaluation under a 
temperate 
continental climate.  

• Optimal DPCM 
configuration: 28 ◦C and 
16 ◦C melting 
temperatures, 36 mm 
thickness, multistep 
placement, yielding 
lowest heat transfer rate 
(30.03 W). In Urumqi’s 
climate, daytime 
ventilation peaks at 
91.4 % efficiency. 
Optimal flow velocity 
for energy performance 
and climate balance is 
1.09 m/s, achieving 
79.7 % respiratory 
efficiency. 

[153] 

DSF Energy Performance 
Study in Three 
Climates.  

• Tehran 
(Mediterranean): Peak 
energy savings 1439 
kWh (77.2 %) in 
November. Tabriz 
(Cold/Semi-arid): Peak 
savings 453 kWh (61.4 
%) in May. Kish (Hot/ 
Semi-arid): Peak savings 
120 kWh (30.5 %) in 
February. 

[154] 

Cavity wall Parametric Study, 
Numerical Model, 
Experimental 
Verification.  

• Optimal PCM location 
crucial for over 50 % 
heat flux reduction, 
shifting outward with 
increased wall 
insulation. Peak 
reductions at 7 mm 
thickness offer 
installation flexibility. 
Efficient cooling 
requires PCM transition 
temperature of 27 ◦C- 

[155]  

Table 5 (continued ) 

Type of wall Research Approaches Key Findings* Ref 

31 ◦C, aligning closely 
with experimental data, 
showing a 3.5 % average 
peak heat flux 
difference. 

Cavity wall Experimental and 
Numerical Analyzes.  

• 5 % reduction in energy 
consumption to 
maintain indoor air 
temperatures between 
24 ◦C and 26 ◦C. 

[156] 

* The percentage savings presented in the table provided in the referenced pa
pers are indicative and should not be used for explicit work. These numbers 
serve as estimations based on the specific contexts of the studies cited and may 
not directly apply to all scenarios. 
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3.3.3. Radiative cooling 
RC utilizing the Earth’s atmosphere and sky as a heat sink, has been 

employed for centuries, notably in ancient ice-making practices [192]. 
This passive cooling method gains contemporary significance in build
ing energy efficiency. Solar reflectance, emissive radiators, and mate
rials like polymers and inorganic particles influence RC during the day 
[193]. Yet, challenges persist in realizing novel radiative radiators, 
potentially leading to supercooling and increased heating demands 
[194]. Integrating PCMs into building envelopes offers a solution, 
buffering against supercooling and enhancing thermal capacity [195]. 
Studies by various authors, summarized in Table 9, underscore the po
tential and applications of RC, emphasizing system optimization, cli
matic considerations, and material constraints. 

3.4. Heat modulation 

3.4.1. Free cooling 
FC an essential facet of passive cooling, capitalizes on nocturnal 

coolness to counter daytime heat in buildings. This technique exploits a 
structure’s thermal mass, and its efficacy can be significantly augmented 
by incorporating PCMs. PCMs, with their latent heat storage capabilities, 
optimize FC, reducing system sizes and enhancing overall efficiency. 
Thoughtful selection of PCM melting temperatures ensures tailored 
application across various climates. This harmonious integration of FC 
and PCMs represents an innovative, sustainable solution, providing cost- 
effective management of daytime heat accumulation through strategic 
nocturnal cooling processes in building design [171,200,201]. Table 10 

Table 6 
PCM Integration in Windows.  

Type of wall Research Approaches Key Findings* Ref 

PCM-VW EnergyPlus model 
validated, control 
strategies tested for 
Danish climate.  

• Energy savings up to 
62.3 % and 9.4 % 
compared to primitive 
strategies for summer 
and winter 
applications, 
respectively.  

• Window orientation 
influences energy 
savings, with 
southwest-facing win
dows showing higher 
savings. 

[158] 

double-glazed 
window-PCM 
and solar 
control glass. 

Examined numerically 
its thermal 
characteristics during 
summer in northern 
China.  

• A PCM double-glazed 
window with solar 
control glass exhibits 
energy savings of 
14.25 % on sunny days 
and 26.31 % on cloudy 
days with a glass ab
sorption coefficient of 
160 m− 1. With a glass 
refractive index of 3, 
the energy savings in
crease to 41.53 % on 
sunny days and 24.33 
% on cloudy days. 

[160] 

PCM in high-rise 
apartments 
with 80 % 
window-to-wall 
ratio. 

Investigated reducing 
solar absorptivity and 
enhancing latent heat 
storage.  

• Significant reduction 
in peak temperatures 
by up to 6 ◦C. PCM 
system exhibited 
15.6–47.6 % decrease 
in heat transfer with 
efficient thermal 
storage for retrofit 
projects. 

[161] 

PCM-Enhanced 
Window with 
Solar Reflector. 

Large-scale climate 
simulator and dynamic 
cycles.  

• PCM-window activates 
phase change at 
28.5 ◦C, yielding >
4 ◦C temperature 
difference; incomplete 
transition results in <
2 ◦C. In Test 9, TES 
decreases, showing <
3 ◦C temperature 
difference after solar 
pulses; PCM-window’s 
thermal inertia 
requires at least 24- 
hour relaxation for 
steady state. 

[162] 

* The percentage savings presented in the table provided in the referenced pa
pers are indicative and should not be used for explicit work. These numbers 
serve as estimations based on the specific contexts of the studies cited and may 
not directly apply to all scenarios. 

Table 7 
PCM Integration in Passive Desiccant Cooling Systems.  

Research Methods Key Findings* Ref 

Numerical comparison of air 
desiccant cooling system 
performance with three thermal 
energy sources of Cairo-Egypt.  

• average Energy savings ~ 75.82 %.  
• the highest percentage savings in 

electrical energy consumption, 
ranging from 60.87 % to 90 %.  

• At an energy cost of 0.55 LE/kWh, 
the economic analysis reveals a 
reduced annual operating cost of 
626 LE, resulting in a shorter 
payback time and amplified life 
cycle savings. 

[163] 

Simulation assesses 2-phase 
passive cooling in a Harare 
office, combining desiccants 
and PCMs for comfort.  

• The study emphasizes desiccants’ 
collaborative role in achieving 
comfort with PCMs in passive 
cooling.  

• Load management maintains 60 % 
relative humidity and around 27 
◦C; without PCM and desiccant, 
discomfort arises with 80 % 
humidity and 30 ◦C. 

[164] 

Novel solar-powered desiccant air 
conditioning system enhanced 
with PCM in PVT solar collector 
for a typical day in August.  

• Maximum cooling COP 
(Coefficient of Performance) and 
distillate water production were 
0.411 and 4.9 l/h, respectively, at 
an air mass flow rate of 0.78 kg/s. 
Maximum electrical power 
generation and efficiency of the PV 
collector were 0.72 kWh and 13.7 
%, respectively, at 13:00. PCM 
delivered approximately 0.89 kWh 
of thermal energy to the air 
conditioning system.  

• Thermal COP ranged from 0.12 to 
0.411, with freshwater production 
varying from 0.76 l/h to 4.9 l/h for 
different air mass flow rates. 

[165] 

PVT solar collector, PCM, 
transient simulations assess 
seasonal performance.  

• Maximum PV module electricity 
generation occurs in October at 
0.77 kW, with minimum electrical 
efficiency in September at 13.6 %.  

• Implemented for solar desiccant 
air conditioning system enhanced 
by PCM, utilizing solar energy for 
desiccant wheel regeneration, and 
reducing auxiliary heater energy 
consumption. 

[166] 

PCM-based Solar Desiccant 
Cooling (PSDC) and Heat Pump 
Hybridized with PCM-based 
Solar Desiccant Cooling (HP- 
PSDC) in various cities.  

• The PCM-PSDC demonstrated a 
COP of 1.44 in Toronto and 1.05 in 
Vancouver. In contrast, the Heat 
Pump Hybridized with PCM-HP- 
PSDC achieved a COP of 4.98 in 
Doha and 4.5 in Bangkok, with 
PMV and PPD values meeting 
comfort criteria. 

[167] 

* The percentage savings presented in the table provided in the referenced pa
pers are indicative and should not be used for explicit work. These numbers 
serve as estimations based on the specific contexts of the studies cited and may 
not directly apply to all scenarios. 
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showcases the outcomes of multiple investigations scrutinizing the 
integration of PCM PCM-FC by principles of energy efficiency. 

3.4.2. Thermal mass 
The incorporation of PCMs into thermal mass components, such as 

wallboards, windows, roofs, and ceilings, presents a compelling avenue 
for optimizing these strategies. The diverse techniques for PCM 

Table 8 
PCM Integration in Convective cooling Systems.  

Methods of Research Key Findings* Ref 

Natural Ventilation with PCM.  • High energy savings were obtained in 
the scenario with PCM and controlled 
ventilation e.g. Brisbane (59.19 %), 
Seville (31.5 %), Cagliari (35 %), 
Madrid (39.86 %), Cedula (48 %), 
and Antofagasta (54.57 %).  

• In moderate climates, combining a 
PCM passive system with NV led to an 
improvement in effectiveness, 
escalating from 3.32 % to 25.62 %. 

[179] 

Natural Ventilation with PCM.  • Increase contact area by 3.6 times.  
• Utilizing encapsulation shapes like 

fins, cylinders, and spheres continues 
to enhance convective heat transfer 
coefficients, ensuring the efficient 
utilization of substantial amounts of 
PCM. 

[180] 

Natural Ventilation with PCM.  • Wind speed as a key parameter for 
maximizing coolness at night.  

• Controlled fan operation based on 
outdoor temperature (Optimum fan 
operation time between 19:00 and 
7:00).  

• PCM thickness of 6 mm was identified 
as optimum for hot and humid 
conditions. 

[181] 

Mechanical Ventilation Trombe 
wall with integrated PCM 
wallboards.  

• Reduction in annual cooling energy 
consumption by 20.8 % at an indoor 
air temperature of 22 ◦C and 18.6 % 
at 24 ◦C compared to classical 
Trombe wall systems.  

• The use of high-reflective coating and 
nighttime ventilation resulted in an 
average cooling energy release of 
43.5 W/m2 for interior PCM and 44.2 
W/m2 for exterior PCM in severe 
summer conditions. 

[182] 

Mechanical Ventilation with 
double-layer PCM Trombe 
wall  

• In summer, the new double layers 
PCM Trombe wall reduced average 
room temperature by 1.09–2.91 ◦C, 
delayed peak temperature 
occurrence, and decreased heat flux 
by 9.1 %-92 %.  

• In winter, the new double layers PCM 
Trombe wall outperformed in 
maintaining higher maximal 
temperature, reducing heat flux, and 
achieving better decrement factor, 
discomfort degree, and fluctuation 
number compared to other walls. 

[183] 

Solar chimneys with a PCM  • CFD models optimized solar chimney 
sizing, indicating an optimal channel 
width of 10–30 cm and a chimney 
height of 2–3 m to prevent 
recirculation. Limited development of 
transient CFD models with PCM, due 
to computational challenges, and GEB 
models integrating PCM suggested 
potential for enhancing nocturnal 
ventilation. 

[184] 

PCM integrated solar chimney 
under laboratory conditions.  

• PCM-integrated solar chimney 
maintains 40 ◦C + surface 
temperature for 6 hrs without heat, 
marking a 33 % increase over the 
non-PCM counterpart.  

• In the charging phases, PCM and No- 
PCM cycles show similar mass flow 
rates, but in ventilation phases, PCM 
achieves over 60 m3/h consistently. 

[185] 

Buoyancy-driven- with 
encapsulated PCM.  

• where convection dominates heat 
transfer, there is a significant 
reduction in melting time—up to 500 
% in vertical orientation and a 

[186]  

Table 8 (continued ) 

Methods of Research Key Findings* Ref 

remarkable 1600 % in horizontal 
orientation.  

• For low Prandtl number PCMs, the 
impact of convection is minimal due 
to the high conductivity of the PCM. 
This results in a melting time change 
of less than 7 % in the vertical 
orientation and 22 % in the 
horizontal orientation. 

Buoyancy-driven melting 
around horizontal cylinder in 
PCM.  

• The study extensively examines melt 
characteristics and thermal 
development around a 2D circular 
cylinder in lauric acid-filled square 
enclosure under laminar natural con
vection. It optimizes lauric acid 
melting with cost-effective heat 
transfer, emphasizing the cylinder 
position’s impact on convective heat 
transport, melt fraction, and energy 
storage. 

[187] 

Wind-driven (PCM-VW).  • Optimizing the melting temperature 
of PCMs in building envelopes, 
combined with temperature- 
controlled natural ventilation, ach
ieves significant cooling energy sav
ings, up to approximately 300 kWh/ 
year in mild climates. 

[12] 

(PCM-VW).  • During ventilation pre-cooling, the 
PCM heat exchanger lowers room 
inlet air temperature by 1.4 ◦C for 7 h, 
saving 0.7 MJ/day. In ventilation pre- 
heating, the PCM raises inlet air 
temperature by 2.0 ◦C for 12 h, saving 
1.6 MJ/day. The PCM-VW, with self- 
cooling, mitigates overheating 
compared to a standard ventilated 
window. 

[188] 

PCM-nocturnal sky radiator.  • A novel PCM-embedded wall with a 
nocturnal sky radiator enhances 
building energy performance, 
reducing internal surface tempera
ture by 1.6 ◦C. Compared to a com
mon wall, it reduces cooling demand 
by 37.8–57.8 %, achieving 15.7–24.1 
% energy savings. 

[189] 

Pipe-encapsulated PCM wall 
and nocturnal sky.  

• In the cooling season, the coupled 
wall system reduces the average 
internal surface temperature by 
0.7 ◦C, internal surface heat flux by 
53.0 %, and required cooling energy 
consumption by 16.1 %, indicating its 
potential for low-energy buildings. 

[190] 

PCM-NV for cooling in different 
climates.  

• Optimal PCM transition temperatures 
are influenced by thermal insulation, 
cooling set points, and climate. In 
hot-dry and sub-tropical climates, 
well-insulated envelopes improve 
PCM effectiveness, reducing optimal 
transition temperature by 1 ◦C. PCM 
thickness affects energy savings, with 
thicker PCMs yielding incremental 
gains. 

[191] 

* The percentage savings presented in the table provided in the referenced pa
pers are indicative and should not be used for explicit work. These numbers 
serve as estimations based on the specific contexts of the studies cited and may 
not directly apply to all scenarios. 
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integration, including direct incorporation, immersion, vacuum 
impregnation, encapsulation, and shape stabilization, cater to different 
building elements, ensuring a comprehensive approach to passive 
cooling. 

The specific application of PCMs in various building components is 
crucial for achieving targeted passive cooling benefits. For instance, in 
walls, PCM-infused materials absorb and release latent heat, stabilizing 
indoor temperatures [203]. Windows with PCM coatings mitigate heat 
gain during daylight hours, contributing to reduced reliance on active 
cooling systems [204]. Roofing materials with embedded PCMs enhance 
the building’s ability to absorb and release solar heat [205], while PCM 
integration in ceilings contributes to thermal stability [66]. These in
stances showcase the flexibility and effectiveness of PCMs in various 

building components, underscoring their significance in the design of 
sustainable and energy-efficient buildings, as outlined in Table 11. 

4. Conclusion 

The integration of PCMs into building envelopes offers a promising 
solution for enhancing energy efficiency and thermal comfort. However, 
challenges such as scalability, compatibility with various building ma
terials, reliability in real-world conditions, and end-of-life consider
ations for responsible disposal or recycling must be addressed 
[44,219–221]. Overcoming these hurdles through targeted research ef
forts is essential to fully leverage the benefits of PCMs. Future research 
avenues encompass exploring bio-based and composite PCMs to 

Table 9 
PCM Integration in Radiative cooling Systems.  

Research Methods Key Findings* Ref 

Coupling effect of RC-PCM on 
building wall.  

• Combining PCM with RC on 
building walls achieves a 
substantial exterior temperature 
reduction of up to 13.63 ◦C, 
demonstrating enhanced passive 
cooling and improved thermal 
control for energy-efficient 
buildings. 

[193] 

RC-PCM wall, integrating 
microchannel heat pipes.  

• Experiments and a mathematical 
model demonstrated that RC- 
PCM, with parameters like wind 
speed, emissivity, and PCM 
thickness considered, exhibited a 
negative correlation between 
interior surface temperature and 
wind speed. RC-PCM cooling 
loads were 25 % lower than a 
brick wall and 42 % under ideal 
conditions. A 20-mm PCM thick
ness yielded 6 % lower cooling 
loads than a 15-mm thickness. 

[196] 

Microencapsulated PCM slurry 
storage system combined with a 
nocturnal RC.  

• Using ACCURACY and MATLAB, 
simulations across five Chinese 
cities showed substantial energy 
savings potential, with Lanzhou 
and Urumqi reaching 77 % and 
62 % for low-rise buildings. The 
hybrid system, recommended for 
dry and cool climates, demon
strated significant energy-saving 
impacts in northern and central 
China. 

[197] 

RC-PCM-wall.  • Field tests showed peak interior 
surface temperatures of 40.7 ◦C 
(Room A), 34.9 ◦C (Room B), and 
32.5 ◦C (Room C). Daily average 
temperatures were 27.8 ◦C, 
27.3 ◦C, and 27.0 ◦C, respectively, 
with PCM melting time in Room C 
extended by 2.3 h. Cooling loads 
from the south wall decreased by 
47.9 % and 23.8 % in Room C 
compared to Rooms A and B. 

[198] 

integrating daytime RC-PCM 
storage for an office in a hot, dry 
climate.  

• Implementing diurnal RC for 
daytime load reduction results in 
a significant 14 kg reduction in 
PCM mass, leading to a notable 
10 % overall cost saving. The 
system not only improves comfort 
conditions by minimizing radiant 
asymmetry but also demonstrates 
potential applications for pre- 
cooling ventilation air. 

[199] 

* The percentage savings presented in the table provided in the referenced pa
pers are indicative and should not be used for explicit work. These numbers 
serve as estimations based on the specific contexts of the studies cited and may 
not directly apply to all scenarios. 

Table 10 
PCM Integration in Free cooling Systems.  

Methods of Research Key Findings* Ref 

PCM-FC, Ventilation system 
studied numerically.  

• a 4-hour complete freezing of PCM 
during the charging process at 
20 ◦C and 7 m/s air speed; a 0.5- 
hour decrease in melting time with 
a 17 % increase in Reynolds num
ber during the discharge process, 
and a 1-hour increase with a 25 % 
reduction in Stephen’s number; 
optimal ventilation occurring at 
the lowest Reynolds number 
(4660) and Stephen number 
(0.075) during discharge, 
providing 5 h of melting time and 
2.1 h of optimal air for room 
ventilation at 420 m3/h with an 
average cooling air injection of 
1.4 kW. 

[200] 

Hybrid cooling: PCM, water spray 
in cylindrical tank.  

• reduction in charging duration (up 
to 34.8 %) and improved heat 
transfer rate observed compared 
to conventional FC systems. The 
integration of the evaporative 
cooling unit accelerates PCM 
solidification and enhances 
thermal performance. 

[171] 

Optimizing PCM solidification 
with increased thermal 
conductivity and heat transfer 
fluid (HTF).  

• increasing PCM thermal 
conductivity reduces charging 
duration, with more significant 
effects at lower HTF temperatures. 
Higher HTF velocities are 
beneficial when the inlet HTF 
temperature is higher, and beyond 
4 m/s, there is no significant 
difference in charging duration. 
The research emphasizes 
optimizing both PCM thermal 
conductivity and HTF velocity for 
improved latent heat TES system 
performance. 

[201] 

Year-round operation of PCM- 
based FC in the tropics studied.  

• Enhanced FC systems (EFCS), 
integrating FC with direct 
evaporative cooling, demonstrate 
enhanced cooling potential, 
particularly in hot-dry and warm- 
humid climates. A study assessing 
major Indian cities indicates year- 
round operational feasibility in 
temperate climates. Experimental 
validation highlights EFCS advan
tages, reducing PCM solidification 
time and achieving complete so
lidification in challenging 
climates. 

[202] 

* The percentage savings presented in the table provided in the referenced pa
pers are indicative and should not be used for explicit work. These numbers 
serve as estimations based on the specific contexts of the studies cited and may 
not directly apply to all scenarios. 
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Table 11 
PCM Integration in Thermal mass Systems.  

Type of wall Research Approaches Key Findings Ref 

PCM Wall. PCM in lightweight 
construction.  

• PCM induces 2-hour 
time lag; Numerical 
model 5 % deviation.  

• reduced external 
temperature 
amplitudes. 

[206] 

PCM Energy- 
Storing 
Wallboard. 

Experimental, 
Numerical.  

• New PCM wallboard 
enhances thermal 
comfort and reduces 
heating energy by 17 % 
with specific 
parameters. 

[207] 

chamber 
equipped with 
PCM. 

Investigated thermal 
performance through 
complete cycle 
experiments.  

• PCM boards lower 
interior wall surface 
temperature.  

• Almost twice the heat 
flux density compared 
to standard walls.  

• Superior insulation 
during charging.  

• Enhanced heat release 
during discharging.  

• Higher convective heat 
transfer coefficient. 

[208] 

PCM-Integrated 
Wall. 

Experimental, 
Simulation, 
(EnergyPlus).  

• PCM boards enhance 
energy efficiency, and 
reduce temperature 
fluctuations. Effective 
in Montreal from 
February, potential for 
20 % energy reduction.  

• Adaptations needed for 
Mediterranean 
climates. 

[209] 

3 cm of PCM 
plaster on all 
building 
exposures. 

Simulation, Energy 
Analysis. Five cities 
considered: Ankara, 
Athens, Naples, 
Marseille, Seville.  

• Cooling energy 
reduction in Ankara is 
7.2 % at 29 ◦C, while 
Seville and Naples see 
less than 3.0 % benefit. 
Not-overheating time 
increases comfort 
hours, particularly at 
26 ◦C and 29 ◦C melting 
temperatures. Comfort 
time rises from 11.2 % 
to 21.9 % in Athens and 
from 32.9 % to 51.0 % 
in Marseille at 26 ◦C. 
Further improvement 
at 29 ◦C is noted in 
Seville (15.4 %) and 
Naples (22.9 %). 

[210] 

PCMs into the 
conventional 
walls of 
buildings. 

Numerical simulation 
Thirteen different PCMs 
incorporated into 
conventional walls in 
Isfahan, Iran.  

• Increasing PCM 
percentage enhances 
energy storage, but the 
relationship is not 
linear.  

• Doubling PCM 
thickness results in less 
than a twofold 
reduction in heat 
transfer. 

[211] 

Lightweight 
Building Walls 
(LBW) with 
PCM. 

Numerical simulation 
of heat transfer model.  

• Ideal PCM placement in 
LBW at a suitable 
phase-transition tem
perature, with a thick
ness under 10 mm, 
reduces temperature 
fluctuations, improving 
thermal performance 
by minimizing heat flux 
and energy 
consumption. 

[212]  

Table 11 (continued ) 

Type of wall Research Approaches Key Findings Ref 

PCM Window 
Panel. 

Experimental, 
Numerical Dynamic 
Thermal Performance 
Investigation.  

• PCM-filled window 
panels reduce heat 
transfer by 66 %, store 
solar energy, and 
improve thermal 
performance.  

• PCM window panels 
maintain interior 
surface temperature 
(21–23 ◦C) in summer, 
reducing heat transfer 
compared to double 
glazing. 

[204] 

VW with PCM 
Heat 
Exchanger. 

Numerical Modeling 
and Full-Scale 
Experiment.  

• Configuration 
optimization is climate- 
dependent, and in a 
Copenhagen case 
study, a 10 mm plate 
thickness heat 
exchanger achieves 
optimal cooling, saving 
3.19 MJ/day with 
16.87 % material cost 
reduction compared to 
a 20 mm plate. A 5 mm 
plate provides faster 
thermal response and 
37.35 % material cost 
savings for shorter 
discharge times. 

[213] 

Triple-Glazed 
Window with 
PCM (TW −
PCM). 

Simulation and 
Mathematical 
Modeling.  

• TW + PCM reduces 
energy consumption by 
21.30 % and 32.80 % 
compared to DW +
PCM and TW on sunny 
summer days. It 
performs well in 
winter, minimizing 
interior surface 
temperature 
fluctuations and saving 
heating energy. 

[214] 

Sloped Roofs and 
Adjacent 
Attics. 

Analysis, Testing, and 
Field Testing.  

• Advanced roof 
configurations achieve 
over 90 % reductions in 
peak-hour cooling 
loads and close to 60 % 
reductions in overall 
cooling loads. Various 
strategies, including 
thermal mass and 
reflective technologies, 
contribute to signifi
cant energy savings. 

[215] 

Roofs with PCM. Numerical 
Investigation.  

• PCM roofs in Northeast 
China show a robust 
temperature delay, 
over 3 h compared to 
common roofs.  

• Transition temperature 
and latent heat impact 
are weak, while roof 
slope, PCM thickness, 
and absorption 
coefficients 
significantly influence 
performance, 
emphasizing the 
importance of 
optimizing these 
factors for enhanced 
thermal energy storage, 
reduced heat loss, and 
improved comfort. 

[216] 

(continued on next page) 
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enhance thermal conductivity, optimizing PCM layer positioning and 
configuration, and developing tailored encapsulation methods for 
diverse building components [222]. Additionally, investigating the 
combination of multiple PCMs with staggered melting points holds the 
potential for improved thermal regulation. Ensuring seamless integra
tion with conventional building materials, rigorous testing, and sus
tainability considerations, including life cycle assessments and eco- 
friendly alternatives, are paramount [57,115,223,224]. Furthermore, 
the development of a universal design rule or workflow would serve as a 
valuable reference for navigating energy-efficient building design 
challenges across different climates and architectural styles [225]. 

The analysis highlights the transformative impact of PCMs on energy 
efficiency and thermal performance across various applications, such as 
solar control techniques (reducing heat loads by up to 75 %), building 
orientation (achieving 70–90 % energy savings in south-facing walls 
during peak summer), shading devices (reducing cooling energy con
sumption by up to 44 %), wall construction (energy savings of 15 % to 
47.6 %), window design (energy savings of up to 62.3 % and 41.53 %), 
climate-specific applications (reducing annual heat gain and mitigating 
temperature swings), passive desiccant cooling (achieving up to 75.82 % 
energy savings and peak electrical reductions from 60.87 % to 90 %), 
evaporative cooling, convective cooling strategies (reducing cooling 
energy consumption by 3.32 % to 59.19 %), radiative cooling (achieving 
a 10 % overall cost saving), heat modulation techniques (reducing 
charging duration by 34.8 %), and thermal mass optimization (reducing 
energy consumption by up to 90 %). 

The integration of PCMs has demonstrated significant potential for 
contributing to the development of intelligent, nearly zero-energy 
buildings and aligning with ambitious energy reduction goals, such as 
the EU’s target of an 80 % reduction. However, addressing the identified 
challenges and pursuing the outlined research directions are crucial to 
unlock the full potential of this innovative technology and pave the way 
for widespread adoption in the construction industry, ultimately pro
moting sustainable and energy-efficient buildings. 
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[139] A. Fateh, D. Borelli, H. Weinläder, F. Devia, Cardinal orientation and melting 
temperature effects for PCM-enhanced light-walls in different climates, Sustain. 
Cities Soc. 51 (2019) 101766, https://doi.org/10.1016/j.scs.2019.101766. 

[140] M.A. Izquierdo-Barrientos, J.F. Belmonte, D. Rodríguez-Sánchez, A.E. Molina, J. 
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