
Synthesising Diverse and Discriminatory Sets

of Instances using Novelty Search in

Combinatorial Domains

Alejandro Marrero amarrerd@ull.edu.es

Departamento de Ingenierı́a Informática y de Sistemas,

Universidad de La Laguna, San Cristóbal de La Laguna, Spain

Eduardo Segredo esegredo@ull.edu.es

Departamento de Ingenierı́a Informática y de Sistemas,

Universidad de La Laguna, San Cristóbal de La Laguna, Spain

Coromoto León cleon@ull.edu.es

Departamento de Ingenierı́a Informática y de Sistemas,

Universidad de La Laguna, San Cristóbal de La Laguna, Spain

Emma Hart e.hart@napier.ac.uk

School of Computing, Engineering and the Built Environment,

Edinburgh Napier University, Edinburgh, United Kingdom

Abstract

Gathering sufficient instance data to either train algorithm-selection models or under-

stand algorithm footprints within an instance space can be challenging. We propose

an approach to generating synthetic instances that are tailored to perform well with re-

spect to a target algorithm belonging to a predefined portfolio but are also diverse with

respect to their features. Our approach uses a novelty search algorithm with a linearly

©2022 by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx



A. Marrero, E. Segredo, C. León, E. Hart

weighted fitness function that balances novelty and performance to generate a large

set of diverse and discriminatory instances in a single run of the algorithm. We con-

sider two definitions of novelty: (1) with respect to discriminatory performance within

a portfolio of solvers; (2) with respect to the features of the evolved instances. We

evaluate the proposed method with respect to its ability to generate diverse and dis-

criminatory instances in two domains (knapsack and bin-packing), comparing to an-

other well-known quality diversity method, Multi-dimensional Archive of Phenotypic

Elites (MAP-Elites) and an evolutionary algorithm that only evolves for discrimina-

tory behaviour. The results demonstrate that the novelty search method outperforms

its competitors in terms of coverage of the space and its ability to generate instances

that are diverse regarding the relative size of the “performance gap” between the target

solver and the remaining solvers in the portfolio. Moreover, for the Knapsack domain,

we also show that we are able to generate novel instances in regions of an instance

space not covered by existing benchmarks using a portfolio of state-of-the-art solvers.

Finally, we demonstrate that the method is robust to different portfolios of solvers

(stochastic approaches, deterministic heuristics and state-of-the-art methods), thereby

providing further evidence of its generality.

Keywords

Instance Generation, Quality Diversity, Novelty Search, MAP-Elites, Knapsack Prob-

lem, Bin Packing Problem.

1 Introduction

In any optimisation domain, it is well known that no single solver can best solve all

instances, necessitating the use of algorithm-portfolios which collectively provide cov-

erage of the problem-space. This leads to the need for per-instance algorithm-selection,

i.e. choosing the best solver from a portfolio for a given instance, a topic first proposed

by Rice (1976) that has garnered considerable attention over recent years (Kerschke

et al., 2019). Many algorithm-selection approaches rely on training a machine-learning

algorithm to predict either performance of a given algorithm or the label of the best

solver, using a large set of representative instances from the domain for training. How-

ever, acquiring sufficient instances that both cover the feature-space of instances and

are discriminatory with respect to the solvers in the portfolio is challenging. Previous

work in the field of instance space analysis (ISA) that provides 2D visualisations of an

2 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

instance space (Smith-Miles, 2009) has revealed that when these spaces are constructed

using readily available benchmarks, there are regions of the instance space that are

completely lacking in instances, while for some solvers, the region in which they per-

form well is sparsely covered (Smith-Miles et al., 2010; Smith-Miles and Bowly, 2015).

Real-world instances can also be used to augment synthetic datasets. However, they

can be hard to come by and each one often only covers a small but unique region of a

space due to high-levels of structure specific to the dataset (Hains et al., 2012). Where

gaps in the space exist, it thus remains unclear whether this is simply due to a lack

of real-data or whether the gaps are related to regions that are not representative of

real-world instances.

To address this, attention has been given to find new instances to fill these gaps.

For example, space-filling approaches such as those described by Smith-Miles et al.

(Smith-Miles et al., 2010; Smith-Miles and Bowly, 2015) directly attempt to fill gaps

in the feature-space in the Travelling Salesman Problem (TSP) and Graph Colouring

domains, but do not account for discriminatory behaviour. On the other hand, other

research has focused on evolving new instances that are maximally discriminative with

respect to a portfolio of solvers (Alissa et al., 2019; Bossek et al., 2019; Plata-González

et al., 2019), i.e. maximise the performance-gap between a target and other solver (re-

spectively in the Bin-Packing, TSP and Knapsack domains), but these methods tend not

to have explicit mechanisms for creating instances that are diverse with respect to the

feature-space.

We argue that in to underpin future work in algorithm-selection and in under-

standing algorithm strengths and weaknesses, better approaches to filling instance

spaces are required. Specifically, we propose that new datasets are needed that: (1)

cover a high proportion of the feature-space relevant to a domain; (2) contain instances

on which the portfolio of solvers of interest exhibit discriminatory performance; (3)

contain instances that highlight diversity in the performance-space, i.e. highlight a range

of values for the performance-gap between the winning solver and the next best solver,

in order to gain further insight into the relative performance of different solvers. In

particular, the latter point has rarely been addressed: most approaches to evolving dis-

Evolutionary Computation Volume x, Number x 3



A. Marrero, E. Segredo, C. León, E. Hart

criminatory instances attempt to maximise the gap between a solver and the next-best

method, resulting in instances that reflect the extremes of the regions of strength of a

solver. However, it is clearly important to also find those all regions in which a solver

outperforms another, not just the extremes.

The main contribution of our work is therefore in proposing an approach that is

simultaneously capable of generating a set of instances which are diverse with respect

to different search spaces (instance or performance) and that exhibit discriminatory but

diverse performance with respect to a portfolio of solvers (where diversity in the lat-

ter case refers to variation in the magnitude of the performance gap). Unlike some

previous work where the goal is to discover instances that are specifically hard for a

portfolio of solvers, our goal is to develop a space-covering method that produces a

large set of discriminatory instances that maximises coverage of the instance space and

that generalises across both portfolios and domains.

Our approach utilises Novelty Search (NS), proposed by Lehman and Stanley

(2011), a type of Evolutionary Algorithm (EA) that in its basic form rewards novelty

rather than quality, thus driving a search algorithm to explore large parts of the search

space. We evaluate the approach in two domains: the Knapsack Problem (KP) and the

Bin Packing (BP) problem. We consider novelty defined with respect to (1) a feature-

based descriptor and (2) a performance-based descriptor to evaluate how the search for

new instances can best be guided. To ensure the approach generalises across portfolios

of solvers, we consider three different portfolios for the KP domain: a portfolio of meta-

heuristics, a portfolio based on deterministic heuristics, and a portfolio containing three

state-of-the-art exact solvers. Results show that both NS approaches succeed not only

in providing considerably better coverage of the instance and performance spaces, but

also obtaining larger sets of diverse and discriminatory instances in comparison to an

approach that does not make use of novelty. Furthermore, in contrast to previous meth-

ods, such as that proposed by Alissa et al. (2019), a single run of our method returns a

large set of instances that are diverse and discriminatory with respect to a single target-

solver. It therefore needs to be run M times, where M is the number of solvers in the

portfolio. In contrast, space-filling approaches, such as those described by Smith-Miles

4 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

et al. (2010); Alissa et al. (2019), tend to converge to a single solution, so in the worst

case need to be run i×M times to generate i instances that are discriminatory for each

of the M solvers.

The paper extends a recent conference paper (Marrero et al., 2022) in which the

idea of using NS in the KP domain was first proposed. In this preliminary work, NS

was used in conjunction with a feature-based descriptor only, and an empirical inves-

tigation into the appropriate tuning of parameters was conducted. This article makes

the following new contributions:

• It extends previous work by introducing a new measure of novelty, specifically a

performance-based descriptor that describes the performance of each solver in a

portfolio, avoiding the need to calculate features. A detailed comparison of both

feature and performance-based descriptors is provided.

• It provides a detailed comparison to another Quality Diversity (QD) algorithm,

MAP-Elites (Mouret and Clune, 2015), which was recently shown to be able to gen-

erate novel instances in the TSP domain (Bossek and Neumann, 2022). In addition,

we also compare to an evolutionary algorithm that only evolves for discriminatory

ability between solvers, rather than novelty. The superiority of the NS approach is

demonstrated in both cases.

• It provides evidence that the method generalises across domains through experi-

ments that generate instances for both the KP and BP domains.

• It provides evidence that the method generalises across portfolios of solvers by

means of experiments that generate instances for meta-heuristic, deterministic

heuristics and state-of-the-art solver portfolios.

The remaining of this paper is organised as follows. Section 2 describes previous

research carried out in the field of instance generation in multiple domains. We then

present a detailed description of our proposed method in Section 3. In Section 4, the

approach is evaluated in two domains, KP and BP. We use the KP domain as a first case-

study to evaluate the approach in detail, comparing to existing methods of instance-

Evolutionary Computation Volume x, Number x 5



A. Marrero, E. Segredo, C. León, E. Hart

generation and also to known instance spaces. Having demonstrated its efficacy, we

repeat the evaluation of the key experiments in the BP domain. Finally, conclusions

and lines of further research are presented in Section 5.

2 Related Work

Several authors have previously applied evolutionary methods to target generation of a

set of instances where one solver outperforms others in a portfolio. For example, work-

ing in the TSP domain, Smith-Miles et al. (2010) use an EA to evolve new instances

which are easy (or hard) for a given solver using an objective function that minimises

(or maximises) the search-effort required by a solver to produce a tour. Plata-González

et al. (2019) focus on the KP and use an EA to evolve instances for a target algorithm us-

ing an objective function that maximises the gap between the performance of the target

and the other solvers in the portfolio. Alissa et al. (2019) follow the same approach but

working in the BP domain. These approaches require running an EA multiple times to

generate instances for a single target algorithm, with each run producing one or more

instances, depending on the extent to which the final population has converged. The

process must be repeated per target algorithm. Furthermore, these methods cannot

guarantee providing a diverse set of instances as each run might converge to similar

solutions. As an alternative to using an EA, Dang et al. (2022) propose a constraint-

based framework used in conjunction with a racing technique (López-Ibáñez et al.,

2016) which provides an automated approach to generate instances that are graded

(solvable at a certain difficulty level for a solver) or can discriminate between two solv-

ing approaches. This is shown to be successful in generating instances for five problems

taken from the MiniZinc domain (Nethercote et al., 2007) but like the EA approaches

mentioned above, focuses only on generating discriminatory rather than ‘diverse and

discriminatory’ instances.

To address this, other work attempts to explicitly maintain diversity while evolv-

ing instances that are easy (or hard) for a target algorithm. In Gao et al. (2016), the

selection method of the EA is altered to favour offspring that maintain diversity with

respect to a chosen feature, as long as the offspring have a performance gap over a

6 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

given threshold, providing promising results for TSP. In Bossek et al. (2019), also work-

ing in TSP, novel mutation operators are designed which are able to generate diverse

instances with respect to a set of features using a simple algorithm. The operators are

also incorporated into an EA to optimise the generation of easy/hard instances for a

target algorithm. Their results show that their method is capable of exposing a large

difference in algorithm performance (easy for one solver and hard for its contender)

while covering a broad spectrum of instance characteristics.

Rather than focusing on evolving discriminatory instances, Smith-Miles and

Bowly (2015); Smith-Miles et al. (2021) describe a method for evolving new instances to

directly fill gaps in an instance space that has been constructed using a large set of known

instances. An existing set of instances is first projected onto a 2D plane in which the

projection is optimised to reveal pockets of strengths and weaknesses of multiple al-

gorithms in the projected feature-space. An EA is then used to evolve new instances

to target gaps in this instance space: overlaying the instance space with performance

data helps to reveal where hard instances are for a given portfolio. In Smith-Miles et al.

(2021), the gap-filling approach is used to reveal new insights into where the hard prob-

lems lie regarding the KP domain, for which the instances proposed by Pisinger (2005)

are considered as the initial set. Two approaches are considered: in the first, an EA is

used to generate weakly structured instances by evolving an instance definition where

fitness is defined as the distance of the instance to the target region. In the second,

an EA tunes the parameters of an instance generator to again minimise the gap to the

target region. Their analysis reveals new insights into the locations of hard KP prob-

lems. This method has also been applied in other domains, e.g. TSP, Graph Colouring

(Smith-Miles and Bowly, 2015), and black-box continuous optimisation (Muñoz and

Smith-Miles, 2020). Focusing on try to gain new insights into what makes an instance

hard for KP solvers, Jooken et al. (2022) proposed a stochastic generator to produce a

new class of hard instances for the KP. Although most of the new instances generated

via this method are located in the same region of the space as those generated by Smith-

Miles et al. (2021), the new instances are much harder to solve than previously known

instances, despite being smaller.

Evolutionary Computation Volume x, Number x 7



A. Marrero, E. Segredo, C. León, E. Hart

Researchers have also appealed to the QD algorithm literature (Pugh et al., 2016) to

find better methods for generating diverse but discriminatory instances. This family of

algorithms that includes NS (Lehman and Stanley, 2011) and MAP-Elites (Mouret and

Clune, 2015) provides mechanisms for simultaneously forcing exploration of a search-

space while optimising for quality within each region. The robotics and games litera-

ture1 has witnessed a rapid explosion of application and development of QD methods

in recent years which is recently beginning to filter into the combinatorial optimisation

domain, specifically as a tool to deliver diverse solutions to an end-user (Urquhart and

Hart, 2018). However, it was recently shown that MAP-Elites can be used to evolve in-

stances for TSP that are diverse with respect to two chosen features and discriminatory

with respect to two solvers (Bossek and Neumann, 2022). At the same time, prelimi-

nary work in the KP domain (Marrero et al., 2022) demonstrated that NS can evolve

large sets of instances that are discriminatory for a portfolio of four solvers in a single

domain. This article pushes further in developing a generalised method of producing

diverse instances that broadly cover an instance space, and are discriminatory with re-

spect to a portfolio of solvers chosen by a user. It extends existing work by comparing

two different novelty descriptors, as the definition of an appropriate descriptor is key to

the functioning of NS (Doncieux et al., 2019). Furthermore, we demonstrate that it gen-

eralises over multiple solver portfolios (containing state-of-the-art, deterministic and

stochastic solvers), and across two domains (KP and BP), as well as providing compar-

isons to existing state-of-the art instance-generation methods, including MAP-Elites.

Finally, we show that the approach is able to generate new instances that lie in new

regions of the instance space not covered by well-known benchmarks, e.g. Smith-Miles

et al. (2021).

3 Methods

This section provides a detailed description of the general method. It is then rigor-

ously evaluated, first in the context of the KP domain using multiple portfolios, and

afterwards in the BP domain to demonstrate its ability to generalise.

1See https://quality-diversity.github.io.

8 Evolutionary Computation Volume x, Number x

https://quality-diversity.github.io


Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

Figure 1: Representation of the instances as stored in memory (genotype).

3.1 Domain and instance representation

We first apply the approach to generating instances for the KP, a commonly studied

combinatorial optimisation problem with many practical applications. The KP requires

the selection of a subset of items from a larger set of N items, each with profit p and

weight w in such a way that the total profit is maximised while respecting a constraint

that the weight remains under the knapsack capacity C.

A knapsack instance is described by an array of integers of size 2 × N where N

is the dimension (number of items) of the instance of the KP we want to create (see

Figure 1), with the weights (wi=0...N−1) and profits (pi=0...N−1) of the items stored at

the even and odd positions of the array, respectively. The capacity C of the knapsack is

determined for each new individual generated as 80% of the total sum of weights, as us-

ing a fixed capacity would tend to create trivial solutions if the weights of the instances

increase significantly. We evolve fixed size instances containing N = 50 items, hence

each individual describing an instance contains 100 values describing pairs of (profit,

weight). In both cases, upper and lower bounds were set to delimit the maximum and

minimum values of both profits and weights.

3.2 Novelty descriptors

We compare two NS approaches, in which novelty of an instance is defined either with

respect to the features of the instance (referred to from here on as feature-based–NSf )

or to the performance of the portfolio on that instance (referred to as performance-

based–NSp).

In the feature-based version, the novelty descriptor is a vector representing fea-

tures of an instance being evolved. A set of eight features are used to describe a KP

Evolutionary Computation Volume x, Number x 9



A. Marrero, E. Segredo, C. León, E. Hart

instance. The chosen features are inspired by those used by Plata-González et al. (2019),

thus containing: capacity of the knapsack; minimum weight and profit; maximum

weight and profit; average item efficiency (average sum of the ratios profit/weight of

each item); mean distribution of values considering profits and weights (N × 2 integer

values representing the instance); standard deviation of values considering profits and

weights.

The performance-based descriptor is defined as an M -dimensional vector with the

average performance of each optimiser considered in a portfolio of size M . Given a

portfolio of M algorithms, then the novelty descriptor for an instance is calculated as an

M -dimensional vector, where each element Ai=0...M−1 represents the average perfor-

mance over R repetitions of algorithm Ai=0...M−1 on the instance. Searching for novel

performance descriptors ensures that the portfolio is discriminatory (as in order to be

novel, the entries in the descriptor should differ). However, it should be noted that

using this descriptor, it is not possible to guarantee that the differences are significant,

or that the search process will find instances that are ‘won’ by each of the algorithms;

i.e. in the worst case, it would be possible to find novel descriptors in which a single

algorithm is always the ‘winner’.

An additional motivation behind using a performance-based descriptor is that

it avoids the definition of a problem-dependent feature-based descriptor. Thus, the

method could be applied to other domains where obtaining a feature-based descriptor

might be a challenging task.

3.3 Algorithm portfolios

Since in principle, the portfolio can contain any number of types of algorithms that

can produce a solution to the problem, we consider, as a first portfolio, a set of differ-

ently configured versions of a meta-heuristic approach, specifically an EA. Parameter

tuning can significantly impact EA performance on an instance (Nannen et al., 2008).

Therefore, it is expected that different configurations of the same approach cover dif-

ferent regions of the instance space. The EA used to produce a solution to each KP

instance (EAsolver) is a generational elitist algorithm with parameters defined in Ta-

10 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

ble 3 in the Appendix. Previous empirical investigation of this algorithm revealed that

the crossover rate was one of the parameters with the largest impact over its perfor-

mance (Marrero et al., 2022). Therefore, we defined four configurations that differ only

in the crossover rate. The crossover rate can take one of four possible values commonly

used in the literature: 0.7, 0.8, 0.9 or 1.0.

Two additional portfolios are also considered in order to determine if the approach

generalises. The first is a portfolio containing a set of four simple deterministic heuris-

tics (Plata-González et al., 2019) commonly used in the field, i.e. Default (Def), which

selects the first item available to be inserted into the knapsack; Max Profit (MaP),

which sorts the items by profit and selects those items with largest profit first; Max

Profit per Weight (MPW), which sorts the items by its efficiency (ratio between the

profit and weight of each item) and selects those items with largest ratio first; and Min

Weight (MiW), which selects items with the lowest weight first.

Lastly, instances are evolved that are discriminative for a portfolio of state-of-the-

art solvers for the KP domain. The portfolio consists of a branch-and-bound technique

called Expknap (Pisinger, 1995), and two dynamic programming approaches known as

Minknap (Pisinger, 2000) and Combo (Martello et al., 1999). Since a detailed explanation

of these methods is out of the scope of this work, the reader is referred to the original

publications for more details.

3.4 Instance generation via novelty search

Novelty Search was first introduced by Lehman and Stanley (2011) as an attempt to

mitigate the problem of finding the optimal solution in deceptive problems, i.e. a prob-

lem in which lower-order building blocks, when combined, do not lead to a global

optimum (Lehman and Stanley, 2011). In such problems, the reward signal or fitness

function may actively steer search away from exactly the region of the space where the

solution lies. The core idea was to replace the objective function in a standard evolu-

tionary search process with a function that rewards behavioural novelty rather than a

performance-based fitness: counter-intuitively, they showed that can lead to the dis-

covery of better solutions than using an objective-based search.

Evolutionary Computation Volume x, Number x 11



A. Marrero, E. Segredo, C. León, E. Hart

Algorithm 1: Novelty Search
Input: N , k, evals, portfolio

1 initialise(population, N );
2 evaluate(population, portfolio);
3 archive = ∅ ;
4 for i = 0 to evals do
5 parents = select(population);
6 offspring = reproduce(parents);
7 offspring = evaluate(offspring, portfolio, archive, k) (see Algorithm 2);
8 population = update(population, offspring);
9 archive = update archive(population, archive);

10 solution set = update ss(population, solution set);
11 end
12 return solution set

We propose to use NS to discover a diverse set of instances that can be used e.g.

to inform algorithm-selection. While the ‘vanilla’ version of NS would deliver diver-

sity, it does not have the desired property of creating instances that are also tailored to

be discriminative for a given algorithm. However, a number of techniques have been

proposed in the NS literature to combine the explorative aspect of NS with the more ex-

ploitative search performed by objective-based search algorithms. Multiple proposals

for achieving the desired balance between the two factors can be found in the literature,

e.g. Cuccu and Gomez (2011) propose using a linear scalarisation of novelty and fitness

scores, allowing the experimenter to control the relative weight of the novelty and fit-

ness scores, while a Pareto-based multi-objective optimisation has also been proposed

by Mouret (2011). A thorough comparison of these methods finds little difference be-

tween them (Gomes et al., 2015). Therefore, we adopt the linear scalarisation method

from Cuccu and Gomez (2011), defining novelty with respect to either a feature-space

or performance-space and objective fitness as the performance difference between a

target algorithm and the others in the portfolio considered, herein referred to as the

performance-gap.

The NS algorithm (EAinstance) used is described by Algorithm 1. The algorithm

evolves an initial population of randomly generated instances: one execution results

in generation of a diverse set of instances that are tailored to a chosen target algorithm

belonging to the portfolio. An initial empirical investigation was conducted to set the

population size and the number of evaluations parameters to obtain a reasonable trade-

12 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

Algorithm 2: Evaluation method
Input: offspring, portfolio, archive, k

1 for instance in offspring do
2 for algorithm in portfolio do
3 apply algorithm to solve instance R times;
4 calculate mean profit of algorithm
5 end
6 calculate the novelty score(offspring, archive, k) (Equation 1);
7 calculate the performance score(offspring) (Equation 2);
8 calculate fitness(offspring) (Equation 4);
9 end

10 return offspring

off between the quality of the results obtained and the amount of time for attaining

them. The remaining parameters were set by considering values commonly used in the

literature (Nannen et al., 2008). All parameters are given in Table 4 in the Appendix.

3.4.1 Computing the fitness of an instance

To calculate the fitness of an instance in the population (see Algorithm 2), two quantities

are required: (1) the novelty score measuring the sparseness of the instance and (2) the

performance score measuring the difference in average performance over R repetitions

between the target algorithm and the best of the remaining algorithms.

Given a descriptor x, i.e., typically a multi-dimensional vector capturing relevant

information from a solution, the most common approach is to quantify novelty of an

individual via a sparseness metric which measures the average distance between the in-

dividual’s descriptor and its k-nearest neighbours. The k nearest-neighbours are deter-

mined by comparing a descriptor to the descriptors of all other members of the current

population and to those stored in an external archive of past individuals. The sparseness

s of an instance (Lehman and Stanley, 2011) is then defined as shown in Equation 1:

s(x) =
1

k

k∑
i=0

dist(x, µi) (1)

where µi is the ith-nearest neighbour of x with respect to a user-defined distance metric

dist.

The performance score ps of an instance is calculated differently depending on the

Evolutionary Computation Volume x, Number x 13



A. Marrero, E. Segredo, C. León, E. Hart

particular portfolio of solvers for which instances are generated. First, for portfolios

based on EAsolver or deterministic heuristics, ps is computed as the difference between

the mean profit achieved in R repetitions2 of the target algorithm denoted as tp and the

maximum of the mean profits achieved in R repetitions by the remaining approaches

of the portfolio defined as op (see Equation 2). Profit is defined as the sum of the profits

of items included in the knapsack.

ps = tp −max(op) (2)

On the other hand, portfolios that include state-of-the-art solvers generally reach

the optimal solution for the instance at hand, hence profit cannot be used to distinguish

algorithm performance. Instead, performance is measured in terms of the mean CPU

time required to achieve the optimal solution in R repetitions. Thus, each solver is

run for a maximum of 15 seconds and their run times are collected. If any solver fails

to obtain the optimal solution in that time, we set its run time to 15 seconds. This

time limit is defined following the proposal of Smith-Miles et al. (2021). Moreover, to

ensure that the instances are won by the target algorithm (i.e. it reaches the optimal

solution faster than any other solver in the portfolio), the mean run time achieved in

R repetitions by the target solver (tr) must be smaller than the minimum mean run

time obtained by the other solvers in the portfolio achieved in R repetitions or (see

Equation 3).

ps = min(or)− tr (3)

Finally, the fitness f (Equation 4) used to drive the evolutionary process is cal-

culated as a linear weighted combination of the novelty score s and the performance

score ps of an instance, where ϕ is the performance/novelty balance weighting factor,

following the method described by Cuccu and Gomez (2011).

2In the case of a portfolio based on deterministic heuristics parameter R is set to 1, i.e. no repetitions are
required due to the deterministic nature of the heuristics.

14 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

f = ϕ ∗ ps+ (1− ϕ) ∗ s (4)

It is important to note that to generate discriminatory instances for different algo-

rithms, the target algorithm must vary from one execution to another, i.e. the approach

has to be run for each target solver in the portfolio. This is the same for the majority of

methods proposed previously which also have to be run per solver (Alissa et al., 2019;

Plata-González et al., 2019; Smith-Miles et al., 2010). However, unlike our approach,

previously proposed approaches cannot ensure that multiple instances are produced

in a single run, since the objective function only tries to maximise the performance gap

between the target solver and the next best: as a result, the population can converge

to a single instance in the worst case. In contrast, one of the advantages of our pro-

posal based on NS lies in the fact that a single run ensures the generation of multiple

instances. Hence, on average, our method is likely to produce larger sets of diverse and

discriminatory instances in comparison to those generated by previous methods for the

same computational effort.

Parameters associated specifically with the NS algorithm were set according to

the results presented in previous work (Marrero et al., 2022) in which we conducted a

rigorous exploration of parameters (see Table 4 in the Appendix).

3.4.2 Archive and solution set management

As it can be observed in Algorithm 1, the NS approach has to manage an archive and

a solution set. The archive is supplemented at each generation in two ways. Firstly, a

sample of individuals from the current population is randomly added to the archive

with a probability of 1% following common practice in the literature (Szerlip et al.,

2014). Secondly, any individual from the current generation with sparseness greater

than a pre-defined threshold ta is also added to the archive.

In addition to the archive described above, which is used to calculate the sparse-

ness metric that drives evolution, a separate list of individuals, denoted as the solution

set, is incrementally built as the algorithm runs: this constitutes the final set of in-

stances returned when the algorithm terminates (Szerlip et al., 2014). The solution set

Evolutionary Computation Volume x, Number x 15



A. Marrero, E. Segredo, C. León, E. Hart

is initialised by including the fittest individual of the population at the end of the first

generation of the algorithm. Subsequently, at the end of each generation, each member

of the current population is scored against the solution set by finding the distance to

the nearest neighbour (k = 1) in the solution set. Those individuals that score above a

particular threshold tss are added to the solution set. The solution set forms the output

of the algorithm.

We should note that the solution set does not influence the sparseness metric driv-

ing the evolutionary process. Instead, this approach ensures that each solution returned

has a descriptor that differs by at least the given threshold tss from the others in the fi-

nal collection. Finally, both the archive and the solution set grow randomly on each

generation depending on the diversity discovered without any limit on their final size.

4 Experiments and Results

The primary goal of this work is to evaluate the extent to which NS can be used to gen-

erate diverse but discriminatory instances to cover an instance space, and to demon-

strate it generalises across domains and solver portfolios. Hence, we:

• Conduct experiments with two different novelty descriptors (feature-based and

performance-based) and provide a quantitative and qualitative evaluation of the

diversity and discriminative ability of generated instances in two domains: KP and

BP.

• Analyse the diversity of each subset of instances ‘won’ by a target algorithm with

respect to the performance-gap, i.e. the magnitude of the difference between the

performance of the winning solver and the next-best solver in the portfolio.

• Conduct experiments to compare the performance of the novelty-based ap-

proaches against another QD method (MAP-Elites), and against an EA that only

attempts to maximise discriminatory ability, following the approaches used by,

e.g. Plata-González et al. (2019); Alissa et al. (2019).

• Demonstrate that the method generalises across different solver portfolios: meta-

heuristics, deterministic heuristics and state-of-the-art approaches.

16 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

All algorithms were written in C++, compiled using GNU’s GCC 10.0.2 compiler,

and included into DIGNEA (Marrero et al., 2023b).3

4.1 Generation of instances for a portfolio of EAsolver for KP

First, we run EAinstance with NSf and NSp to compare both approaches using a port-

folio of meta-heuristic solvers: a set of EAs in which each has a different EAsolver con-

figuration, described in Table 3. The result is a dataset of instances generated from each

novelty method (NSf and NSp) to favour specific configurations that are diverse with

respect to the descriptors detailed in Section 3.2, i.e., a feature-space descriptor for NSf

and a performance space descriptor for the NSp approach.

Since we are interested in evaluating the distribution of the instances over the re-

spective spaces, we create 2D representations of the instances in both the feature and

performance spaces. The procedure to generate these plots is described as follows. For

each instance in the dataset, we compute the alternate descriptor; i.e. for the instances

generated using NSf we compute the corresponding performance-descriptor and vice-

versa. Therefore, after this step, each instance in the dataset contains the information

from both descriptors. To plot instances, we reduce the dimensionality of the dataset

using the Principal Component Analysis (PCA) technique. The data used to create the

PCA projections contains the descriptor of interest and additional information describ-

ing the whole instance, i.e. the capacity C, profits pi=0...N−1 and weights wi=0...N−1,

is also considered for visualisation purposes. As we are evaluating the distribution in

two different spaces, we apply PCA in each space separately but are able to project all

instances into each space.

Figure 2 provides the representation of the instances in both spaces. On the left-

hand side, the instances are distributed over the feature space. Notice how the instances

generated by the NSf approach (red dots) cover the space quite uniformly, while on the

contrary, the instances generated by NSp (green crosses) are clustered in the centre of

the region. This is not surprising since NSf is designed to find diversity in the feature

3Supplementary material is available through a Github repository: https://github.com/PAL-ULL/
ns_comb_journal. The source code of DIGNEA can be found in the following Github repository: https:
//github.com/DIGNEA/dignea.

Evolutionary Computation Volume x, Number x 17

https://github.com/PAL-ULL/ns_comb_journal
https://github.com/PAL-ULL/ns_comb_journal
https://github.com/DIGNEA/dignea
https://github.com/DIGNEA/dignea


A. Marrero, E. Segredo, C. León, E. Hart

Figure 2: Left: Instance representation in the feature space after applying PCA to a
dataset containing the feature descriptors and instance information of all instances
generated by both NS approaches (NSf and NSp), as well as by EAinstance without
NS. Right: Instance representation in the performance space after applying PCA to
a dataset containing the performance descriptors and instance information of all in-
stances generated by both NS approaches (NSf and NSp), as well as by EAinstance

without NS. Red dots are used for those instances produced by NSf , green crosses
represent instances generated through NSp, and blue squares represent instances gen-
erated by EAinstance without NS. In both cases, the portfolio based on EAsolver was
considered.

Table 1: Space coverage using the U metric over feature and performance spaces for
instances generated with a portfolio of EAsolver.

Method Feature space Performance space
NSf 0.7880 0.6805
NSp 0.7112 0.7073
EAinstance without NS 0.5995 0.5881

space. However, when we plot the instances over the performance space (right-hand

side of Figure 2), there is no obvious difference between NSp and NSf in terms of space

coverage. Even though NSp is designed to search for diversity in the performance

space, both approaches end up with a similar spatial distribution of instances. Regard-

ing the use of EAinstance without NS, instances are scattered in the centre and upper

regions of the spaces. Since diversity is not promoted during the evolutionary process

that only rewards objective fitness, the instances are located in the regions where the

performance gap between the target algorithm and the remaining approaches in the

portfolio is maximised.

In order to quantitatively evaluate the extent to which the evolved instances cover

the instance space, we calculate the exploration uniformity (U) metric, previously pro-

18 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

posed by Gomes et al. (2015). This enables a comparison of the distribution of solutions

in the space with a hypothetical Uniform Distribution (UD). First, the environment is

divided into a grid of 25 × 25 cells, after which the number of solutions in each cell

is counted. Next, the Jensen-Shannon divergence (JSD) (Fuglede and Topsoe, 2004) is

used to compare the distance of the distribution of solutions with the ideal UD. The U

metric is then calculated according to Equation 5, where δ denotes a 2D-descriptor as-

sociated with a solution. This descriptor is defined as the two principal components of

each solution extracted after applying PCA to the descriptors described in Section 3.2.

A score of 1 denotes a perfectly uniform distribution. Thus, the higher the score the

better.

U(δ) = 1− JSD(Pδ, UD) (5)

Table 1 summarises the coverage metric U per each generation method over the

feature and performance spaces. For each space, three different approaches are eval-

uated; i.e. NSf , NSp and EAinstance without NS. In terms of coverage of the feature

space, NSf obtains higher quality results compared to the other approaches. This is ac-

cording to our expectations since NSf is designed to find diversity in the feature space

and therefore it performs a better exploration of the said space. Similarly, NSp wins

in terms of coverage of the performance space, as expected, by following the previous

reasoning. Nevertheless, we should note that NSf obtains good results compared to

NSp in the performance space, in contrast to the feature space where differences be-

tween NSf and NSp are larger. Finally, running EAinstance without NS results in poor

(less than 0.6) coverage for both feature and performance spaces. In the light of these

results, we conclude that using NS has a substantial impact in improving space cov-

erage and also that NSf seems to be a preferable choice for obtaining better coverage

across spaces.

At this point, it is also relevant to determine the regions of the spaces where the

instances for specific solvers are located. Figures 3a and 3b provide an insight into the

instance location per target solver in both spaces. Figure 3a shows the instances gener-

Evolutionary Computation Volume x, Number x 19



A. Marrero, E. Segredo, C. León, E. Hart

(a) Instances generated per solver in the portfolio based on EAsolver by NSp (left) and NSf

(right) considering the feature space.

(b) Instances generated per solver in the portfolio based on EAsolver by NSp (left) and NSf

(right) considering the performance space.

Figure 3: Instances generated per solver in the portfolio based on EAsolver by both NSf

and NSp methods projected in the feature and performance spaces. Coloured symbols
reflect the ‘winning’ solver in the said portfolio for a particular instance: red pluses
(crossover rate set to 1.0); green squares (0.9), orange crosses (0.8) and blue dots (0.7).

ated using NSp (left-hand side) and NSf (right-hand side) with their respective targets

over the feature space. Analogously, Figure 3b shows the instances over the perfor-

mance space. It is noteworthy that in both cases, NSf generates more differentiated

clusters of instances which could be easily classified by an external method.

In the light of these results, we indicate that NSf is preferable if the goal is to

find diversity in the feature space. Conversely, both approaches seem to present sim-

ilar results when looking for diversity in the performance space. Moreover, from Fig-

ures 3a and 3b we could also infer that NSf produces a better distribution of instances

with respect to the associated target solvers.

20 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

(a) NSf (b) NSp

Figure 4: Distribution of the performance gap between the target approach GA 0.7 (T
in the key) and the remaining approaches in the portfolio based on EAsolver by consid-
ering the instances generated by methods NSf 4a) and NSp (4b).

EAinstance aims to evolve a diverse set of instances whose performance is tailored

to favour a specific target algorithm. Recall however that the performance values ob-

tained are stochastic due to the nature of the solvers used in the portfolio (EAsolver).

Therefore, considering instances evolved for each of the target algorithms with setting

ϕ = 0.85, we conduct a rigorous statistical evaluation to determine whether the results

obtained on the set of instances evolved for a target algorithm show statistically signif-

icant differences compared to applying each of the other algorithms in the portfolio to

the same set of instances.

We followed a statistical testing procedure, whose detailed description can be

found in the Appendix, to support that the instances are in fact discriminatory. Ad-

ditional results are provided in Table 5 in the Appendix, showing that this is true ex-

cept in a very small minority of cases where a draw arose. We note that in no case did

the target algorithm perform statistically worse on an instance generated for it when

compared to another solver in the portfolio.

In the case of NSf , for the three algorithms with configuration {0.7, 0.8, 0.9},

then for the vast majority of instances, the target algorithm outperforms the other al-

gorithms. However, for these three algorithms, it appears harder to find diverse in-

stances where the respective algorithm outperforms the algorithm with configuration

1.0. Thus the results provide insights into the relative strengths and weaknesses of each

algorithm (approximated by the number of generated instances).

Evolutionary Computation Volume x, Number x 21



A. Marrero, E. Segredo, C. León, E. Hart

On the contrary, for NSp, the results in Table 5 show that even though the target

algorithm is able to statistically outperform other approaches in some instances, the

number of instances where there is no statistically significant difference is larger in

every scenario when compared to the results achieved by NSf . For example, approach

GA 1.0 was able to show statistically better performance than GA 0.8 in 101 out of

209 instances, but there was no significant difference in 108 out of those 209 instances.

Note however that the number of instances generated by NSp was larger in every case

in comparison to the number of instances generated by NSf .

Figures 2, 3a and 3b provided an insight into the diversity of the evolved instances

with respect to the feature and performance spaces. We now provide further insight

into the diversity of the evolved instances in terms of performance difference (per-

formance gap) among solvers using both NS approaches (see Figure 4). That is, we

consider instances that are ‘won’ by a target algorithm and consider the spread in the

magnitude of the performance gap as defined in Equation 2. We note that the approach

is able to generate diverse instances in terms of this metric using either NS approxima-

tion: while a significant number of instances have a relatively small gap when using

NSp (as seen, for instance, by the left skew to the distribution in Figure 4b), we also

find instances spread across the range (see Figure 4a) when NSf is applied. The in-

stances therefore exhibit diversity in terms of the performance gap, as well as diversity

in terms of coverage of the analysed spaces.

4.2 Generation of instances for a portfolio of deterministic tailored heuristics for

KP

To understand how the method generalises across different portfolios, we perform a

similar experimental evaluation first with a portfolio deterministic KP heuristics, i.e.

Def, MaP, MPW and MiW, which were defined in Section 3.3. All the parameters for

EAinstance are the same as shown in Table 4 in the Appendix, setting the maximum

evaluations to perform at 10,000 and parameter R = 1. We run EAinstance with the

new portfolio using both variants, i.e. NSf and NSp, as in the previous section.

Figure 5 provides an insight into the distribution of the instances over the feature

22 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

Figure 5: Left: Instance representation in the feature space after applying PCA to a
dataset containing the feature descriptors and instance information of all instances
generated by both NS approaches (NSf and NSp), as well as by EAinstance without
NS. Right: Instance representation in the performance space after applying PCA to
a dataset containing the performance descriptors and instance information of all in-
stances generated by both NS approaches (NSf and NSp), as well as by EAinstance

without NS. Red dots are used for those instances produced by NSf , green crosses
represent instances generated through NSp, and blue squares represent instances gen-
erated by EAinstance without NS. In both cases, the portfolio based on deterministic
heuristics was considered.

and performance spaces with respect to the NS approach used to generated them. Red

dots represent the instances generated by NSf and green crosses the instances gen-

erated by NSp. In contrast to the results obtained with the portfolio of EAsolver, the

instances share a similar distribution across both spaces, with some NSf instances oc-

cupying larger regions in the performance space. Either way, there is no significant

difference in this aspect. Even though, for this portfolio, EAinstance without NS covers

approximately the same regions as NSf and NSp, notice how the instances are gath-

ered more in the centre of both spaces.

In terms of the coverage metric U, Table 2 provides an insight per each generation

method over the feature and performance spaces. Results show analogous behaviour

to using a portfolio of EAsolver. That is, NSf and NSp obtain better coverage than other

approaches over their respective spaces. Although EAinstance without using NS seems

to get higher coverage values with this new portfolio, notice that the difference between

this approach and the ’winner’ approach remains similar to those results shown in

Table 1 for both spaces.

Evolutionary Computation Volume x, Number x 23



A. Marrero, E. Segredo, C. León, E. Hart

Table 2: Space coverage using the U metric over the feature and performance spaces for
instances generated with a portfolio of heuristics.

Method Feature space Performance space
NSf 0.7863 0.7297
NSp 0.7340 0.8233
EAinstance without NS 0.6233 0.7003

In addition, it seems that the approach is able to generate a better distribution of

the instances with respect to the target solver in this new portfolio for both spaces and

NS approaches (see Figures 6a and 6b). It is worth discussing the difference between

these figures and the previous ones. Take, for instance, Figure 3a and its analogous

Figure 6a. While the instances are stacked over each other when using a portfolio of

EAsolver configurations and NSp, considering a portfolio of heuristics results in a more

widely spread distribution of instances and better grouping by target solvers. More-

over, comparing both portfolios over the performance space (Figures 3b and 6b) reveals

that regions of the instances ‘won’ by the algorithms in the portfolio of heuristics are

better differentiated compared to the portfolio of EAsolver. Besides, as in the previous

experiment, NSf is able to generate good distributions in both spaces. NSp fails to

generate good space distributions when the solvers in a portfolio behave similarly, in

that, there is little difference between their performances (as in the EAsolver portfolio).

In this case, it is difficult to find novel descriptors as all solvers return similar values.

At this point, it is interesting to see how the distribution of the values of the

eight features selected for the KP domain are related to the different four determin-

istic heuristics selected for this particular portfolio. To do so, we plotted each feature

of the 8D descriptor per instance generated by NSf (see Figure 15 in the Appendix). It

can be observed how MaP and MiW tend to have bigger ranges for a significant num-

ber of the features in comparison to MPW and Default. This is not unexpected since

they are the two solvers for which the largest number of instances is produced. In ad-

dition to the above, we also calculated a pairwise correlation matrix using the Pearson

correlation. We note that all but one pair has a coefficient < 0.29 which is deemed a

weak correlation. The pair consisting of the features ‘average item efficiency‘ and ‘min-

24 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

(a) Instances generated per solver in the portfolio based on deterministic heuristics by NSp (left)
and NSf (right) considering the feature space.

(b) Instances generated per solver in the portfolio based on deterministic heuristics by NSp (left)
and NSf (right) considering the performance space.

Figure 6: Instances generated per solver in the portfolio based on deterministic heuris-
tics by both NSf and NSp methods projected in the feature and performance spaces.
Coloured symbols reflect the ‘winning’ solver in the said portfolio for a particular in-
stance: red pluses (MPW); green squares (MiW), orange crosses (MaP) and blue dots
(Default).

imum weight‘ has a coefficient of 0.48, for which we show the relation regarding the

particular target solver in Figure 16 in the Appendix.

We now follow the same statistical procedure as described previously to evaluate

the new portfolio of heuristics. Considering the deterministic nature of the new set of

algorithms, the comparison was carried out using the profit achieved by each approach

after solving each instance generated. The results can be found in Table 6 in the Ap-

pendix. Moreover, it is important to highlight that the results show that the instances

generated are completely biased to the target solver. In contrast to the results from the

Evolutionary Computation Volume x, Number x 25



A. Marrero, E. Segredo, C. León, E. Hart

(a) NSf (b) NSp

Figure 7: istribution of the performance gap between the target approach Def (T in the
key) and the remaining approaches in the portfolio based on deterministic heuristics
by considering the instances generated by methods NSf 7a) and NSp (7b).

portfolio based on EAsolver (see Table 5 in the Appendix), where the performance of

the algorithms on some instances show no significant differences, the results from this

experiment demonstrate that, in each case, the target algorithm presents statistically

significant better performance than its competitors in all instances. As a consequence,

we demonstrate that our method is able to evolve completely tailored yet diverse in-

stances when the algorithms in the portfolio are substantially different in terms of their

design.

Finally, we evaluate the diversity of the evolved instances with respect to the per-

formance gap among solvers in the portfolio (see Figure 7). Again, results show that the

approach is able to generate diverse instances in terms of Equation 2. Nevertheless, we

should note that the performance gap among algorithms in the heuristic-based portfo-

lio is considerably higher for some cases with respect to the performance gap detected

in the previous experiment. For instance, in Figure 7, the performance gap between

Def and MPW is considerably larger in comparison to the previous results attained by

the different configurations of EAsolver (Figure 4).

4.3 Generation of instances for a portfolio of state-of-the-art solvers for KP

The naı̈ve heuristics in the previous portfolio are not expected to provide high-

performing results when dealing with large or real-world instances. Therefore, in or-

der to provide more evidence that our method is able to generalise across portfolios, we

perform another experimental evaluation with a portfolio of state-of-the-art solvers, i.e.

26 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

Expknap, Minknap and Combo and attempt to evolve much larger instances to demon-

strate that the method scales. We set the parameters according to those used in recent

work by Smith-Miles et al. (2021), which focused on filling gaps in an instance space to

understand where hard knapsack problems exist. Note however that our goal is differ-

ent in that we aim to generate a space-covering set of discriminative instances. Thus,

the number of items is set to N = 1000, R = 10, and the stopping criterion is switched

to CPU time instead of maximum evaluations to perform. For this state-of-the-art port-

folio, ps is calculated using Equation 3. The expected scores from these solvers can

be extremely low (just a few milliseconds for Minknap and Combo), hence to avoid

discarding large sets of solutions, the archive and solution set thresholds have been up-

dated to ta = tss = 1e− 7. The remaining parameters are the same as shown in Table 4

in the Appendix.

We run EAinstance 10 times per solver in the portfolio using only NSf . In order

to evaluate the results in the context of existing work in the KP domain, we situate our

results in an instance space that includes the large set of instances discussed in Smith-

Miles et al. (2021), which are either collected from the literature or generated to fill gaps

in the space, enabling new insights into where hard problems lie. We reiterate that the

goal of our approach is to cover as much space as possible in a single run: this contrasts

with approaches that target specific gaps that would have to be run repeatedly with

different targets to cover the whole space. It is constructive, however, to analyse the

resulting space containing our newly generated instances and those from Smith-Miles

et al. (2021).

Thus, we create a dataset combining the instances produced by NSf , Pisinger’s

original instances (Pisinger, 2005) gathered by Smith-Miles, and the new instances

evolved by Smith-Miles et al. (2021) to fill gaps in the existing benchmarks. To pro-

vide a fair comparison, we calculate the 8D feature descriptor defined in Section 3.2

for each instance in the dataset and reduce the dataset by means of a PCA model fed

with the feature descriptors and instance information. Figure 8 provides an insight

of the distribution of the instances over the feature space. On the left-hand side (Fig-

ure 8a), NSf instances are represented for each target solver, i.e. blue dots represent

Evolutionary Computation Volume x, Number x 27



A. Marrero, E. Segredo, C. León, E. Hart

(a) Instances per solver (b) Instances per method

Figure 8: Left (8a): Instances generated by NSf for each target approach in the portfolio
based on state-of-the-art solvers. Blue circles are used to represent those instances gen-
erated for Combo, orange crosses represent instances produced for Minknap, and green
squares represent instances generated for Expknap. Right (8b): Instances produced by
each generation method: NSf (purple dots) and the method proposed by Smith-Miles
et al. (2021) (crimson crosses), which starts from the original instances provided by
Pisinger (teal squares). To obtain each of both figures, PCA is applied to a dataset con-
taining the feature-based descriptors, as well as the information (weights and profits),
of the corresponding instances.

the instances generated for Combo, orange crosses are used for instances produced for

Minknap, and green squares the instances generated for Expknap. There is a notable

disparity in the quantity of instances generated for each solver, with Expknap exhibit-

ing a relatively lower number of instances. While Combo/Minknap find the optimal

solution in a few milliseconds, Expknap may take more than 15 seconds to reach the op-

timal for N = 1000 items. Consequently, the task of generating instances for Expknap

becomes notably challenging when it is part of the same solver portfolio as Combo and

Minknap. Moreover, the right-hand side (Figure 8b) provides a visualisation of the

instances produced by each generation method, i.e. NSf , instances evolved by Smith-

Miles, and instances from the original Pisinger’s generation methods. As expected, the

original Pisinger instances and the instances generated by Smith-Miles et al. (2021) oc-

cupy the same region of the space. This is obvious given that the goal of Smith-Miles et.

al. was to fill in gaps in an instance space containing the Pisinger dataset. In contrast,

NSf (purple dots) is able to find diverse and discriminatory instances for the portfolio

using state-of-the-art solvers in distant regions of the space not covered by the instances

described in Smith-Miles et al. (2021). With the exception of Expknap instances (green

28 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

squares in Figure 8a), which overlap with the existing benchmarks, the vast majority

of the instances are located in two corners of the space. Specifically they highlight new

regions in which either Combo or Minknap perform well.

4.4 Comparison against alternative generation methods: MAP-Elites

We now turn our attention to evaluating how our NS method compares against an-

other QD method, i.e. MAP-Elites (Mouret and Clune, 2015), which also returns a set

of solutions and was recently demonstrated to be an effective tool for instance genera-

tion in the TSP domain (Bossek and Neumann, 2022). We use the MAP-Elites version

described by Mouret and Clune (2015) to search for diverse and high-performing so-

lutions in the 8D feature space of the KP domain. Pseudo-code and parameter setting

is provided in Algorithm 3 and Table 7, respectively, in the Appendix.4 MAP-Elites

requires the user to define a multi-dimensional archive in which each axis represents

a feature and is discretised into cells. In this case, we use an 8D grid where each axis

corresponds to one of the eight features already defined. The boundaries of each axis

must therefore be defined (unlike in NS). We calculate these boundaries using the in-

stances of size N = 50 generated by NSf for the portfolio of deterministic heuristics

(Section 4.2). For each of the eight features considered, we calculate bi = (li, ui). As

the manner in which the grid is discretised is a parameter of the method, we evaluate

different resolutions: r ∈ {3, 5, 10, 15, 20, 25}. An in-depth description of MAP-Elites

can be found in Mouret and Clune (2015).

We run MAP-Elites at each resolution to generate diverse and discriminatory in-

stances for a portfolio of deterministic KP heuristics. In order to provide a fair compar-

ison, we ensure that the computational budget of MAP-Elites is identical to NSf ; i.e.

both methods perform the same total number of evaluations. Then, PCA is applied to

a dataset containing the 8D feature descriptor and instance information of all instances

generated by MAP-Elites and NSf . Figure 9 shows the distribution of instances gener-

ated by NSf (results from Section 4.2) and MAP-Elites with r = 15. While most of the

instances generated by MAP-Elites are located in the same region as NSf , the method

4The source code of MAP-Elites can also be found in the aforementioned GitHub repository.

Evolutionary Computation Volume x, Number x 29



A. Marrero, E. Segredo, C. León, E. Hart

Figure 9: Instances generated by NSf and 15r-MAP-Elites considering the portfolio
based on deterministic heuristics. Orange crosses are used to represent those instances
generated by NSf , while those instances produced by 15r-MAP-Elites are represented
through blue dots.

Figure 10: Instances generated by NSf (left) and 15r-MAP-Elites (right) for each solver
in the portfolio based on deterministic heuristics. In both figures, blue points are used
to represent instances generated for MiW, orange crosses considering MPW as the tar-
get, green squares for instances produced for MaP and red pluses for Default.

is able to find a number of instances in other regions such as the top left corner of the

space.

Figure 10 shows the distribution of instances per solver in the portfolio. The left-

hand side presents the instances generated by NSf , while the right-hand side shows

instances generated by MAP-Elites with r = 15. Note that even though we only present

the results for r = 15, MAP-Elites was not able to generate instances for the ’Default’

30 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

Figure 11: Representation of the BP instances as stored in memory (genotype).

heuristic in any run. The remaining plots with different values for parameter r can

be found in the Appendix. The space coverage in terms of the U metric is U(NSf ) =

0.6943 and U(15r-MAP-Elites) = 0.6443. These scores indicate that NSf is able to

provide better coverage of the feature space than this MAP-Elites configuration. In

fact, NSf scores higher than any MAP-Elites configurations evaluated (U scores for

each r-MAP-Elites configuration can be found in Table 8 in the Appendix).

4.5 Generation of instances for the BP domain

In order to demonstrate that the NSf method can be generalised to other optimi-

sation domains, we now apply it to the BP domain (Coleman and Wang, 2013). The

goal of BP is to find a packing that minimises the number of bins B of fixed capacity

C required to fit a set of N items of weights wi, while enforcing the constraint that the

sum of weights in any bin does not exceed the bin capacity C.

A BP instance is described by an array of integer numbers of size N where N is the

dimension (number of items) of the instance of the BP we want to create (see Figure 11),

with the weights of each item stored. The instances are described following the Falke-

nauer U class (Falkenauer, 1996) setting N = 120, the capacity of each bin C = 150,

and the weights distributed in the range [20, 100]. As in KP, the novelty descriptor for

the BP domain is a vector representing features of an instance being evolved. A set

of 10 features is used to describe a BP instance, following Alissa et al. (2019): mean of

the weights of the items; median of the weights of the items; standard deviation of the

weights, maximum and minimum weights; proportion of items i that have a weight

wi >
1
2 denoted as huge; proportion of items that have a weight 1

3 < wi ≤ 1
2 denoted

Evolutionary Computation Volume x, Number x 31



A. Marrero, E. Segredo, C. León, E. Hart

as large; proportion of items that have a weight 1
4 < wi ≤ 1

3 denoted as medium; pro-

portion of items that have a weight wi ≤ 1
4 denoted as small, and proportion of items

that have a weight wi ≤ 1
10 denoted as tiny. All weights of the items are normalised, so

C = 1.

We use a portfolio of four simple deterministic solvers for the BP domain, follow-

ing previous work in algorithm-selection for BP (Alissa et al., 2019, 2023): First Fit (FF),

which places each item into the first feasible bin that will accommodate it; Best Fit (BF),

that allocates each item into the feasible bin that minimises the residual space; Worst Fit

(WF), where each item is inserted into the feasible bin with the most available space;

and Next Fit (NF), which inserts each item into the current bin (Garey and Johnson,

1981). Performance is calculated according to Falkenauer’s performance metric (Falke-

nauer, 1996) (see Equation 6). In this study, we fixed z = 2, fillj is the sum of the

weights of the items inside binj , and B is the total number of bins used.

Fa =

∑B
j=1 (

fillj
C )z

B
(6)

Therefore, the performance score ps of a solver in the BP domain is calculated

following Equation 7.

ps = tFa −max(oFa) (7)

EAinstance is run 10 times for each solver in the portfolio using only NSf . We

compare the results with the instances generated by Alissa et al. (2019) using the same

portfolio. Alissa et. al. created a set containing 1,000 discriminatory instances best

solved by one of each heuristic in the portfolio (4,000 instances in total). The parameter

configuration of EAinstance can be found in Table 9 in the Appendix. We combine

all the instances into a single dataset and calculate the 10D feature descriptor for the

BP domain previously detailed. As before, the resulting dataset is reduced by means

of a PCA model fed with the feature descriptors and instance information. Figure 12

provides an insight into the distribution of the instances over the BP feature space. It

can be observed that the Alissa et. al. instances are clustered on top of each other on

32 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

Figure 12: Instance distribution by ‘wining’ solver across each generation method. Dots
represent the instances generated by NSf while crosses represent the instances gener-
ated by Alissa et al. (2019). Colours are then used to differentiate instances generated
for each target solver in the portfolio.

the left-hand side of the space, while the instances generated by NSf have a wider

spread on the right-hand side of the space. The distribution of instances per solver

is somewhat imbalanced: NSf generated 2,342 instances from which 1,476 instances

are discriminatory for BF, 855 for FF, and 11 for WF. The approach failed to generate

instances for NF.5 Calculating the space coverage in terms of the U metric over the

feature space results in the following scores: NSf = 0.5583 and Alissa et al. = 0.3536.

These findings align with the data distribution illustrated in Figure 12, and confirm the

capability of NSf in creating BP instances that offer improved coverage of the feature

space. Finally, an analysis of the feature distribution of the newly generated instances

using NSf revealed that all instances have a value 0 for the medium and tiny features.

Inspecting the features of the instances from Alissa et. al., we note that the huge, small

and tiny features all have value 0. The NSf approach thus appears to lead to more

variability in terms of feature descriptor for BP (see Figure 22 in the Appendix).

5Personal communication with the authors of Alissa et al. (2019) indicated that significant computational
effort was necessary using their method to find instances in which NF outperformed the other solvers.

Evolutionary Computation Volume x, Number x 33



A. Marrero, E. Segredo, C. León, E. Hart

5 Conclusions and Further Research

The main objective of this work was to propose an instance-generation algorithm based

on NS that can be used to generate diverse instances for combinatorial optimisation

domains, where the instances are also discriminatory for a given portfolio of solvers.

We proposed two variants of an NS algorithm that uses a weighted combination of

performance and diversity to drive selection. In the first variant, the novelty descriptor

that drives the search is defined with respect to the features of an instance (NSf ); in the

second, the descriptor is defined with respect to a vector denoting the performance of

each solver in a portfolio (NSp).

We evaluated these methods using two domains (KP, BP) to demonstrate the gen-

erality of the approach across domains, and also using different portfolios of solvers

(meta-heuristics, deterministic heuristics, state-of-the-art exact methods) to demon-

strate robustness against the choice of portfolio. We show that the method is capa-

ble of generating a large set of diverse, discriminatory instances in one run, in con-

trast to many previously proposed methods (Alissa et al., 2019; Plata-González et al.,

2019; Smith-Miles et al., 2010) and also results in better coverage of the feature-space

than another QD algorithm, MAP-Elites, that was used to generate instances for TSP

in previous work (Bossek and Neumann, 2022). Furthermore, in contrast to previous

approaches that tend to maximise the performance gap between a target solver and the

next best solver in a portfolio, our method generates discriminatory instances with re-

spect to a target solver that has broad variation in terms of the magnitude performance

gap. We believe this provides better data with which to train more robust algorithm

selection methods. Finally, in order to demonstrate that the method scales, in the KP

domain, instances were generated with 50 items, following Marrero et al. (2022), and

1000 items, as per recent work in the literature, e.g. Smith-Miles et al. (2021), where the

goal was to discover hard KP instances.

In the KP domain, results demonstrate that both the NSf and NSp approaches

generate discriminatory instances for a range of portfolios, providing better coverage

than either the EA approach proposed by e.g. Plata-González et al. (2019) and the MAP-

34 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

Elites algorithm, adapted by Bossek and Neumann (2022). Recent work has shown that

an ensemble consisting of a number of NSf approaches is beneficial in terms of space

coverage and uniform distribution of the instances over the KP features space (Mar-

rero et al., 2023a). Given that MAP-Elites locates some instances that are different from

those generated by NSf , including MAP-Elites in an ensemble of instance-generating

methods could beneficial in future. Visualising the coverage obtained by both variants

NSf and NSp (see Sections 4.1 and 4.2), it is clear that NSf locates instances in some

part of the space that NSp does not, and vice versa: this suggests that an ensemble ap-

proach to instance-generation that combines instances generated using both novelty

descriptors would be beneficial going forward. NSf is evaluated across three different

portfolios. Results show that it is robust with respect to the type of solver in the port-

folio, generating diverse instances for all solvers contained in three different portfolios:

meta-heuristics, deterministic heuristics and exact solvers. Note however that the num-

ber of generated instances won by each solver varies. For example, for the exact solver

portfolio, it is most difficult to generate instances that are won by Expknap, while for

the deterministic portfolio, it is hardest to generate instances won by the Default solver.

The results above also generalise to the BP domain, where the NSf variant is used

to generate new instances for a portfolio of deterministic heuristics. A total number

of 2,342 new instances were generated, covering more of the feature-space than the

instances generated by Alissa et al. (2019). However, we note that in this case, no in-

stances were generated for the NF heuristic. Personal communication with the authors

of Alissa et al. (2019) revealed that significant computational effort was devoted to find-

ing instances that were won by this heuristic using their method. Further inspection of

the features of the generated instances also showed that the ‘medium’ and ‘tiny’ fea-

tures have value zero for each instance, providing some insight into the distributions

that lead to discriminatory performance.

Finally, although the objective of this study is to provide broad coverage of a space

in any domain, rather than specifically generate hard instances for a domain of interest,

it is instructive to examine our results in the context of existing results in the KP domain

where there has been significant recent efforts to understand where the hard instances

Evolutionary Computation Volume x, Number x 35



A. Marrero, E. Segredo, C. León, E. Hart

generated for a portfolio of state-of-the-art solvers are. Although an exact compari-

son to recent work such as Smith-Miles et al. (2021) is not possible as their method

attempted to fill gaps in an instance space that already contained a very large number

of instances, we used NSf to try and generate new instances that were discrimina-

tory for the same portfolio of solvers used in Smith-Miles et al. (2021). This additional

study also demonstrates that the method scales, given the instance size is now 1,000

rather than 50 as used in the remaining KP experiments. Given that the 1,300 instances

gathered by Smith-Miles et al. (2021) already occupy a large part of the instance-space,

it would be expected to be challenging to find new instances.Nonetheless, NSf finds

87,492 new instances with the vast majority of them occupying a different region of the

space than the existing dataset. These instances are mainly discriminatory with respect

to the Combo and Minknap heuristics. NSf struggles to find instances in which Ex-

pknap is the winner. Hence our results can be used to augment existing datasets and

provide new insights in to the feature distributions of instances that Combo/Minknap

perform well on.

Although outside the scope of this study, an interesting angle for future work

would be to adapt the NS methods proposed in this article to generate hard and diverse

instances for a domain (defined with respect to a chosen solver). This could easily be

achieved by adapting the performance-related element of the fitness function to max-

imise the time taken for an exact method such as Minknap to find a solution, rather

than optimising for discriminatory ability within a portfolio. This could potentially

bring new insights into where the hard instances lie in a domain. It is important to

note that the time taken to generate diverse and hard instances depends on the type of

solvers in the portfolio: using exact methods might significantly increase the running

time.

Multi-objective methods that trade-off the performance/diversity metrics would

also be worth exploring. Finally, another fruitful angle could be to focus on the fea-

tures used to define the novelty descriptor and therefore the search-space. There is

much existing work in the field of feature-generation that could be drawn on, for ex-

ample in constructing new features as linear (Tran et al., 2019; Marrero et al., 2023a) or

36 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

non-linear combinations of existing features to discover new feature-spaces in which

to search. Additionally, several works exist that propose different features for the KP

domain (Smith-Miles et al., 2021; Jooken et al., 2023). However, we note that some

of these features require a significant amount of time to compute and could therefore

impact running time. Nevertheless, future work could investigate the use of different

novelty descriptors that make use of some or all of these features.

With respect to both domains considered, this could also include adapting the rep-

resentation of the instance that is used to define the search-space to consider additional

information, for example the capacity constraint in KP or the bin-size in BP.

Acknowledgements

This work was partially funded by the Spanish “Ministerio de Ciencia, Innovación y

Universidades” as well as by the ”Universidad de La Laguna (ULL)”, as part of the

project with contract number 2022/0000580.

The work of Alejandro Marrero was funded by “Agencia Canaria de Investigación,

Innovación y Sociedad de la Información de la Consejerı́a de Universidades, Ciencia

e Innovación y Cultura y por el Fondo Social Europeo Plus (FSE+) Programa Oper-

ativo Integrado de Canarias 2021-2027, Eje 3 Tema Prioritario 74 (85%)” with grant

TESIS2020010005.

The work has been performed under Project HPC-EUROPA3 (INFRAIA-2016-1-

730897), with the support of the EC Research Innovation Action under the H2020

Programme; in particular, the authors gratefully acknowledge the computer resources

and technical support provided by Edinburgh Parallel Computing Centre (EPCC).

This work used the ARCHER2 UK National Supercomputing Service

(https://www.archer2.ac.uk) as well as the TeideHPC infrastructure from ITER

(https://www.iter.es/).

Prof. Emma Hart is supported by the EPSRC grant Keep Learning EP/V026534/1.

Evolutionary Computation Volume x, Number x 37



A. Marrero, E. Segredo, C. León, E. Hart

References

Alissa, M., Sim, K., and Hart, E. (2019). Algorithm Selection Using Deep Learning With-

out Feature Extraction. In Genetic and Evolutionary Computation Conference (GECCO

’19), July 13–17, 2019, Prague, Czech Re- public. ACM, New York, NY, USA.

Alissa, M., Sim, K., and Hart, E. (2023). Automated algorithm selection: from feature-

based to feature-free approaches. Journal of Heuristics, 29(1):1–38.

Bossek, J., Kerschke, P., Neumann, A., Wagner, M., Neumann, F., and Trautmann, H.

(2019). Evolving diverse TSP instances by means of novel and creative mutation

operators. In Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic

Algorithms, pages 58–71.

Bossek, J. and Neumann, F. (2022). Exploring the Feature Space of TSP Instances Using

Quality Diversity. In Proceedings of the Genetic and Evolutionary Computation Confer-

ence, GECCO ’22, page 186–194, New York, NY, USA. Association for Computing

Machinery.

Coleman, N. and Wang, P. (2013). Bin-Packing, pages 116–126. Springer US, Boston,

MA.

Cuccu, G. and Gomez, F. (2011). When novelty is not enough. In European Conference

on the Applications of Evolutionary Computation, pages 234–243. Springer.

Dang, N., Akgün, Ö., Espasa, J., Miguel, I., and Nightingale, P. (2022). A framework for

generating informative benchmark instances. arXiv preprint arXiv:2205.14753.

Doncieux, S., Laflaquière, A., and Coninx, A. (2019). Novelty search: A theoretical per-

spective. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO

’19, page 99–106, New York, NY, USA. Association for Computing Machinery.

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal of

Heuristics, 2(1):5–30. ID: Falkenauer1996.

38 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

Fuglede, B. and Topsoe, F. (2004). Jensen-Shannon divergence and Hilbert space em-

bedding. In International Symposium on Information Theory, 2004. ISIT 2004. Proceed-

ings., pages 31–.

Gao, W., Nallaperuma, S., and Neumann, F. (2016). Feature-based diversity optimiza-

tion for problem instance classification. In International Conference on Parallel Problem

Solving from Nature, pages 869–879. Springer.

Garey, M. R. and Johnson, D. S. (1981). Approximation Algorithms for Bin Packing Prob-

lems: A Survey, pages 147–172. Springer Vienna, Vienna.

Gomes, J., Mariano, P., and Christensen, A. L. (2015). Devising effective novelty search

algorithms: A comprehensive empirical study. In Proceedings of the 2015 Annual Con-

ference on Genetic and Evolutionary Computation, GECCO ’15, page 943–950, New York,

NY, USA. Association for Computing Machinery.

Hains, D., Whitley, D., and Howe, A. (2012). Improving Lin-Kernighan-Helsgaun with

crossover on clustered instances of the TSP. In International Conference on Parallel

Problem Solving from Nature, pages 388–397. Springer.

Jooken, J., Leyman, P., and De Causmaecker, P. (2022). A new class of hard problem

instances for the 0-1 knapsack problem. European Journal of Operational Research,

301(3):841–854.

Jooken, J., Leyman, P., and De Causmaecker, P. (2023). Features for the 0-1 knapsack

problem based on inclusionwise maximal solutions. European Journal of Operational

Research, 311(1):36–55.

Kerschke, P., Hoos, H. H., Neumann, F., and Trautmann, H. (2019). Automated algo-

rithm selection: Survey and perspectives. Evolutionary computation, 27(1):3–45.

Lehman, J. and Stanley, K. O. (2011). Abandoning objectives: Evolution through the

search for novelty alone. Evolutionary Computation, 19(2):189–222.

Evolutionary Computation Volume x, Number x 39



A. Marrero, E. Segredo, C. León, E. Hart

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., and Stützle, T. (2016).

The irace package: Iterated racing for automatic algorithm configuration. Operations

Research Perspectives, 3:43–58.

Marrero, A., Segredo, E., Hart, E., Bossek, J., and Neumann, A. (2023a). Generating

diverse and discriminatory knapsack instances by searching for novelty in variable

dimensions of feature-space. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 312–320.

Marrero, A., Segredo, E., León, C., and Hart, E. (2022). A novelty-search approach

to filling an instance-space with diverse and discriminatory instances for the knap-

sack problem. In Parallel Problem Solving from Nature – PPSN XVII, pages 223–236,

Cham. Springer International Publishing.

Marrero, A., Segredo, E., León, C., and Hart, E. (2023b). DIGNEA: A tool to gener-

ate diverse and discriminatory instance suites for optimisation domains. SoftwareX,

22:101355.

Martello, S., Pisinger, D., and Toth, P. (1999). Dynamic programming and strong bounds

for the 0-1 knapsack problem. Management Science, 45(3):414–424.

Mouret, J.-B. (2011). Novelty-based multiobjectivization. In New horizons in evolutionary

robotics, pages 139–154. Springer.

Mouret, J.-B. and Clune, J. (2015). Illuminating search spaces by mapping elites. arXiv

preprint arXiv:1504.04909.

Muñoz, M. A. and Smith-Miles, K. (2020). Generating new space-filling test instances

for continuous black-box optimization. Evolutionary computation, 28(3):379–404.

Nannen, V., Smit, S. K., and Eiben, A. (2008). Costs and Benefits of Tuning Parameters

of Evolutionary Algorithms. Proceedings of the 10th international conference on Parallel

Problem Solving from Nature.

40 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

Nethercote, N., Stuckey, P. J., Becket, R., Brand, S., Duck, G. J., and Tack, G. (2007).

MiniZinc: Towards a standard CP modelling language. In International Conference on

Principles and Practice of Constraint Programming, pages 529–543. Springer.

Pisinger, D. (1995). An expanding-core algorithm for the exact 0–1 knapsack problem.

Pisinger, D. (2000). A minimal algorithm for the bounded knapsack problem. IN-

FORMS journal on computing, 12(1):75–82.

Pisinger, D. (2005). Where are the hard knapsack problems? Computers and Operations

Research, 32(9):2271–2284.

Plata-González, L. F., Amaya, I., Ortiz-Bayliss, J. C., Conant-Pablos, S. E., Terashima-

Marı́n, H., and Coello Coello, C. A. (2019). Evolutionary-based tailoring of synthetic

instances for the Knapsack problem. Soft Computing, 23(23):12711–12728.

Pugh, J. K., Soros, L. B., and Stanley, K. O. (2016). Quality diversity: A new frontier for

evolutionary computation. Frontiers in Robotics and AI, page 40.

Rice, J. R. (1976). The Algorithm Selection Problem. Advances in Computers, 15(C):65–

118.

Smith-Miles, K. and Bowly, S. (2015). Generating new test instances by evolving in

instance space. Computers and Operations Research, 63:102–113.

Smith-Miles, K., Christiansen, J., and Muñoz, M. A. (2021). Revisiting where are the

hard knapsack problems? via instance space analysis. Computers & Operations Re-

search, 128:105184.

Smith-Miles, K., van Hemert, J., and Lim, X. Y. (2010). Understanding TSP difficulty by

learning from evolved instances. In International Conference on Learning and Intelligent

Optimization, pages 266–280. Springer.

Smith-Miles, K. A. (2009). Cross-disciplinary perspectives on meta-learning for algo-

rithm selection. ACM Comput. Surv., 41(1):1–25.

Evolutionary Computation Volume x, Number x 41



A. Marrero, E. Segredo, C. León, E. Hart

Szerlip, P. A., Morse, G., Pugh, J. K., and Stanley, K. O. (2014). Unsupervised Feature

Learning through Divergent Discriminative Feature Accumulation. AAAI’15: Pro-

ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence.

Tran, B., Xue, B., and Zhang, M. (2019). Genetic programming for multiple-feature

construction on high-dimensional classification. Pattern Recognition, 93:404–417.

Urquhart, N. and Hart, E. (2018). Optimisation and illumination of a real-world work-

force scheduling and routing application (wsrp) via map-elites. In International Con-

ference on Parallel Problem Solving from Nature, pages 488–499. Springer.

42 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

A Computational Resources

The total time taken to run the whole experimental assessment was 1,120 hours ap-

proximately, by using diverse computational resources including High-Performance

Computing (HPC) infrastructures:

• HPE Cray EX (5,860 nodes) with two AMD EPYC 7742 64-core 2.25GHz processors

and 256 GB (standard), 512 GB (high memory) RAM.

• Fujitsu Primergy CX250 (1,052 nodes) with two Intel Xeon ES-2670 CPUs with 8

cores (16 slots) and 32/64 GB RAM each node.

• Node with two AMD EPYC 7502 64-core at 2.5 GHz processors with 128 GB RAM.

Evolutionary Computation Volume x, Number x 43



A. Marrero, E. Segredo, C. León, E. Hart

B Parameter Setting of EAsolver for the KP domain

Table 3: Parameter settings for EAsolver. The crossover rate is the distinguishing feature
for each configuration.

Parameter Value
Population size 32

Max. Evaluations 1e5
Mutation rate 1 / N
Crossover rate 0.7, 0.8, 0.9, 1.0

Crossover Uniform
Mutation Uniform
Selection Binary Tournament

44 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

C Parameter Setting of EAinstance for the KP domain

Table 4: Parameter settings for EAinstance which evolves the diverse population of
discriminatory instances.

Parameter Value

Knapsack items (N ) 50, 1000
Weight and profit upper bound 1,000
Weight and profit lower bound 1

Population size 10
Crossover rate 0.8
Mutation rate 1 / (N × 2)
Stop criteria CPU time (state-of-the-art)

Evaluations (others)
Evaluations 2,500, 5,000, 10,000, 15,000

Repetitions (R) 1 (deterministic heuristics)
10 (EAsolver, state-of-the-art)

Distance metric Euclidean Distance
Neighbourhood size (k) 3

Thresholds (ta, tss) 3.0, 1e-7

Evolutionary Computation Volume x, Number x 45



A. Marrero, E. Segredo, C. León, E. Hart

D Statistical Analysis

We followed a statistical testing procedure to support the conclusions. First, a Shapiro-

Wilk test6 was performed to check whether the values of the results followed a normal

(Gaussian) distribution. If so, the Levene test7 checked for the homogeneity of the vari-

ances. If the samples had equal variances, an ANOVA test8 was done; if not, a Welch test9

was performed. For non-Gaussian distributions, the non-parametric Kruskal-Wallis10

test was used. For every test, a significance level α = 0.05 was considered. The com-

parison was carried out considering the mean profits achieved by each approach at the

end of 10 runs for each instance generated.

An example of the above procedure applied to a set of results is shown in Table 5.

For each target approach A in the first column, the number of ‘wins’ (↑) and ‘draws’

(↔) of the said target algorithm with respect to other approach B is shown. A ‘win’

means that approach A was able to present statistically better performance in compari-

son to approach B, by following the aforementioned statistical comparison procedure,

when solving a particular instance. A ‘draw’ means that both approaches A and B did

not present statistically significant differences in performance when solving a particu-

lar instance. For instance, when running EAinstance using NSf , approach GA 0.7 was

able to provide statistically better performance than approach GA 0.8 in 87 out of 90

instances, which in fact were generated by considering GA 0.7 as the target approach.

Both GA 0.7 and GA 0.8 did not present statistically significant differences in perfor-

mance when solving 3 out of 90 instances generated. Finally, note that in no case did

the target algorithm lose on an instance to another algorithm.

6Shapiro-Wilk test in Python: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.shapiro.html

7Levene test in Python: https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.levene.html

8ANOVA test in Python: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.f_oneway.html

9Welch test in Python: https://docs.scipy.org/doc/scipy/reference/generated/scipy.
stats.ttest_ind.html

10Kruskal-Wallis test in Python: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.kruskal.html

46 Evolutionary Computation Volume x, Number x

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.shapiro.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levene.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.levene.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.f_oneway.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ttest_ind.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html


Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

E Generation of Instances for a Portfolio of EAsolver for KP

Table 5: Wins and draws between the target configuration and other configurations
after applying the statistical analysis. A win (↑) indicates statistically significant dif-
ference between two configurations and that the mean performance value of the tar-
get approach was higher. A draw (↔) indicates no statistically significant difference
between both configurations. The number of instances generated for each target ap-
proach was 90 for approach GA 0.7, 101 for GA 0.8, 110 for GA 0.9 and 80 instances for
GA 1.0 when using NSf . On the other hand, running EAinstance with NSp produced
196 instances for GA 0.7, 224 for GA 0.8, 221 for GA 0.9 and 209 for GA 1.0.

NS
Approach GA 0.7 GA 0.8 GA 0.9 GA 1.0

NSf

GA 0.7 ↑ 87↔ 3 ↑ 69↔ 21 ↑ 25↔ 65
GA 0.8 ↑ 100↔ 1 ↑ 77↔ 24 ↑ 21↔ 80
GA 0.9 ↑ 107↔ 3 ↑ 87↔ 23 ↑ 18↔ 92
GA 1.0 ↑ 21↔ 59 ↑ 61↔ 19 ↑ 76↔ 4

NSp

GA 0.7 ↑ 73↔ 123 ↑ 74↔ 125 ↑ 58↔ 141
GA 0.8 ↑ 95↔ 129 ↑ 82↔ 142 ↑ 85↔ 139
GA 0.9 ↑ 93↔ 128 ↑ 85↔ 136 ↑ 82↔ 139
GA 1.0 ↑ 99↔ 110 ↑ 101↔ 108 ↑ 92↔ 117

No NS

GA 0.7 ↑ 44↔ 26 ↑ 48↔ 22 ↑ 41↔ 29
GA 0.8 ↑ 50↔ 20 ↑ 52↔ 18 ↑ 42↔ 28
GA 0.9 ↑ 53↔ 17 ↑ 57↔ 13 ↑ 59↔ 11
GA 1.0 ↑ 64↔ 6 ↑ 65↔ 5 ↑ 60↔ 10

(a) NSf
(b) NSp

Figure 13: Distribution of performance gap between the approach GA 1.0 (T in the
key) and other approaches by considering the instances generated for the former when
running EAinstance using NSf (13a) and NSp (13b).

Evolutionary Computation Volume x, Number x 47



A. Marrero, E. Segredo, C. León, E. Hart

F Generation of Instances for a Portfolio of Deterministic Tailored

Heuristics for KP

Table 6: Wins and draws between the target configuration and other configurations
after applying the statistical analysis. A win (↑) indicates statistically significant dif-
ference between two configurations and that the mean performance value of the target
was higher. A draw (↔) indicates no statistically significant difference between both
configurations. The number of instances generated for each target approach was 123
for approach Def, 774 for MaP, 22 for MPW and 687 instances for MiW when using
NSf . On the other hand, running EAinstance with NSp produced 129 instances for ap-
proach Def, 572 for MaP, 22 for MPW and 488 for MiW. Moreover, EAinstance without
NS obtains a significant lower amount of instances, 54 instances for Def, 100 for MaP,
40 for MPW and 92 for MiW.

NS
Approach Def MaP MPW MiW

NSf

Def ↑ 123↔ 0 ↑ 123↔ 0 ↑ 123↔ 0
MaP ↑ 774↔ 0 ↑ 774↔ 0 ↑ 774↔ 0

MPW ↑ 22↔ 0 ↑ 22↔ 0 ↑ 22↔ 0
MiW ↑ 687↔ 0 ↑ 687↔ 0 ↑ 687↔ 0

NSp

Def ↑ 129↔ 0 ↑ 129↔ 0 ↑ 129↔ 0
MaP ↑ 572↔ 0 ↑ 572↔ 0 ↑ 572↔ 0

MPW ↑ 22↔ 0 ↑ 22↔ 0 ↑ 22↔ 0
MiW ↑ 488↔ 0 ↑ 488↔ 0 ↑ 488↔ 0

No NS

Def ↑ 54↔ 0 ↑ 54↔ 0 ↑ 54↔ 0
MaP ↑ 100↔ 0 ↑ 100↔ 0 ↑ 100↔ 0

MPW ↑ 40↔ 0 ↑ 40↔ 0 ↑ 40↔ 0
MiW ↑ 92↔ 0 ↑ 92↔ 0 ↑ 92↔ 0

(a) NSf (b) NSp

Figure 14: Distribution of performance gap between the approach MaP (T in the key)
and other approaches by considering the instances generated for the former when run-
ning EAinstance with NSf (14a) and NSp (14b).

48 Evolutionary Computation Volume x, Number x



Synthesising
D

iverse
and

D
iscrim

inatory
Sets

ofInstances
using

N
ovelty

Search
in

C
om

binatorialD
om

ains

Figure 15: Feature distribution among instances for each solver in the portfolio of KP deterministic heuristics.

Evolutionary
C

om
putation

Volum
e

x,N
um

ber
x

49



A. Marrero, E. Segredo, C. León, E. Hart

Figure 16: Relation between avg eff / min w

50 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

G Comparison with MAP-Elites

MAP-Elites creates an empty, N-dimensional map of elites with X being the solutions

and P being their performances. After that, it generates G random solutions. Then,

all subsequent solutions are generated from elites in the map by randomly selecting

an elite x from the map X , creating a copy x′ via mutation and recording its feature

descriptor b′ and performance p′. If the appropriate cell is empty or its occupants’s

performance is ≤ p′, then store the performance of x′ in the map of elites according to

its feature descriptor b′ and store the solution x′ in the map of elites according to its

feature descriptor b′.

Algorithm 3: MAP-Elites
Input: P ← ∅, X ← ∅

1 for iter = 1→ I do
2 if iter < G then
3 x′ ← random solution();
4 end
5 x← random selection(X) ;
6 x← random variation(x) ;
7 b′ ← feature descriptor(x′) ;
8 p′ ← performance(x′) ;
9 if P (b′) = ∅ or P (b′) < p′ then

10 P (b′)← p′;
11 X(b′)← x′;
12 end
13 end
14 return P and X

Figure 17: Instances generated per solver in the deterministic heuristics portfolio by
NSf (left) and 3r-MAP-Elites (right).

Evolutionary Computation Volume x, Number x 51



A. Marrero, E. Segredo, C. León, E. Hart

Table 7: Parameter settings for MAP-Elites

Parameter Value

Knapsack items (N ) 50
Weight and profit upper bound 1,000
Weight and profit lower bound 1

Population size 10
Mutation rate 1 / (N × 2)
Evaluations 10,000

Repetitions (R) 1
Distance metric Euclidean Distance

Neighbourhood size (k) 3
Thresholds (ta, tss) 3.0, 1e-7

Resolution (r) 3, 5, 10, 15, 20, 25

Figure 18: Instances generated per solver in the deterministic heuristics portfolio by
NSf (left) and 5r-MAP-Elites (right).

Figure 19: Instances generated per solver in the deterministic heuristics portfolio by
NSf (left) and 10r-MAP-Elites (right).

52 Evolutionary Computation Volume x, Number x



Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains

Figure 20: Instances generated per solver in the deterministic heuristics portfolio by
NSf (left) and 20r-MAP-Elites (right).

Figure 21: Instances generated per solver in the deterministic heuristics portfolio by
NSf (left) and 25r-MAP-Elites (right).

Table 8: Space coverage using the U metric over the feature space for instances gener-
ated with a portfolio of heuristics.

Method U

NSf 0.6943
3r-MAP-Elites 0.5049
5r-MAP-Elites 0.5628
10r-MAP-Elites 0.6051
15r-MAP-Elites 0.6443
20r-MAP-Elites 0.6877
25r-MAP-Elites 0.6523

Evolutionary Computation Volume x, Number x 53



A. Marrero, E. Segredo, C. León, E. Hart

H Generation of Instances for the BP Domain

Table 9: Parameter settings for EAinstance which evolves the diverse population of
discriminatory BP instances.

Parameter Value
Bin items (N ) 120

Weight lower bound 20
Weight upper bound 100

Maximum bin capacity 150
z 2

Population size 10
Crossover rate 0.8
Mutation rate 1 / (N )
Evaluations 10,000

Repetitions (R) 1
Distance metric Euclidean Distance

Neighbourhood size (k) 3
Thresholds (ta, tss) 1e-7

54 Evolutionary Computation Volume x, Number x



Synthesising
D

iverse
and

D
iscrim

inatory
Sets

ofInstances
using

N
ovelty

Search
in

C
om

binatorialD
om

ains

Figure 22: Feature distribution among instances for each generation method: NSf (left) and Alissa et al. (2019) (right).

Evolutionary
C

om
putation

Volum
e

x,N
um

ber
x

55


	Introduction
	Related Work
	Methods
	Domain and instance representation
	Novelty descriptors
	Algorithm portfolios
	Instance generation via novelty search
	Computing the fitness of an instance
	Archive and solution set management


	Experiments and Results
	Generation of instances for a portfolio of EAsolver for KP
	Generation of instances for a portfolio of deterministic tailored heuristics for KP
	Generation of instances for a portfolio of state-of-the-art solvers for KP
	Comparison against alternative generation methods: MAP-Elites
	Generation of instances for the BP domain

	Conclusions and Further Research
	Computational Resources
	Parameter Setting of EAsolver for the KP domain
	Parameter Setting of EAinstance for the KP domain
	Statistical Analysis
	Generation of Instances for a Portfolio of EAsolver for KP
	Generation of Instances for a Portfolio of Deterministic Tailored Heuristics for KP
	Comparison with MAP-Elites
	Generation of Instances for the BP Domain

