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Abstract—Wireless Sensor Networks (WSNs) are used to sense and monitor physical conditions in various services and applications.
However, there are a number of challenges in deploying WSNs, especially those pertaining to energy replenishment. Using the current
solutions, when a significant number of sensors need to replenish their energy, this would be costly in terms of time, efforts and
resources. Thus, this paper aims to solve this problem by efficiently deploying wireless power transfer technologies and scheduling Mobile
Charging Vehicles (MCVs) in WRSN. The proposed method deploys multi-criteria decision-making (i.e., Analytical Hierarchy Process
(AHP)) to schedule the charging tasks. To the best of our knowledge, this paper is the first to depend solely on AHP in MCVs scheduling.
The paper demonstrates the validity of the proposed method by illustrating that the matrices that are created are within the accepted
values of consistency ratio. In addition, the paper proposes a method of partitioning the values of our criteria to avoid the problem of
different criteria having different measurement units. Unlike existing works, the paper aims to schedule an MCV for charging based on
both the distance and residual energy of the sensor. The proposed method exhibits superiority in terms of the average remaining energy
available in the system, having the shortest queue length, shorter MCV response time, shorter charging duration, and shorter queue
waiting time against the state-of-the-art methods. Our study paves the way for next generation efficient charging and MCV scheduling.

Index Terms—Multi-criteria decision-making, Analytic hierarchy process, pairwise comparison matrix, scheduling scheme, Wireless
sensor network;

✦

1 INTRODUCTION

HAVING a perpetual network is one of the most ultimate
goals of WSN [1]. In an ideal scenario, we aim to have a

network that does not run out of energy, but in practice, that
is unfortunately not the case. The energy of a sensor can run
out due to depletion of the sensor’s battery or lack of enough
energy to replenish the exhausted sensors.

Mainly, there are two major ways to replenish the energy
of a sensor: battery swapping and wireless power transfer
(WPT).

• Battery swapping is the process of physically replac-
ing an exhausted battery with a new one. This is a tire-
some and costly process, especially when thousands
of sensors need battery replacement. In some cases,
it is not ideal when the sensors are in hard-to-reach
or dangerous places, such as sensors embedded in
infrastructure monitoring systems or rugged terrains
like mountains [2].

• Wireless power transfer is a technology that enables
energy to be transferred from a source to a sensor’s
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battery wirelessly [3]. WPT technologies such as in-
ductive or magnetic coupling allow power transfer
from high voltage to low voltage and WPT technolo-
gies are more efficient, more convenient, and more
scalable than battery swapping [4].

Developments and advances in WPT has given rise to
ways of wirelessly charging different electrical devices. These
devices include mobile phones and electric vehicles [5]. Sen-
sors in wireless sensor networks can also be charged using
WPT technologies. Mobile charging vehicles (MCV) are also
used to recharge sensors, and these are used in combination
with wireless power transfer technologies.

In addition to battery swapping and WPT, there is another
way to replenish the energy of sensors: energy harvest-
ing. Energy harvesting is the process of converting ambient
energy into electrical energy that can be used to power
electronic devices and keep sensors in operation [6]. There
are a number of different energy harvesting technologies,
including: solar, wind, and vibrations. These energy sources
are usually available in the vicinity of the sensor [7]. There-
fore, the energy harvester should be within this vicinity [8].
However, the energy from these sources may not be available
all the time [9]. For example, solar energy is not available at
night, and wind energy is not available during calm weather.
In contrast, WPT is a more reliable and versatile way to
power sensors since WPT can be used to power sensors in
a variety of environments, regardless of the weather con-
ditions. In contrast, the advantages of WPT include being
reliable, safe, versatile, dependable and also being able to
overcome problems of unpredictable weather conditions and
harsh terrain.

In an environment where resources are limited, it is im-
portant to ensure that these resources are used efficiently [10].
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Resource scheduling is a technique that helps to ensure that
resources are used fairly and efficiently and that resource
starvation is avoided. The resources that are being used
should guarantee the quality of the services being provided
[11].

Two critical resources considered in this paper are spatial
and residual charging energy. Spatial resources refer to the
distance between sensors and the MCV. As the MCV travels
through the network, the distance between the MCV and the
sensors changes. This makes the spatial resource dynamic,
and it determines the amount of energy the MCV will use
to travel to the sensors. The shorter the distance, the less
energy the MCV will need to consume to travel to the
sensor. Residual energy is the amount of energy that is left
in a sensor’s battery. The residual energy of a sensor affects
how many sensors can be charged by the MCV. Allocating
these resources efficiently will result in better network per-
formance.

In this paper, we propose a method for selecting a sensor
to be charged based on both the distance and residual energy
of the sensor. The proposed method uses the AHP taking
into account the different criteria that affect the operations
of the sensor. Based on the overall operations of the sensors,
weights of each criterion are generated. These weights are
then used to select the sensor that should be charged. The
use of multiple criteria prevents reliance on only one criterion
(mostly residual energy of sensor) as the only criteria to select
a sensor for charging. This is because different criteria may
be more important in different scenarios. For example, the
distance between the sensor and the MCV may be more
important in a situation where the MCV has limited travel
energy, while the residual energy of the sensor may be more
important in a situation where the MCV has plenty of energy.

To avoid confusion that due to the criteria use different
units, we propose a method of partitioning our criteria into
different ranges that we can fit in the values of the AHP
fundamental scale. This ensures that all criteria are on a
comparable scale, and that the weights of the criteria are
meaningful.

1.1 Motivation

This study is motivated by the following shortcomings found
in state-of-the-art solutions for WRSN MCV scheduling.

There is lack of research that purely uses AHP MCDM
in WSN. To the best of our knowledge this is the first study
that only uses AHP in MCV scheduling. Other methods that
we have found use this method in conjunction with other
methods like using TOPSIS and fuzzy AHP.

The use of only AHP was necessitated by the following
reasons: computational power of sensors is mostly limited
and as such they are not capable of handling very complex
and huge models or methods. For real-world implementation
we need to reduce computational power to the bare mini-
mum that can be handled by the nodes. This lead us to sim-
plify the process and only use AHP to minimize the compu-
tation complexity and power usage of the sensors.

Data Aggregation: efficiently combine data from multiple
sensors before transmission, reducing communication over-
head. Having a few criteria transmitted within the network
will also preserve sen power. That is why we considered the

two criteria which have a huge impact on sensor charging
decision. The other reason is that to reduce latency, few cri-
teria need to be used as smaller data packets are efficient in
minimizing delays in data transmission.

Light algorithms and methods also help to improve net-
work performance. This is done by having faster response
times. Light algorithms will also help in quick data process-
ing and communication thereby enabling real-time applica-
tions. They also enhance reliability, i.e., lower complexity
makes the algorithms less susceptible to errors thereby im-
proving data integrity.

WSN are inherently limited in computation resources and
introducing more complexity by addition of other methods
makes it infeasible to implement the methods in the real
world environment.

1.2 Contributions

This study designs an MCV scheduling scheme that takes
advantage of two fundamental properties of sensors: namely,
distance and residual energy. These two properties are jointly
used in AHP to determine priorities for selecting a high-
priority sensor for charging. The main contributions of this
paper are summarized as follows:

• The paper studies charging scheduling, formulating
the problem using the AHP in WRSN mobile charging
vehicle scheduling. This is different from the existing
works that deploy fuzzy logic in dealing with multiple
criteria decision-making problems.

• We develop a greedy algorithm for partitioning all the
real values of distance and residual energy into AHP
fundamental scale. Since we will generate real resid-
ual energy and distance values, we present a method
that describes how these values can be partitioned into
the corresponding AHP fundamental values.

• Our experiments and results indicate that the pro-
posed scheme outperforms other existing counter-
parts in terms of the average remaining energy avail-
able in the network, reduction of queue length, reduc-
tion in response time, and waiting queue time, paving
the way towards for more effective scheduling and
charging policies in WRSN.

The paper is organized as follows; in Section 2 we present
Related Works. Section 3 discusses the System Description.
Multi-criteria Decision Making related analysis is presented
in Section 4. The proposed scheme is discussed in Section
5. The simulation environment is addressed in Section 6.
In Section 6.3, we present the Experimental Results and
Analysis, and lastly, Section 7 presents the Conclusion.

2 RELATED WORKS

Recently, a lot of research in WRSN has been conducted.
Clearly, the research in this area is still in its infancy. The ex-
isiting works focus on improving the performance of WRSNs.
The main objective of most studies is to maximize the net-
work lifetime and keep the nodes alive as long as possible.
To achieve this, different charging scheduling schemes are
utilized. These charging schemes are broadly classified into
deterministic and nondeterministic, offline path planning
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and online path planning [12] or period charging and on-
demand charging [13]. A comprehensive list of on-demand
charging methods can be found in [14]. These details related
to whether the charging decision is centralized or distributed,
fully or partially charging of sensors, using single or multiple
MCVs etc. In a similar manner, [14], studied an on-demand
sensor charging by taking into consideration the benefits of
partial charging. They also studied the distribution control in
large-scale wireless rechargeable sensor networks, and how
heterogeneity the energy in the sensors are. To achieve this,
they used a game theory approach as a 0-1 integer linear
programming in order to maximize the profit of MCVs.

In [15], they proposed a deep reinforcement learning-
based mobile charger scheduling method, namely, dynamic
partial mobile charger scheduling using deep-Q-networks.
This method learns from the network environment’s dynam-
ics and decides the charging duration of each sensor in the
MCV’s trajectory. Using deep-Q-networks, they solved the
MCV’s schedule in order to find the best sensor to charge as
well as the path that the MCV has to take. The aim of this
method is to reduce the waiting time of the sensor for mobile
charging vehicles and resulting in minimizing the number of
dead sensors. The limitation of this method is the increase in
the distance traveled by the MCV.

In [16], they proposed a charger scheduling method that
uses residual energy, distance to MCV, energy consumption
rate, and neighborhood energy priority to schedule an MCV.
In this method, they used limited energy in MCVs and the
sensor’s energy consumption when scheduling the MCVs.
The shortfalls in this literature include, they did not have
the step-by-step method they used to create the pairwise
matrices. Similarly, they did not show how the priorities
of individual sensors are derived at. The other weakness
that we found is that the way the consistency ratio was
calculated was not shown, apart from mentioning that they
used processes similar to [17]. The last shortfall is that this
method is only applicable to a single MCV.

In [18], they proposed the Nearest-Job-Next with Preemp-
tion (NJNP). This is based on on-demand mobile charging in
which an individual sensor requests charging from the mo-
bile charger. This method was evaluated based on through-
put and charging latency. The proposed method achieves the
best performance in both throughput and charging latency
but has drawbacks which include having a starvation prob-
lem. This is where nodes that are far away from the MCV
may not be able to get the energy that they deserve. This
problem can be solved by minimizing the distance covered
by the MCV, which can help improve the charging utility
of the network [19]. The other problem with this method is
that as the number of sensors in the network increase, the
charging latency and inactive time ratio of sensors increase
due to the heavy workload exerted on the MCV.

In [20], they proposed an online multi MCV charging
scheme. In this method, MCVs collaborate in the charging
schedule planning. This method jointly uses temporal and
spatial data to make a charging decision. Sensors that have
the shortest distance and closer charging deadlines are the
ones that have the highest priority. This method achieves a
higher survival rate, throughput, queue length, and charging
rate. Unfortunately, the method suffers from having a higher
communication overhead since when a sensor is not charged

by an MCV, it sends a recharge request to a neighbouring
MCV. Sending frequent request will result in higher energy
consumption as communication is one of largest energy
consumers in wireless sensor networks [21].

Other related works have been added in the supplemental file.
In this work, we focus on selecting a sensor to be charged

based on multiple criteria. This will schedule an MCV to
visit a sensor once the defined criteria have been met. Our
proposal involves dynamic charging where the next to-be-
charged sensor depends on the priority of the current at-
tributes of the sensor. The proposed method is also a one-
to-one charging where a single MCV charges one sensor at a
time. Another characteristic of the proposed method is that,
the MCV will fully charge a sensor before proceeding to the
next one. Multiple MCVs, will be used as opposed to using a
single MCV.

3 SYSTEM DESCRIPTION

Given a wireless sensor network S, where S =
{s1, s2, . . . , sn} denotes a set of sensors deployed in a field
of interest for sensing and collecting data. Each node has
a rechargeable battery with Ecap capacity. The network is
heterogeneous, i.e., the network uses two different types of
sensors, these are temperature, and humidity sensors. Each
sensor has a different energy consumption rate econsi

. eressi
is the residual energy of sensor si. τlt is the amount of time a
sensor is expected to continue operating before it fails. This is
dependent on the amount of energy remaining in the sensor
and the energy consumption rate of the sensor. This is given
as τlt = eressi/econsi

[20].
When eres is equal to or below a given threshold value,

i.e. eres ≤ ethre, a charge request is sent to the base station
(BS). The BS as a sink collects the sensor requests in a
recharge request set or queue Sreq . The BS acts as a central
hub that has complete knowledge of the network, i.e., the
BS will be used to perform a number of functions. These
functions include: recharging the MCVs, performing com-
putations for scheduling MCVs for sensor recharging tours,
providing communication between sensors and the MCVs
and also communication between MCVs and BS, acting as a
gateway between the whole system and users, and storing
data collected from the sensors. It will also keep track of
which MCV has been assigned to which sensor.

The distance between two sensors si and sj is given by
the Euclidean distance d(si, sj). In this paper, a scheduling al-
gorithm based on the multi-criteria decision is utilized where
1 < |Sreq| ≤ |S|. The criteria are the sensor’s residual energy
and distance. In this paper, we will also briefly address the
attributes that the MCV has that might also influence the
sensor to be charged. Notations used in this paper are given
in Table 1.

3.1 MCV Properties
The MCV has two important attributes that should be stud-
ied. These attributes are: the MCV travel energy (EMCVtrav

)
and MCV residual charging energy (EMCVres

). EMCVres
is

the energy that is used to charge sensors. The MCV residual
charging energy and traveling energies are separate; that
is, the MCV will have two energy sources, one battery for
charging sensors and another battery to be used as energy
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Table 1: Notations and their meaning.

Notation Meaning
S A set of all sensors in the network

Sreq Set of sensors requesting recharge
Ssub Subset of Sreq

Ecapsi
Energy capacity of sensor si

econsi
Energy consumption rate of sensor si

eressi Residual energy of sensor si
d(si, sj) Euclidean distance between sensors si and sj

τ Amount of time the sensor has been in operation
τlt Sensor lifetime
τsi The time sensor si has been operating

τtotal Total time spent by MCV charging sensors
Sdead The number of dead sensors in a period of time
echarg The charging rate of the sensor
τchargsi

The charging time of sensor si
vMCV The speed of the MCV
τMCV Time of MCV to travel and charge sensors

econMCVt
Energy consumption rate of MCV at time t

EMCVinit
MCV initial energy used for charging sensors

EMCVtrav MCV traveling energy
EMCVres Residual charging energy of MCV for charging sensors

for traveling. These two energy sources determine whether
a sensor gets charged or not. Three scenarios can force an
MCV not to charge a sensor, (1) if EMCVtrav is less than the
energy needed to reach a sensor and return to the BS, (2) if
EMCVres is less than the energy needed to charge a sensor,
and (3) when the MCV has finished recharging sensors.

3.1.1 MCV Travel Energy
For the MCV to travel around its charging tour, it needs
energy. If this energy is unavailable or insufficient for the
MCV to recharge the sensors and return to the BS, the MCV
will not travel. Given a charging route {BS −−→

e1
s1 −−→

e2
s2 −−→

e3
· · · −−→

en
sn −−−→

en+1

BS} with corresponding energies

ei needed to travel between sensors, then the minimum MCV
energy required to travel around the charging tour is given
by Equation (1).

EMCVtrav ≥
n+1∑
i=1

ei (1)

For si ∈ Sreq , if EMCVtrav
<

∑n+1
i=1 ei, then the MCV will not

travel. The time the MCV has been moving from one sensor
to another and the time it is charging the sensors. τMCV is
defined by Equation (2) [19].

τMCV =
n∑

i,j=1
i ̸=j

d(si, sj)

vMCV
+

n∑
i=1

τsi . (2)

where vMCV denotes the speed of the MCV in meters per
second, and τsi denotes the time taken to charge sensor si in
seconds.

3.1.2 MCV Residual Charging Energy
The residual energy of the mobile charger also plays an
important role in the sensor charging decision problem. The
residual energy of the MCV will have a profound impact
in terms of whether a sensor is charged or not. In a very
large network, the MCV will charge sensors up to a point
where its energy level allows it to, that is if EMCVres ≥
(Ecapsi

−eressi ). After that point, the MCV will have to return

back to the BS to replenish its energy, even if some sensors
are still waiting to be charged.

At the onset of the network, the residual charging energy
of MCV (EMCVres

) is given by Equation (3) [16].

EMCVres
= EMCVinit

−
( n∑

t=1

(
econsi

∗ τsi
))

(3)

where econsi
is the energy consumption rate of sensor si, and

τsi is the time sensor si has been in operation. If no sensor
requests charging then EMCVres = EMCVinit .

3.2 Sensor Properties
Sensors also have attributes that are of interest and highly
influence the charging scheme design. There are several
attributes or criteria that are important, and these are the
distance of the sensor from the MCV, residual energy of
the sensor, sensor charging time, and lastly, sensor energy
consumption rate. The two attributes that are of interest in
this paper are residual energy and the distance of the sensor
to the MCV. A brief discussion of the four attributes and how
they affect the MCV’s scheduling is discussed in detail.

3.2.1 Distance between sensors
The euclidean distance between two sensors si and sj is
given as d(si, sj) =

√
(x2 − x1)2 + (y2 − y1)2. The aim is

to find the shortest distance covered by the MCV as it is
traveling charging the sensors [22], maximizing the number
of nodes charged per every MCV stop, and setting up of
MCV energy replenishment depots along the MCV route,
i.e., the distance between two sensors [23]. This problem has
a computational complexity of O(n!) for n locations visited
[24]. The total distance Td covered by the MCV from BS to all
the sensors in its charging path is given by Equation (4), and
the total distance back to the base station is Td + d(sn, BS)
where Td is given in Equation 4.

Td =
n∑

i=0

d(BS, si) (4)

3.2.2 Sensor Residual Energy
The residual energy of a sensor si given by eressi is the
remaining energy after a sensor has been in operation after
τ seconds where τsi is the time the sensor si has been
operating. The sensor uses its energy to sense its environ-
ment, communication and computing tasks [25]. The eressi
is calculated by Equation (5), where Ecapsi

is the energy
capacity of sensor si.

eressi = Ecapsi
−

( n∑
t=1

(
econsi

∗ τsi
))

(5)

3.2.3 Sensor Charging Duration
Sensor charging time is the amount of time it takes the MCV
to charge a sensor. This will ultimately determine how much
time a mobile charger will spend on a particular sensor. The
more time the MCV spends on a particular sensor, the less
time it will be able to charge other sensors. This can result
in other sensors not getting charged. These sensors will die,
which in turn disrupts the operation of the whole network.
The charging time τchargsi

of sensor si is given by Equation
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(6), where Ecapsi
denotes the battery capacity of the sensor

si when full, and echarg denotes the charging rate.

τchargsi
=

(Ecapsi
− eressi )

echarg
(6)

For sensors not to die, we need to make sure that echarg ≥
econsi

. The total time τtotal spent by the mobile charger to
charge all the sensors in a charge request queue is given by
Equation (7).

τtotal =

|Sreq|∑
i=1

τchargsi
(7)

3.2.4 Charging Rate
This is the rate the sensor is being charged given by echarg .
For a sensor to be fully charged, we need to make sure that
echarg ≥ econsi

. If echarg < econsi
, then the sensor will

exhaust its residual energy and die.

4 MULTI-CRITERIA DECISION MAKING (MCDM)
MCDM is a process used to solve problems with multiple
criteria, such as charging or scheduling schemes, by aggre-
gating the criteria to determine the best option. In WSN,
selecting which sensor to charge is a challenge that involves
considering multiple criteria to determine the optimal choice
[5].

Many researchers use residual energy as the sole metric
for determining which sensor to charge [26]. Once sensors
have sent a recharge request to the BS, a recharge request set
is created, and a charging route is planned, which represents
a charger scheduling and path planning problem [19].

Rather than relying on a single criterion to select a sensor
for charging, this paper considers multiple criteria and ag-
gregates the scheduling decision to determine which sensor
should be recharged first. Specifically, the system takes into
account the distance between the MCV and the sensor as well
as the sensor’s residual energy. Reasons for selecting these
two criteria are explained next.

Residual energy was selected for the following reasons:

• Network lifetime: Network lifetime determines the
amount of time the network can operate before batter-
ies run out of power. Therefore, energy consumption
is a major factor in determining the network lifetime.

• Performance: Energy affects performance because,
having no energy, sensors will not be able to transmit
data, process data, sensing, and communication. Once
sensors are not able to perform these functions, then
the performance of the network will be negatively
affected.

Distance was selected as a criterion for the following
reasons:

• Energy consumption: If two sensors are further apart,
then they will use more energy to communicate be-
tween them. This is because the signal travels a much
greater distance, which means the signal has a much
higher likelihood of being attenuated or lost.

• Data rate: Two sensors located further apart have
a lower data rate they can support. The reason for
this is that the signal is spread over a wider area

which means there is less bandwidth available for
each sensor. For efficient data transmission, dynamic
data routing is better than static routing in WSN [27].

• Latency: The further apart the sensors are, the higher
the latency between them. The reason is that it will
take a long time for the signal to travel between the
two nodes.

• Reliability: Sensors that are located further apart have
less reliable communication between them. This is
because there is a greater chance of the signal being
lost or attenuated.

For these reasons, we decided to choose residual energy
and distance as criteria that we need to use in the proposed
method. The proposed AHP MCDM hierarchy system is
described as follows:

• Alternatives: S = {s1, s2, · · · , sn} a set of n potential
alternatives (sensors) to be selected for charging.

• Criteria: A set of criteria A = {a1, a2, } where a1 is
the Euclidean distance between a sensor and the MCV,
and a2 is the residual energy.

• Goal: the aggregation of performance of alternatives
si on criterion aj is given by gj(ai) ∀ si ∈ S and
ai ∈ A.

4.1 Analytic Hierarchy Process
AHP is a structured technique for organizing, analyzing and
making complex decisions [28]. These hierarchies help one
make judgments about complex problems [29]. AHP allows
one to transform a problem having different scales and units
like meters and kilograms to a single scale problem by
making sure that the criteria are independent of each other
[29].

Given a set of n alternatives or sensors S =
{s1, s2, . . . , sn}. We need to make a decision as to which
sensor will be selected for charging based on several criteria
(m) where m is a finite set. The finite set S contains our
alternatives, i.e., which sensor will be selected for charging.
The set of objectives will be limited to a maximum of three
sensors, i.e., |Sreq| ≤ 3 as 7 is the optimal value [30]. For a
criterion k, the AHP generates a weight ωk. For an alternative
j, a score skj for objective k is obtained.

The total score of the alternative j is aggregated by
Equation (8).

m∑
k=1

n∑
j=1

ωkskj (8)

Based on the total score, a decision will be made as to
which sensor should be selected for charging; that is, a sensor
with the highest score will be selected, or a sensor with the
lowest score, or any selection criteria can be applied.

The AHP involves a pairwise comparison matrix where
objectives are compared with each other [31]. In our case, the
criteria that will be used are the distance between the sensors
and the MCV and the sensor’s residual energy. These criteria
are the ones that are used to evaluate alternatives.

Since in AHP, the goal is defined at the highest level of
the hierarchy, in this case, the goal is defined as ”being able
to select a sensor to charge based on multiple criteria or MCV
charging scheduling.” The alternatives, in this case, are the
sensors at the lowest level of the hierarchy.
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Figure 1 shows the hierarchy used in making decisions
in this paper, where the highest level gives the goal. The
objectives are on the second level and lastly, the alternatives
which are the sensors.

Figure 1: AHP Hierarchy

The hierarchies influence each other; from top to bot-
tom. The lowest level has alternatives; these are influenced
by the level immediately above them. In Figure 1 having
three levels, the higher level influences on the middle level
with weight of ω matrix and middle level influences on the
lower level is the score matrix S. This, therefore, means the
influence of the higher level on the lower level is the matrix
multiplication Sω.

Based on AHP, we will use the method outlined in [32].
After a positive reciprocal pairwise matrix (A = [ai,j ]nxn)
has been created, we need to generate priorities for the
alternatives and criteria.

1) Sum the values in each column of the pairwise matrix
A as in Equation (9).

Aij =
n∑

i=1

aij (9)

2) Generate a normalized pairwise matrix by dividing
each element of A by the sum of its column as given
in Equation (10).

q11 q12 · · · q1n
q21 q22 · · · q2n

...
...

. . .
...

qn1 qn2 · · · qnn

 , Qij =
Aij∑n
i=1 Aij

(10)

3) To generate the weighted matrix, divide the sum of
the normalized column of the matrix by the number
of the criteria used (n in our case). This is given in
Equation (11).

w1

w2

...
wn

 ,Wij =

∑n
j=1 Qij

n
(11)

Equations (9), (10) and (11) allow the generation of a normal-
ized matrix of priorities.

After generating the weight vectors, the next stage
involves consistency analysis. This helps in determining
whether our matrix A is consistent or not. The steps involved
are as follows:

1) Generate a consistent vector by right multiplying the
pairwise A with the weight vector as in Equations
(12).

q11 q12 · · · q1n
q21 q22 · · · q2n

...
...

. . .
...

qn1 qn2 · · · qnn




w11

w21

...
wn1

 =


qv11
qv21

...
qvn1


(12)

2) Divide the weighted sum vector with each criterion
weight. This is given in Equation (13).

qv11 =
1

w11

[
q11w11+ q12w21+ · · ·+ q1nwn1

]
qv21 =

1

w21

[
q21w11+ q12w21+ · · ·+ q1nwn1

]
...

...
. . .

...

qvn1 =
1

wn1

[
qn1w11+ q12w21+ · · ·+ q1nwn1

]
(13)

3) Calculate the largest eigenvalue of matrix A i.e., λmax

is calculated as in Equation (14).

λmax =
n∑

i=1

qvij (14)

4) Consistency Index (C.I.) is calculated using Equa-
tion (15), where n is the eigenvalue of matrix A.

C.I. =
λmax − n

n− 1
(15)

5) Calculate the Consistency Ratio (C.R.) which is the
ratio of C.I. to R.I. i.e., using Equation (16), where
R.I. is the value obtained from Table 2 [33]. If C.R. <
0.10, the matrix is considered consistent otherwise,
it’s not consistent.

C.R. =
C.I.

R.I.
. (16)

5 PROPOSED SCHEME

This section discusses the proposed method and its divided
into two sub-sections. Sub-section 5.1 presents a brief de-
scription of the energy utilization of MCV and sensors while
5.2 discusses the process of creating pairwise comparison
matrices.

5.1 MCV and Sensor Energy Utilization
When a sensor’s residual energy is below a given threshold,
that particular sensor will be added to the charge request
queue Sreq . The sensor distance to the MCV will then be cal-
culated. Based on these two properties, comparison matrices
will be created. These will be used in calculating the priorities
of each sensor. Using Equations (9) through (15), a sensor to
be charged will be selected based on highest priority.

In literature, most authors assume that the MCV has
unlimited energy. In reality, the MCV also has limited energy
to travel and the energy it uses to charge the sensors. Since
the energy of the MCV is also limited, it means that if the
travel energy of the MCV is less than the energy needed to
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Number of Criteria (n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Random Consistency

Indices (R.I.) 0.0 0.0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.54 1.56 1.57 1.59

Table 2: Average Random Consistency Index (R.I.)

reach a particular sensor, charge the sensor and return to the
BS. The sensor will either not be recharged, and the MCV will
also die on the way or, the sensor will be able to be recharged
by the MCV, but the MCV will not be able to return to the BS
for itself to be recharged. Either way, the MCV will die, which
will disrupt the whole network. When the MCV is stationary
charging the sensor, the travel energy will be zero. If the MCV
residual energy is less than the energy needed to recharge a
sensor, then the MCV will not be able to travel and recharge
the sensors, i.e., the two attributes, initial or residual energy
(EMCVinit) and travel energy (EMCVtrav ) are important in
determining whether the sensor is charged or not.

Given binary value 0 representing ”no adequate energy”
and 1 representing ”adequate energy”. An MCV can only
start a charging tour if both values are 1. This is similar to a
binary AND operation as shown in Table 3.

Table 3: MCV travel decision

EMCVinit
EMCVtrav (EMCVinit

∧ EMCVtrav )/Recharge?
0 0 No
0 1 No
1 0 No
1 1 Yes

The minimum residual charging energy of the MCV,
before it starts its journey, is given by Equation (3)

so that the MCV can have enough energy to charge all
the sensors in Sreq . Equation (1) gives the minimum travel
energy. The minimal travel energy is the energy needed for
the MCV to travel around the charging tour.

This will result in the MCV recharging all the sensors and
returning to the BS.

5.2 Pairwise Comparison Matrices
The pairwise comparison matrix is made by comparing the
criteria with each other and also the alternatives at the lowest
level with each other. After creating a pairwise comparison
matrix, we need to make sure that the matrix is consistent
and reciprocal. A matrix X is said to be consistent if for
aim ∈ X and amj ∈ X then aim · amj = aij ∈ X otherwise
the matrix is not consistent [34]. aij is the relative preference
of the criterion i to j. When the matrix is inconsistent,
the comparison must be revised until it becomes consistent,
although this may not be successful. For the matrix X to be
reciprocal then the elements aij = 1/aji → aijaji = 1 and
that the diagonal matrix is 1 i.e. aii = 1 since aijaji = 1.

For n criteria, we have n(n−1)
2 comparisons excluding

reciprocal values and self-comparison criteria. Based on this,
we should be able to create matrices for distance and residual
energy.

5.2.1 Distance Pairwise Comparison Matrix
To create a distance pairwise comparison matrix D, we
measure the euclidean distance from MCV to sensors. For
example given two sensors si and sj , if d(MCV, si) <

d(MCV, sj) then we assign the value d(MCV, si) on the
row sij and the reciprocal 1/d(MCV, si) on the row sji. If
d(MCV, si) > d(MCV, sj), then on row sij will have the
value 1/d(MCV, si) and d(MCV, sj) will be allocated at sji.
Otherwise, if d(MCV, si) = d(MCV, sj) then sij = sji = 1.
The values assigned to the rows sij or sji are taken from
Table 4 based on the scale created.

Algorithm 1 Distance Pairwise Comparison Matrix Genera-
tor

1: Input : Sensor Distance from in Sreq

2: Output : Distance Pairwise Comparison Matrix
3: if d(MCV, si) < d(MCV, sj) then
4: sij ← d(MCV, si)
5: sji ← 1/d(MCV, si)
6: else if d(MCV, si) > d(MCV, sj) then
7: sij ← 1/d(MCV, si)
8: sji ← d(MCV, si)
9: else

10: sij ← sji ← 1
11: end if

The priority of sensors based on distance is calculated
using Equations 9 through 11 and consistency ratio is calcu-
lated using Equations 12 through 15. The time complexity of
Algorithm 1 is provided in the Supplementary file.

5.2.2 Residual Energy Comparison Matrix
When creating a comparison matrix based on residual energy,
we need to make a comparison based on the current residual
energy of the compared sensors. Given two sensors si and sj ,
if eressi > eressj then sij = 1/eressi . If eressi < eressj , then
sij = eressi and sji = 1/eressi and lastly if eressi = eressj
then sij = sji = 1. This means that the higher the residual
energy value, the lower the value that will be assigned from
Table 4. Similarly, the lower the residual energy, the higher
the value to be assigned from Table 4. The values eressi
and eressj will be replaced with values from the modified
fundamental scale of absolute numbers from Table 4.

Algorithm 2 Residual Energy Pairwise Comparison Matrix
Generator

1: Input : Residual energy from sensors in Sq

2: Output : Residual Energy Pairwise Comparison Matrix
3: if eressi > eressj then
4: sij ← 1/eressi
5: sji ← eressi
6: else if eressi > eressj then
7: sij ← 1/eressi
8: sji ← 1/eressi
9: else

10: sij ← sji ← 1
11: end if

The time complexity of Algorithm 2 is provided in the
Supplementary file.
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The priority of sensors based on residual energy is calcu-
lated using Equations 9 through 11 and consistency ratio is
calculated using Equations 12 through 15.

5.2.3 Weights of Criterion and Alternatives
The importance of the criteria should be evaluated relative to
the importance of the other criteria. This is done by normal-
ization. Normalization will show the relative importance of
the criterion [31].

After obtaining the weights of the alternatives using
Equations (9) through (11), we will use the distributive mode
of AHP to obtain the weights of the criteria. The distributive
mode of AHP takes into account the fact that the weights of
the criteria may depend on the alternatives. Alternatively, we
can derive the weights of the criteria from the alternatives
[31].

From Equation (11), weight for criterion i with respect to
the goal is given by Equation (17).

ωi =
n∑

i=1

wi. (17)

The weight of the alternative with respect to the overall
goal is the average of its weights with respect to the criteria
given by Equation (18). ∑n

i=1 ωi

n
. (18)

The sum of the weights (W) of all criteria will be as in
Equation (19).

W =
n∑

i=1

ωi = 1. (19)

5.2.4 Partition criteria values into corresponding AHP values
Given the closed interval of the values of our criteria as [α, β]
where α < β. The interval [α, β] will be partitioned into ζ
equal partitions by Equation 20:

f(α, β) =
β − α

ζ
. (20)

We need to develop a method of partitioning the criteria
into finite intervals to fit the AHP fundamental scale. Since
all the attributes will have definite values, then these values
can be put in an interval [a, b] where a < b. The partition of
this interval [a, b] is given as sub-intervals

[x0, x1], [x2, x3], · · · [xn−1, xn] (21)

such that

a = x0 < x1 < x2 < · · · < nn−1 < xn = b. (22)

The associated AHP values are the tags of our interval.
The interval will be σ = ⌈β−α

n ⌉. We set α = 0 =⇒ σ = ⌈βn⌉
because for all our criteria, the smallest value they can have is
0 and β = max{d(BS, s1), d(BS, s2), · · · , d(BS, sn)}. In our
case, n = 9, since the AHP scale is divided into 9 intervals
and β is the largest value of the criterion, we are fitting in
the AHP fundamental scale interval. For example, given six
sensors having the following distances (meters) from MCV,
{40, 90, 124, 71, 5, 6} from the MCV. Then the interval will be
divided into sizes of f(x) = ⌈ 124−0

9 ⌉ = 14m where β = 124

and α = 0. The ceiling is used to make ensure that all the
values in the range are included. The interval created will be
dynamic. As the values of criteria change, so is the interval.
This will enable every sensor to be allocated to a particular
interval. This will result in a sensor being assigned a value in
AHP fundamental scale. Partitions will also help in removing
the units that our different criteria have.

To determine the priority of distance and residual energy,
16 comparison matrices regarding distance and residual en-
ergy can be generated. This will be helpful in determining the
overall priority of a particular sensor concerning the goal.
Due to a lack of expert knowledge about whether residual
energy or distance should be given higher priority, in this
paper, we gave distance and residual energy equal priorities,
i.e., each has a priority of 50%. This will result in the overall
priorities of the sensors being determined by the sensor’s
actual residual energy and distance at the particular time the
priorities are being calculated.

The selection of a sensor to be charged works as fol-
lows, using AHP, each sensor sends its residual energy and
distance to the BS station. Based on the data, the BS uses
Algorithm 1 to create a distance comparison matrix. This will
be used to get the sensor with the highest priority by only
considering the distance. It also uses Algorithm 2 to generate
a residual energy comparison matrix. The comparison matrix
will then be used to calculate the sensor with the highest
priority due to residual energy.

After creating the comparison matrices, Equation (9)
through Equation (14) will be used to calculate the priori-
ties. These priorities are then multiplied by the two criteria
priorities and then added to find the overall priority in
comparison with the overall goal. Equation (15) is used
to calculate the consistency index as a component in the
calculation of consistency ratio in Equation (16). To ensure
that the consistency ratio is less than 10% for the results to
be acceptable, a secondary queue will be created that only
stores a maximum of three sensor attributes. This queue
Ssub ⊂ Sreq and |Ssub| ≤ |Sreq|. A comparison matrix based
on these three sensor attributes will be created and compared
to reduce inconsistencies.

Consistency Ratio Challenge: When calculating our
priorities, we need to make sure that the consistency ratio
is within the required threshold of less than 10%. If the value
is not less than 10%, the judgments should be revised [29].
In cases where we have one or two sensors in the queue,
the consistency ratio will be within the required threshold.
In cases of three or more sensors in Ssub (in our case,
we will only consider three sensors to allow us to get the
correct consistent ratio), then a systematic method needs to be
developed that will allow us to get the necessary results. To
make sure that we have the right consistency ratio whenever
we create our comparison matrices, we propose Algorithm 3.
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AHP Scale 1 2 · · · 6 7 8 9
Distance [β, 8f(α, β)) [8f(α, β), 7f(α, β)) · · · [4f(α, β), 3f(α, β)) [3f(α, β), 2f(α, β)) [2f(α, β), f(α, β)) [f(α, β), α]

Residual Energy [β, 8f(α, β)) [8f(α, β), 7f(α, β)) · · · [4f(α, β), 3f(α, β)) [3f(α, β), 2f(α, β)) [2f(α, β), f(α, β)) [f(α, β), α]

Table 4: The AHP fundamental scale covering our criteria.

D RE
D 1 n
RE 1/n 1

D RE
D 1 1/n
RE n 1

Table 5: Pairwise comparison matrix of distance and residual
energy for n ∈ [0, 9].

Algorithm 3 Required Consistency Ratio (CR) Calculation

1: Require |Sreq| > 0
2: Ensure C.I.← λmax−n

n−1
3: Ensure R.I.← Table 2
4: Ensure Ω← 0.1
5: while |Sreq| ≠ 0 do
6: if C.R. > Ω and |Sreq| > 3 then
7: Ssub\s3
8: Ssub ← s3+i ▷ s3+i with lowest R.E. and dist.
9: else if C.R. is < Ω and |Sreq| ≤ 3 then

10: C.R.← C.I.
R.I.

11: else if C.R. ≤ Ω then
12: MCV ← si
13: end if
14: |Sreq| ← −1
15: end while

The time complexity of Algorithm 3 is provided in the
Supplementary file.

An example explaining the proposed method is provided
in the supplementary file.

6 SIMULATION RESULTS

6.1 Simulation Parameters

For our simulations, 100 sensors are used, covering an area
of 500m x 500m. We used five MCVs. Each sensor has a
battery capacity of 900 Joules and a constant recharge rate
of 1.5 J/s. The sensor’s energy consumption rate is set to
within the range (0.02,1) J/s. The sensors that are used are
temperature, and humidity sensor. The mobile charger has a
battery capacity of 9500 Joules that is used to charge sensors.
The sensors have a battery capacity of 900J. While the MCV’s
traveling energy is 15,000J [14]. The speed of the mobile
charger is 5 m/s. Each experiment was simulated for a period
of four hours. The summary of the simulation environment
parameters is given in Table 6. In terms of communication
and data transmission, we used TCP

/

IP protocol. Much as it has some weakness like point-to-point
communication, responsiveness, and no event-driven [21].
We still used it because of its scalability, open standard, relia-
bility, error detection and correction, routing and addressing,
security, universality, interoperability, and security.

Table 6: Simulation parameters

Parameter Value
Size of network (m2) 500 x 500
Number of nodes 100
Sensor Type DHT11 (Temp. and Humidity Sensor
Number of MCV 5
Speed of MCV 5 m/s
MCV charging rate 1.5 J/s
MCV energy capacity 9500 J
MCV travelling energy 15,000J
Sensor energy capacity (Li-ion battery) 900 J
Initial energy of MCV 9500J
Weight of distance [0,1]
Weight of residual energy [0,1]
Simulation time 4 hours
Sensor’s energy threshold 30-40Joules

6.2 Evaluation Metrics

The performance of the proposed method was evaluated
based on the following metrics:

Average remaining energy: The average remaining en-
ergy of the sensors, denoted by (µ̄), in the network, is defined
as the energy remaining in the system at a given point in time,
mathematically expressed by Equation (23).

µ̄ =
1

|S|

|S|∑
i=1

eressi . (23)

Dead Nodes: denoted by (Dn), it represents the number
of nodes whose residual energy is zero at a given time period,
expressed by Equation (24).

Dn =

{
0, if eressi > 0∑|Sreq|

i=0 si, if eressi = 0
(24)

Average Queue Length: denoted by Ql, is given by Equa-
tion (25). The average queue length represents the average of
recharge requests that are sent to the base station.

Ql =
1

|Sreq|

|Sreq|∑
i=1

si (25)

where |Sreq| ≤ |PMCV1
∪ PMCV2

∪ · · · ∪ PMCVn
| = |S|.

Response Time: The time the MCV takes to respond to
the request from a sensor. Defined as the amount of time from
the moment the sensor sends a request until the moment the
MCV starts charging the sensor.

Survival Rate (ρ): is the ratio of the sensors that are alive
in comparison to the sensors that die in a given period of
time. As the charging rate increases, the survival rate also
increases, mathematically expressed by Equation (26).

ρ =
Sr

|S|
(26)

and
Sr = |S| − Sdead (27)
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where |S| is the size of the queue and Sdead is the number of
dead sensors in a given period of time.

Waiting Queue Time: is the time that the sensor spends
waiting for it to be charged.

Charging Duration: is the time it takes the MCV to charge
a sensor. This is given by Equation (6).

6.3 Experimental Results and Analysis
In this section, we present the evaluation results of our ex-
periments and then analyze the results afterward. Note that
the results presented are an average of ten independent runs
of simulations. The simulator for the experiment is available
at 1.

6.3.1 Experimental Results
The results are presented by varying the time. As time
changes, we observe how the evaluation metrics behave. The
simulations were run for a period of four hours. Our results
were compared with two other methods, mTS [20] and IOCS
[35] that uses residual energy and distance as criteria. The
results of the experiments are shown in Figure 2 through
Figure 8.

Average Remaining Energy (ARE). The evaluation re-
sults of average remaining energy by varying time is shown
in Figure 2. At the beginning, the average remaining energy
is high. Then, due to sensors performing operations like
sensing the environment, computations, transmitting, and
communication, the average remaining energy starts to drop.
As time progresses, the average remaining energy stabilizes.
Our method results in an average of around 5.91% increase
compared with mTS and a 25.82% better performance com-
pared with IOCS. The reason our method gives better ARE
is that, our method has, faster response time due to short
queues and also the sensors with the lowest energy and the
shortest distance will have high priority. In IOCS a sensor that
has large distance will result in having high priority due to
Equation 7 in [35]. Whereas mTS, aims at maximizing energy
usage efficiency.
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Figure 2: Average Remaining Energy.

Charging Duration. As depicted in Figure 3, charging
duration for sensors increases as time passes by. This then

1. https://github.com/qondwani/wrsn

stabilizes because energy depletion in sensors also stabilizes,
resulting in near-constant charging duration. Our method
results in a 10.56% improvement compared with mTS and an
11.75% improvement in comparison with IOCS. On average,
this indicates that using our method, the MCV spends less
time charging a sensor than the other two methods. Although
all methods fully charge sensors. The reason our method has
better performance is that, in our method, the allocation of
sensors to the MCV is such that no MCV will be allocated
more sensors than necessary, i.e., fair allocation of sensors to
the MCVs resulting in the MCVs spending less time charging
sensors. This is because when calculating the priorities, the
allocation gives high priorities to sensors closer to the MCV
and those about to die, i.e., those sensors having low energy.
In IOCS, the influence of distance results in sensors requiring
more charging time since as the MCV is traveling the sensor
will still consume some energy and this can slightly increase
the charging duration even though the MCV is within its
charging area.
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Figure 3: Charging Duration

Dead Nodes. Figure 4 show the results of the nodes that
die as time varies. The number of dead nodes increases as
time progresses. This is because the ratio of MCV to sensors
is not one-to-one. As such, as the MCV is charging some
sensors, more sensors will be added to the queue. In this
context, our method shows an increase in the number of
sensors that die up to 50.2% compared with mTS and an
improvement of 47.01% in comparison with IOCS. For the
comparison with mTS the recalculation of the consistency
ratio causes delays in some cases in dispatching the MCV
to charge sensors as priorities have to be recalculated so that
they are within the 10% threshold and also the aggregation
process of the priority has an effect in delaying dispatching
of the MCV. Delays in dispatching an MCV result in some
sensors dying. Whereas in IOCS, giving sensors located a
longer distance high priority will result in more sensors
dying as the MCV will need to travel a longer distance within
its service area to reach an energy exhausted sensor.

Average Queue Length (AQL). We present the results
of the AQL over time in Figure 5. In our case, the AQL
decreases over time due to shorter charging duration and
faster response time. Our method achieves an average of
45.74% improvement over mTS and 52.34% over IOCS. This
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Figure 4: Dead Nodes

is because, according to our method, each MCV is allocated a
queue. To charge a sensor, priority is calculated by on greedy
algorithm of selecting a sensor dependent on residual energy
and distance. The sensor with the highest priority is the one
that is charged. So sensors with the lowest energy and closest
to the MCV will have higher overall priority; this results in
more sensors being charged and lower average queue length.
In IOCS, much as each MCV has its own service area and
queue to serve, as pointed out earlier, the priority is heavily
influenced by the distance, the longer the distance the larger
the priority. This is due to Equation 7 in [35]. This will affect
the size of the queue in IOCS.
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Figure 5: Queue Length

Response Time. The results for response time are given
in Figure 6. As can be seen in Figure 6, initially, the response
time is faster as fewer sensors send recharge requests to
MCV. As time progresses, response time increases slightly
due to some sensors being in the waiting queue for an MCV.
Response time for the next sensor will depend on the residual
energy of the current sensor and the charging rate. The higher
the residual energy of the current sensor, the faster the next-
to-charged response time will be. Our method had a faster
response time of averaging 35.12% compared to mTS and
62.94% over IOCS. The response time is shorter because
the AQL is shorter on average because by considering the

low residual energy and also giving high priority to shorter
distance, it means that the MCV will travel shorter distance
to recharge a sensor as opposed to mTS and IOCS. which
makes the MCV response to the recharge request faster, hence
a faster response time.
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Figure 6: Response Time

Survival Rate. Figure 7 shows the survival rate results. It
shows that the progression of time results in fewer sensors
surviving. The survival rate stabilizes due to some sensors
being charged and thereby preventing sensors from dying. In
this context, mTS has better performance than our method.
mTS achieves a better performance of 3.9% than our proposal
and 12.31% better than IOCS. This is because one of the
main aims of mTS is to maximize the sensors’ survival rate
regardless of other metrics. The other reason is that the time
our method takes to calculate the consistency ratio affects the
survival rate in comparison to mTS. In IOCS, the survival
rate is affected by the time the MCV takes to travel to the
nearest requesting sensor. The longer distance the MCV takes
to travel affects the survivability of the sensors and in IOCS,
the influence of distance is high resulting in some sensors
dying.
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Figure 7: Survival Rate

Waiting Queue Time (WQT). Waiting queue time is re-
lated to response time and queue length. A shorter response
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time will result in the WQT being shorter. This similarly ap-
plies to the queue length in that the shorter the queue length,
the shorter the WQT. In this context, our method shows an
improvement of an average of 40.04% in comparison with
mTS and 62.94% in comparison with IOCS as in Figure 8. This
is because our method has a shorter response time, resulting
in shorter WQT. In IOCS, the waiting queue time is high
because the response time is high and also the queue length
is high due to the reasons explained above. In our method, as
the distance or residual energy gets smaller, the priority of the
sensor gets high. Similarly, if both the distance and residual
energy gets smaller, then the priority will increase, giving the
sensors in our method high priority than the other methods
we compared with. This is because, over time, the residual
energy of the sensor has to decrease, resulting in the priority
of the sensor increasing even if the distance is increasing,
thereby giving the sensors in our method an opportunity of
being charged by the MCV.
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Figure 8: Waiting Queue Time

6.4 Challenges in Real-life Implementation
The challenges in implementing this work in real-time sce-
nario include technical complexities, resource constraints,
scalability, management complexities, and redundancy and
fault tolerance. These have been explained in detail in sup-
plementary file.

7 CONCLUSION

This study proposes a charging scheduling scheme based on
MCDM. In particular, we used AHP to determine the next-to-
be-charged sensor. Based on our research, we have found few
works that used AHP in WRSN mobile charger scheduling
and no research that has purely applied AHP to this problem.
In our work, two criteria of distance and residual energy
were used to decide sensor priority. We performed extensive
experiments in order to compare our method with two other
methods. The comparisons with the two other methods show
an improvement in most of the metrics. Better results were
observed in the overall average remaining energy in the
system, charging duration, average queue length, response
time, and waiting queue time. The survival rate was slightly
better in mTS, with dead sensors being more in our method.

The main challenge is ensuring that the consistency ratio is
within the 10% threshold. This can result in the number of
computations being high because after a sensor is recharged,
for the MCV to select the next sensor, the priorities are
recalculated to make sure that the priorities are less than
10%. In future work, we plan to consider increasing further
the number of criteria of the sensor. We also plan to include
MCV attributes such as traveling energy and recharging
energy in MCV scheduling. Lastly, we plan to compare our
method with fuzzy logic-based methods. This will help in
understanding the difference in performance of the different
multi-criteria methods and establish a concrete step towards
the next generation scheduling and charging schemes.
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