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Abstract—The human auditory cortex contextually integrates
audio-visual (AV) cues to better understand speech in a cocktail
party situation. Recent studies have shown that AV speech en-
hancement (SE) models can significantly improve speech quality
and intelligibility in low signal-to-noise ratios (SNR < −5dB)
environments compared to audio-only (A-only) SE models.
However, despite substantial research in the area of AV SE,
development of real-time processing models that can generalise
across various types of visual and acoustic noises remains a
formidable technical challenge. This paper introduces a novel
framework for low-latency, speaker-independent AV SE. The
proposed framework is designed to generalise to visual and
acoustic noises encountered in real world settings. In particular,
a generative adversarial network (GAN) is proposed to address
the issue of visual speech noise including poor lighting in real
noisy environments. In addition, a novel real-time AV SE based
on a deep neural network is proposed. The model leverages the
enhanced visual speech from the GAN to deliver robust SE. The
effectiveness of the proposed framework is evaluated on synthetic
AV datasets using objective speech quality and intelligibility
metrics. Furthermore, subjective listening tests are conducted
using real noisy AV corpora. The results demonstrate that the
proposed real-time AV SE framework improves the mean opinion
score by 20% as compared to state-of-the-art SE approaches
including recent DNN based AV SE models.

Impact statement: Hearing aids are widely used devices
for compensating for hearing loss. However, they present
significant challenges for individuals with hearing impairment,
as these devices often amplify sounds without fully restoring
speech intelligibility in social settings with high background
noise. The cognitively inspired technology proposed in this
paper overcomes this limitation. With a significant increase in
speech intelligibility performance in the presence of multiple
competing noise sources, the technology can support commu-
nication for hearing aid users in cocktail party environments.
Moreover, the proposed technology can be exploited in mo-
bile teleconferencing and extremely noisy environments e.g.,
situations where ear defenders are worn such as emergency
and disaster response.

Index Terms—audio-visual, speech enhancement, generative
adversarial network

I. INTRODUCTION

More than 430 million people worldwide currently suffer
from hearing loss. These numbers are expected to reach 2.5
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Fig. 1: Proposed Real-time Audio-Visual Speech enhancement
Framework

billion by 2050 [1, 2]. The most common type of hearing
loss is neither curable nor reversible. Studies have shown
that, the hearing impaired listeners often find themselves
in social isolation leading to depression. Hearing aids and
cochlear implants are widely used to compensate for hearing
loss. However, even the hearing aids that use state-of-the-
art signal processing algorithms pose significant problems for
the people with hearing loss as these listening devices fail
to restore speech intelligibility in busy social situations [3].
Normal hearing listeners in such environments use the audio-
visual (AV) nature of speech to suppress background noise
and focus on the target speaker. Therefore, researchers have
proposed AV SE methods that extend audio-only (A-only)
speech enhancement (SE). SE, aims to separate speech from
background noise, has had a huge impact in recent years
due to its applications in hearing aids, cochlear implants,
speech recognition, mobile communication, and voice activity
detection [4]. Despite extensive research advances in AV SE,
hearing scenarios are becoming more complex with a wide
range of non-stationary acoustic noises, visual speech noises
and reverberations in physical space.

In the literature, extensive studies have been carried out
to develop AV SE methods in time-domain and frequency
domain [5, 6, 7]. However, despite significant research in the
area of AV SE, real-time processing models, with low latency
(8-12 ms) remains a formidable technical challenge. Most of
the aforementioned methods are non-causal and computation-
ally complex [5]. Therefore, these methods are not suitable
for processing streaming data with real-time constraints. The
processing latency of SE algorithm is important to the hearing
impaired listeners as the delayed processing will result in
an echo effect and unsynchronised AV cues leading to poor
speech intelligibility.

In this study, a robust real time AV SE framework depicted



in Fig 1, that is causal and can process streaming data,
is proposed. The framework consists of two components:
(1) generative adversarial network (GAN) based visual SE
(2) deep neural network based low latency AV SE model.
Specifically, the novel visual noise-robust GAN architecture
is proposed to enhance the noise present in visual speech. The
developed GAN takes in noisy lip images with poor lighting
and head movements, and outputs an enhanced version by
eliminating visual speech noises, similar to studio recordings.
The real-time AV SE model ingests the enhanced visual
images predicted by the GAN architecture for more robust
SE with a variety of visual and acoustic noises. To the best of
our knowledge, this study is the first to propose a framework
that jointly enhances the visual and acoustic speech signal for
robust AV SE. The comparative simulation results in terms of
objective speech quality and intelligibility metrics (including
PESQ, STOI and SI-SDR) and subjective listening tests (using
real noisy ASPIRE [8] and VISION [9] corpora) show signifi-
cant performance improvement of the proposed framework as
compared to state-of-the-art and DNN based audio-only and
AV SE approaches including spectral subtraction (SS) [10],
Linear minimum mean square error (LMMSE) [11], SE Gener-
ative Adversarial Network (SEGAN) [12] and CochleaNet [8].

In summary, this paper presents two major contributions:
1) A generative adversarial network architecture is pro-

posed to address the main limitation of visual imper-
fection in AV SE models. To the best of our knowledge,
this paper is first to introduce a framework that takes
into account both acoustic and visual speech noise for
AV SE.

2) A real-time AV SE model is proposed for low-latency
inference on streaming audio-visual data. In addition,
the computational latency of individual blocks in the
proposed framework is presented, demonstrating the
effectiveness of the model for causal SE.

The rest of the paper is organised as follows: Section II
presents an overview of audio-visual speech enhancement
models proposed in the literature. Section III presents visual
speech enhancement using generative adversarial network.
Section IV introduces real-time audio-visual speech enhance-
ment framework. Section V presents the experimental results.
Finally, section VI concludes the work and presents possible
future research directions.

II. RELATED WORK

This sections presents the related work in the area of AV
SE.

Afouras et al. [13] presented a deep neural network model
to separate the speaker’s voice using lip region features. The
model is trained using studio-quality LRS2 and VoxCeleb2
datasets to predict magnitude and phase of the target signal.
Similarly, Gogate et al. [14] proposed a speaker independent
AV SE model based on deep neural networks. The model is
trained and evaluated using synthetic GRID-CHIME3 dataset.
However, the main limitation is that, the model is evaluated
on a limited vocabulary GRID corpus. On the other hand,

Hou et al. [15] proposed a deep denoising autoencoder based
on convolutional neural network (AVDCNN) for SE, which
combines both audio and visual modalities. Comparative sim-
ulation results show that, the proposed AVDCNN outperforms
state-of-the-art A-only approaches including logMMSE.

Lu et al. [16] introduced a speaker-independent speech sep-
aration model based on AV deep clustering. The model learns
time-frequency (T-F) embeddings for AV speech features. The
model was trained using GRID and TCD-TIMIT corpora. The
experimental results demonstrate that the proposed AV model
outperforms A-only deep clustering and other state-of-the-art
approaches. In addition, Furthermore, Michelsanti et al. [18]
performed a set of experiments to understand the impact of
Lombard effect on AV SE. The empirical results indicated the
benefits of training system with Lombard AV GRID corpus on
speech quality and intelligibility in low SNR environments.

In addition, Gogate et al. [8] proposed speaker independent
AV deep neural network for ideal binary mask estimation to
remove the noise from the speech in low SNR environments.
The model is trained using GRID corpus and evaluated using
a range of speaker, noise, and language independent test sets.

More recently, Arriandiaga et al. [20] proposed a method
based for SE in multi-talker conversation environment. The
facial landmarks are used as an alternative to visual lip images
which is widely used in AV SE literature. The model is
trained using GRID corpus to predict ideal amplitude masks
in order to filter noisy audio. The experiments show that the
method achieved better performance with low latency and
computational cost. Moreover, Gao et al. [21] developed a
method to learn cross-modal speaker embeddings and SE
in the multi-task setting. The model integrates lip motion
features, facial attribute embedding for robust SE. The LRS2,
VoxCeleb1 and VoxCeleb2 corpora are used to measure the
performance of the approach. The results indicated that the
approach can generalise well in real-world scenarios.

Furthermore, Chuang et al. [24] introduced an AV SE
approach for car-driving scenarios based on deep learning.
The approach addresses three main issues which are often
encountered in developing AV SE approaches, additional cost
of processing data, AV synchronization, and low-quality visual
data. The Taiwan Mandarin speech used to evaluate the
performance of the approach. The initial experimental results
confirm that the approach is suitable for real-world scenarios
where the high quality of data is not always available. Finally,
Gogate et al. [23] proposed an AV SE model based on
Temporal Convolutional Networks which exploit the privacy-
preserving lip-landmark features for SE in multi-talker cocktail
party environments. The model was trained using GRID and
TCD-TIMIT corpora. The experimental results reveal the
effectiveness of the approach as compared to benchmark A-
only and AV approaches.

Recently, Zhu et al. [25] presented AV-E3Net, a low-latency
real-time AV end-to-end SE model. The model incorporates
a multistage gating-and-summation (GS) fusion module to
combine speech and vision modalities. The AVSpeech, Vox-
Celeb, and LRS3 datasets were used to evaluate the model’s



TABLE I: Summary of the State-of-the-art AV SE Approaches.
SI - speaker independent, RTL - real-time latency

Paper Year Input Output Dataset Model SI Causal RTL Limitation
[13] 2018 Raw pixels (Lip) Complex Ra-

tio Mask
LRW CNN Yes No - Model is non-causal and sensitive to AV

synchoronisation
[14] 2018 Raw pixels (Lip) Ideal binary

mask
GRID CNN,

LSTM
Yes Yes 20 ms Limited vocabulary dataset is used for

training and evaluation
[15] 2018 Raw pixels (Lip) Raw spectro-

gram
Taiwan
MHINT

CNN No No - Model is speaker-dependent

[16] 2019 Raw pixels (Lip)
and Optical Flow

Ideal ratio
mask

GRID, TCD-
TIMIT

CNN,
BiLSTM

Yes No - Limited vocabulary dataset is used for
training and evaluation

[17] 2019 Raw pixels
(Face)

Complex Ra-
tio Mask

LRS3 CNN,
BiLSTM

Yes No - Model is non-causal

[18] 2019 Raw pixels (Lip) Ideal Ampli-
tude Mask

Lombard
GRID

CNN No No - Model is speaker-dependent

[19] 2020 Raw pixels (Lip) Raw
waveform

GRID CNN,
LSTM

Yes No - Limited vocabulary dataset is used for
training and evaluation

[8] 2020 Raw pixels (Lip) Ideal binary
mask

GRID,
TCD-TIMIT,
Mandarin

CNN,
LSTM

Yes Yes 25 ms Phase is not considered

[20] 2021 Event-driven mo-
tion features

Ideal Ampli-
tude Mask

GRID BiLSTM Yes No - Limited vocabulary dataset is used for
training and evaluation

[21] 2021 Raw pixels (Face
and Lip)

Complex Ra-
tio Mask

VoxCeleb2,
TCD-TIMIT,
LRS2

CNN Yes No - Model is non-causal

[22] 2021 Raw pixels (Lip) Ideal ratio
mask

GRID CNN Yes No - Model is non-causal and Limited vo-
cabulary dataset is used for evaluation

[23] 2022 Lip Landmark Ideal Ampli-
tude Mask

GRID, TCD-
TIMIT

CNN Yes Yes 11 ms Landmark features cannot be extracted
in the presence of visual noise

[24] 2022 Raw pixels (Lip) Raw spectro-
gram

TMSV CNN,
LSTM

Yes No - Model is non-causal

[25] 2023 Raw pixels (Lip),
noisy signals

Enhanced
signal

AVSpeech,
VoxCeleb,
and LRS3

CNN,
LSTM

Yes Yes - One of the proposed model cannot be
used for real-time processing because
of the model’s dependency on a pre-
trained video encoder

[26] 2023 Raw pixels (Lip),
Noisy Mel-spec

Enhanced
signal

AVSpeech GAN Yes No - Model is non-causal

performance. The experimental results indicate that the pro-
posed AV-E3Net has excellent potential for real-world video
communication applications, offering a low-latency real-time
solution. In addition, Mira et al. [26] introduced a two-
stage approach for predicting mel-spectrograms from noisy AV
speech using a transformer-based architecture. The predicted
mel-spectrograms are then converted into waveform audio
using a neural vocoder. The performance of this approach was
evaluated using the AVSpeech dataset.
Table 1 presents a summary of the aforementioned state-of-
the-art approaches for AV SE. It can be seen that, most of
the aforementioned AV SE models are non-causal and hence
cannot be used for real-time SE. In addition, the models are
trained and evaluated using corpora (e.g. GRID, TCD-TIMIT,
LRS2) recorded in an ideal (studio-like) environment with
no visual imperfections. However, in real world environments
visual speech is often degraded by poor lighting, occlusions
and head movements. This limits the ability of AV SE models
to generalise in real noisy environments where both visual and
acoustic speech is mixed with a range of noises.

III. VISUAL SPEECH ENHANCEMENT USING GENERATIVE
ADVERSARIAL NETWORKS

In the literature, it has been shown that the performance of
the AV SE model is severely affected when visual speech is
degraded with noise including poor lighting, occlusions, and
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Fig. 2: Proposed visual speech enhancement framework
adopted from [27]

head movements. In order to address the aforementioned is-
sues, this section proposes a Generative Adversarial Networks
(GAN) architecture to denoise the visual speech imperfections
encountered in the real-world environment.

In order to train the visual speech denoising model, the set
of input and output images required for training. Collection of
paired real noisy data (studio quality images and images with
visual imperfections) is infeasible for the task of visual SE.
This limitation can be addressed by using CycleGAN [27], that
exploits cycle consistency loss to enable training without the
need for paired data. The model can translate from one domain
to another using unpaired samples from individual domains.
The CycleGAN architecture, shown in Fig. 2, consists of two
generator and discriminator networks. The first generator maps



the input image from domain A to B and the second generator
maps from domain B to A. The two discriminator is used to
estimate the distance between the predicted samples and actual
samples from each domain for model training. The domain A
to B generator can be used separately for the task of image
translation once the training is complete.

In this paper, the CycleGAN architecture is adopted for
the task of robust visual SE. The GAN architecture learns
the mapping between noisy visual speech (consisting of poor
lighting, exposure, and contrast) and clean visual speech
images. The predicted visual speech is then fed to a real-time
AV model, presented in section IV, for more robust SE.

A. Data Representation

Input features: The GAN framework uses noisy cropped lip
region input. The cropped 96×96 lip region is extracted from
real noisy VISION [9] and were used as noisy image samples.
Output: The GAN framework generates the clean cropped
lip region. It is worth to mention that, the GRID corpus is
recorded in the studio environment and it can be used without
any modification as model output.

B. Network Architecture

The previously proposed CycleGAN architecture [27] was
adopted for the task of visual SE. The generator network
consists of three basic building blocks: (1) encoder (2) resnet
(3) decoder. The encoder block consists of three convolutional
layers with 64, 128, and 256 filters respectively that mitigates
the illustration by one fourth of actual image size. Encoder
output is ingested to a resnet consisting of 9 residual blocks.
The decoder block consists of 3 deconvolutional layers with
128, 64, and 3 filters respectively to regenerate the original
size of input image (3 × 96). For the discriminator network,
the 48 × 48 pixel PatchGAN [28] architecture used which is
able to classify if 48× 48 overlapping image patches are real
or fake. This reduces the number of parameters as compared
to full image discriminator. PatchGAN discriminator network
consists of 4 convolutional layers with 64, 128, 256 and 512
filters. Each convolution has filter of size 4 × 4, stride of
1 × 1 and is followed by instance normalisation layer and
LeakyReLU activation with slope of 0.2.

IV. REAL-TIME AUDIO-VISUAL SPEECH ENHANCEMENT
FRAMEWORK

This section presents the steps involved in end-to-end pro-
cessing of the proposed real-time AV SE framework shown
in Fig. 3. The proposed real-time AVSE can be used in web
communication applications like Microsoft Teams and Zoom,
as the model can process streaming AV data to focus on the
target speaker.

A. Data Representation

a) Input features: The deep neural network used both
the audio and visual as the input features. Three seconds lip
embeddings are used for the batch training and the cropped
96 × 96 lip region is extracted from the video and fed to lip

TABLE II: Noisy Audio Feature Extraction

conv1 conv2 conv3 conv4 conv5
Num filters 64 64 64 64 4
Filter size 5× 5 5× 5 5× 5 5× 5 1× 1
Dilation 1× 1 1× 1 1× 1 1× 1 1× 1

embedding network to generate 75 × 512 dimension vector
of lip embeddings for three second of video (assuming 25fps
sampling rate). The audio input is divided into windows and
a short-time Fourier transform (STFT) of audio segment is
calculated. The magnitude of STFT is fed to the models as
noisy input. The model is trained on 3 second segments and
can be used for inference of arbitrary lengths of noisy video.

b) Output: The ideal binary mask is used as the output
of the network. IBM is a multiplicative spectrogram mask
that shows the time-frequency (T-F) relationship between the
source audio and interfering noise. The IBM has a value of 1
where the local SNR is higher than local criterion (LC) and
zero otherwise. The LC is calculated using the source audio
and interfering noise.

B. Network Architecture

A detailed outline of the proposed framework is shown
in Fig.3. The individual components are explained in the
subsequent sections.

1) Noisy audio feature extraction: The number of convo-
lution filters, strides and dilation used in the acoustic feature
extraction is detailed in Table II.

2) Lip Embedding Network: The lip embedding network
shown in Fig. 3 consists of a 3D-convolutional network,
RESNET-18 and temporal convolutional network (TCN). The
3D-CNN consists of single filter with size of 5 × 7 × 7. The
3D-CNN features are fed to standard RESNET-18 architecture.
The output of the residual network is fed to a multi-scale TCN
as described in [29]. TCN output is fed to a fully-connected
layer for word classification. The model is trained end-to-end
with LRW dataset for lip reading [30]. The model weights
were frozen and the fully connected network in the trained
model was removed for extracting lip embedding features.

3) Multimodal Fusion: The sampling rate for visual fea-
tures (512-D) is 25 frames per second and 75 vectors per
second for audio features. In order to match the audio STFT
sampling rate (75 fps), the visual frames (sampled at 25 fps)
are upsampled using the repetition of the element three times
in the temporal dimension. The acoustic features extracted
using the final convolutional layer (T × 1028) and upsampled
visual features (T × 512) are combined across the time
dimension (T × 1540) and fed to a LSTM layer with 257
units. The LSTM output is fed to two fully connected layers
with 257 neurons and a ReLU activation function. It is to be
noted that, the fully connected layer weights are shared across
time dimensions. Finally, the extracted features are fed to a
fully connected layer with 257 neurons and sigmoid activation
function.



…

AV Fusion

...

LS
TM

LS
TM

LS
TM

LS
TM

FC Layers

Noisy STFT 
Magnitude

U
ps

am
pl

e

Encoder Decoder

G
Noisy2Clean

Noisy Lip 
Images

Cleaned
Lip 

Images

3D CNN 
l 5 × 7 × 7

Predicted
Spectral

Mask

RESNET 18
Multi scale
Temporal

CNN

Lip Embedding network

Audio Feature Extraction

Fig. 3: Proposed Real-time Audio-Visual Speech enhancement Framework

C. Speech Resynthesis

The model predicts the time-frequency binary mask when
the noisy spectrogram and lip embeddings are fed into the
network. The enhanced speech is obtained by multiplying the
predicted magnitude mask with noisy magnitude spectrogram
and inverse STFT. It is to be noted that, the phase of noisy
signal and masked magnitude is used to resynthesize enhanced
speech.

V. EXPERIMENTAL RESULTS

A. Synthetic AV Corpora

The synthetic AV GRID corpus [31] is used for the training
and evaluation of the model. All the thirty-three speakers with
one thousand utterances for each speaker used. The GRID
utterances are mixed with the noises from CHIME3 [32],
which comprises of different types of noises including bus,
street, cafeteria at SNR ranging from -12 to 9 dB with step size
of 3dB. In total, the training, evaluation and test set consists
of 25000, 4000 and 4000 utterances respectively. It is to be
noted that, there is no overlap of speakers between train, test
and validation set. In addition, the GRID corpus consists of
limited vocabulary (51 words).

The TCD-TIMIT [33] corpus is used to understand the
performance of the model in large vocabulary settings. TCD-
TIMIT consists of 56 speakers with 5488 utterances. Each
of the utterances are mixed randomly with the noises from
MUSAN. In addition, for language independent evaluation
Mandarin dataset [15] consists of 320 utterances combined
with different types of noise from NOISEX-92 [34].

B. Data preprocessing

1) Audio: In order to preprocess the audio signals, the 16
kHz mono-channel has been used. After re-sampling the audio,
the signals were segmented into N 32 millisecond frames and
also the 25% increment rate. The hanning window is applied to
the frame to generate 257-bin STFT magnitude spectrogram.

2) Video: The TCD-TIMIT and GRID corpora were
recorded at 25 frames per second (fps). In addition, the
Mandarin dataset [15] were recorded at 30 fps, ffmpeg was
used to downsample Mandarin dataset to 25 fps. In order to
extract the lip images at 25 fps for the speakers dlib landmark
detection model was employed. A square region around the
lip-centre was extracted using landmark points. The extracted
lip region is resized to a square of size 96 pixels. The cropped
lip region was fed into the GAN followed by lip embedding

network to extract 512 dimensional embedding for each lip
image.

C. Experimental Setup
The model was developed using PyTorch library and trained

using a with Intel i9 processor, 64 GB RAM and 2 NVIDIA
2080Ti GPUs with 12 GB memory. It is to be noted that,
the GAN and AV SE models were trained separately. First,
the GAN is trained for 200 epochs and Adam optimiser with
learning rate of 0.002 is used. The lr was not changed for the
first 100 epochs. The lr was linearly decayed to 0 over the
next 100 epochs. Second, the generator weights were frozen
and real-time AV SE model was trained for 50 epochs with
Adam optimiser (lr = 3e − 4) and batch size 8. The lr was
divided by two when the validation binary cross entropy stops
reducing for three consecutive epochs.

It is to be noted that, grid search was used to find the
optimal hyperparameters for the GAN framework, including
filter size of convolutional layers (24to10), stride of convolution
(1 to 4), patch size for the discriminator network (16, 32, 48)
and number of convolutional and deconvolutional layers (2 to
6) used in the encoder and decoder blocks respectively. The
architecture of noisy audio feature extraction is adopted from
CochleaNet [8] architecture by changing filter size from 96 to
64.

D. Baseline Systems
The performance of the proposed AV SE framework with

GAN (proposed AV + GAN) was compared with con-
ventional A-only SE approaches (including SS [10] and
LMMSE [11]), deep learning based A-only SE models (in-
cluding SEGAN+ [12] and A-only CochleaNet [8]) and
CochleaNet AV SE model [8] in a range of synthetic and real
noisy scenarios. In addition, for further evaluation and ablation
study two models were used: A-only version of the proposed
model (proposed A-only), and AV version of proposed frame-
work without GAN (proposed AV). Finally, oracle IBM [14] is
used for comparison to understand the maximum performance
the model can achieve as the framework is trained to estimate
oracle IBM. It is to be noted that, the oracle IBM can only
be calculated for synthetic AV datasets as perfect estimate of
noise and speech spectrum is required to calculate it [14].

E. Objective evaluation on Synthetic mixtures
In order to evaluate the performance of SE models, sub-

jective listening tests are conducted to ask users to listen and



TABLE III: Comparison of PESQ scores for resynthesised
speech. (The bold values indicates the best results a model
can achieve without a perfect estimate of noise. Oracle IBM
can only be calculated for synthetic AV datasets)

(a) Speaker independent test set (GRID - CHIME3)

dB
Models -12 -9 -6 -3 0 3 6 9
Noisy 1.31 1.40 1.55 1.70 1.88 2.08 2.28 2.46
SS [10] 1.13 1.23 1.41 1.60 1.83 2.09 2.35 2.58
LMMSE [11] 1.36 1.52 1.74 1.96 2.17 2.40 2.59 2.76
SEGAN+ [12] 0.83 1.07 1.45 1.80 2.12 2.38 2.58 2.76
CochleaNet A-only [8] 1.85 2.04 2.24 2.40 2.53 2.64 2.74 2.81
CochleaNet AV [8] 1.87 2.07 2.23 2.37 2.48 2.59 2.68 2.76
Proposed A-only 1.88 2.07 2.24 2.37 2.54 2.63 2.75 2.82
Proposed AV 1.91 2.09 2.25 2.40 2.55 2.65 2.77 2.88
Proposed AV + GAN 1.95 2.11 2.28 2.42 2.55 2.66 2.78 2.89
Oracle IBM [14] 2.03 2.20 2.34 2.47 2.59 2.70 2.82 2.91

(b) Large vocabulary test set (TCD-TIMIT + MUSAN)

dB
Models -12 -9 -6 -3 0 3 6 9
Noisy 1.48 1.56 1.62 1.69 2.23 2.33 2.44 2.50
SS [10] 1.08 1.13 1.19 1.27 1.79 1.89 2.06 2.18
LMMSE [11] 1.44 1.45 1.61 1.62 2.04 2.15 2.25 2.34
SEGAN+ [12] 1.60 1.74 1.77 1.84 2.32 2.44 2.58 2.66
CochleaNet A-only [8] 1.81 1.90 2.02 2.13 2.37 2.47 2.52 2.56
CochleaNet AV [8] 1.90 2.00 2.12 2.18 2.48 2.56 2.62 2.66
Proposed A-only 1.92 2.03 2.13 2.44 2.50 2.59 2.62 2.68
Proposed AV 1.98 2.09 2.20 2.52 2.59 2.63 2.67 2.70
Proposed AV + GAN 2.05 2.17 2.27 2.60 2.67 2.70 2.74 2.78
Oracle IBM [14] 2.16 2.29 2.39 2.74 2.81 2.84 2.89 2.92

(c) Language-independent test set (Hou et al. [15] + NOISEX92)

dB
Models -12 -9 -6 -3 0 3 6 9
Noisy 1.04 1.25 1.29 1.31 1.40 1.49 1.55 1.61
SS [10] 0.63 1.06 0.99 0.98 1.28 1.23 1.36 1.34
LMMSE [11] 1.21 1.42 1.39 1.40 1.40 1.44 1.61 1.44
SEGAN+ [12] 1.14 1.30 1.16 1.45 1.59 1.66 1.71 1.74
CochleaNet A-only [8] 1.28 1.42 1.56 1.53 1.66 1.72 1.79 1.74
CochleaNet AV [8] 1.23 1.45 1.44 1.46 1.66 1.68 1.74 1.75
Proposed A-only 1.32 1.53 1.59 1.61 1.70 1.73 1.79 1.78
Proposed AV 1.39 1.55 1.62 1.63 1.71 1.74 1.79 1.80
Proposed AV + GAN 1.44 1.57 1.65 1.58 1.70 1.75 1.79 1.81
Oracle IBM [14] 1.55 1.69 1.77 1.70 1.83 1.88 1.92 1.95

compare the speech quality difference between the processed
and unprocessed audio samples. However, conducting subjec-
tive listening tests is time consuming for large datasets and the
results may not accurately represent the actual distribution. In
such scenarios, PESQ [35], STOI [36], and SI-SDR [37] are
used as objective evaluation metrics to approximate subjective
listening tests. The proposed model has been compared with
the baseline systems presented in section V-D. It is to be noted
that, GRID + CHIME3, TCD TIMIT + MUSAN and Hou
et al. [15] + NOISEX-92 are used for speaker independent,
large-vocabulary and language independent evaluation of the
proposed AV SE model.

1) Perceptual Evaluation of Speech quality (PESQ) com-
parison: PESQ [35] is one the most well-known evaluation
metric used to predict the subjective listening test scores in the
SE and preliminary results display that correlate well with the
subjective listening tests [38]. The PESQ scores for speaker-
independent, large-vocabulary and language independent test
set are presented in Table IIIa, IIIb, IIIc respectively. The
PESQ scores shows that, the proposed AV model outperforms
all state-of-the-art SE models including AV CochleaNet [8],

TABLE IV: Comparison of STOI scores for resynthesised
speech (The bold values indicates the best results a model
can achieve without a perfect estimate of noise. Oracle IBM
can only be calculated for synthetic AV datasets)

(a) Speaker independent test set (GRID - CHIME3)

dB
Models -12 -9 -6 -3 0 3 6 9
Noisy 0.41 0.45 0.49 0.54 0.59 0.64 0.68 0.72
SS [10] 0.36 0.40 0.45 0.50 0.56 0.61 0.67 0.71
LMMSE [11] 0.39 0.43 0.48 0.53 0.58 0.63 0.68 0.71
SEGAN+ [12] 0.31 0.39 0.49 0.58 0.65 0.70 0.74 0.76
CochleaNet A-only [8] 0.51 0.57 0.59 0.63 0.70 0.74 0.76 0.77
CochleaNet AV [8] 0.53 0.58 0.62 0.66 0.70 0.73 0.75 0.77
Proposed A-only 0.55 0.60 0.62 0.65 0.69 0.74 0.76 0.78
Proposed AV 0.57 0.61 0.64 0.67 0.71 0.75 0.77 0.78
Proposed AV + GAN 0.59 0.63 0.66 0.69 0.72 0.76 0.78 0.78
Oracle IBM [14] 0.61 0.65 0.68 0.71 0.74 0.77 0.79 0.80

(b) Large vocabulary test set (TCD-TIMIT + MUSAN)

dB
Models -12 -9 -6 -3 0 3 6 9
Noisy 0.31 0.34 0.43 0.50 0.60 0.64 0.70 0.73
SS [10] 0.30 0.35 0.42 0.46 0.59 0.62 0.70 0.73
LMMSE [11] 0.46 0.48 0.53 0.55 0.66 0.69 0.73 0.76
SEGAN+ [12] 0.44 0.47 0.52 0.55 0.65 0.68 0.73 0.77
CochleaNet A-only [8] 0.48 0.51 0.54 0.61 0.67 0.70 0.75 0.78
CochleaNet AV [8] 0.51 0.55 0.60 0.61 0.71 0.73 0.76 0.79
Proposed A-only 0.50 0.52 0.59 0.62 0.72 0.74 0.78 0.80
Proposed AV 0.60 0.62 0.65 0.69 0.73 0.74 0.79 0.81
Proposed AV + GAN 0.64 0.66 0.68 0.72 0.74 0.75 0.80 0.81
Oracle IBM [14] 0.72 0.74 0.77 0.79 0.81 0.82 0.84 0.85

(c) Language-independent test set (Hou et al. [15] + NOISEX92)

dB
Models -12 -9 -6 -3 0 3 6 9
Noisy 0.54 0.71 0.68 0.73 0.78 0.78 0.85 0.86
SS [10] 0.42 0.58 0.58 0.62 0.70 0.72 0.77 0.80
LMMSE [11] 0.52 0.70 0.66 0.71 0.76 0.75 0.83 0.82
SEGAN+ [12] 0.52 0.66 0.58 0.70 0.76 0.76 0.82 0.85
CochleaNet A-only [8] 0.54 0.73 0.70 0.76 0.81 0.82 0.86 0.88
CochleaNet AV [8] 0.56 0.73 0.70 0.75 0.81 0.80 0.85 0.87
Proposed A-only 0.58 0.75 0.71 0.77 0.82 0.81 0.87 0.88
Proposed AV 0.65 0.77 0.74 0.79 0.84 0.85 0.87 0.88
Proposed AV + GAN 0.70 0.80 0.77 0.81 0.86 0.86 0.87 0.88
Oracle IBM [14] 0.81 0.88 0.87 0.90 0.92 0.92 0.94 0.94

SEGAN [12], A-only version of proposed models, and AV
version of the proposed model without GAN. It can be seen
that, AV + GAN outperforms A-only model in low SNR
particularly SNR < 0 dB, mainly where the AV model
achieved PESQ score of 1.95 (-12 dB), 2.11 (-9 db), and 2.28
(-6db). Whereas, A-only model achieved PESQ score of 1.88
(-12 dB), 2.07 (-9 db), and 2.24 (-6dB) for speaker independent
GRID CHIME3 test set. On the other hand, in the high SNR
(SNR >= 0 dB) AV + GAN performs similar to A-only
model. Specifically, AV achieved 2.55, 2.66 and 2.78 PESQ
scores for 0dB, 3dB and 6dB respectively. The A-only model
achieved PESQ score of 2.54, 2.63, and 2.75 for 0dB, 3dB
and 6dB respectively.

2) Short Term Objective Intelligibility (STOI) compari-
son: STOI is one of the most widely used alternative to
PESQ that shows high correlation with subjective listening
tests [36]. The STOI scores for speaker-independent, large-
vocabulary and language independent test set is presented in
Table IVa, IVb, IVc respectively. The STOI scores shows that
the proposed AV model outperforms state-of-the-art SE models
including DNN based CochleaNet [8], SEGAN [12], A-only
version of proposed models, and AV version of the proposed
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(a) Speaker independent test (GRID + CHIME3)
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(b) Large vocabulary test set (TCD-TIMIT + MUSAN)
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(c) Language independent test set (Hou et al. [15] + NOISEX-92)

Fig. 4: Comparison of SI-SDR scores for resynthesised speech

model without GAN. It can be seen that, AV + GAN model
obtained STOI score of 0.59 (-12 dB), 0.63 (-9 dB) and 0.66
(-6 dB), as compared to 0.55 (-12 dB), 0.60 (-9 dB) and 0.62
(-6 dB) STOI score obtained by A-only model for speaker
independent test set. However, at high SNRs (i.e., SNR >= 0
dB) proposed AV + GAN model performs similar to A-only
model, where AV + GAN model achieved STOI score of 0.69
(0 dB), 0.74 (3 dB), and 0.76 (6 dB), as compared to 0.65 (0
dB), 0.69 (3 dB), and 0.74 (0 dB) achieved by A-only model
for speaker independent test set. In addition, it has been shown
that the A-only and AV + GAN model significantly outperform
A-only and AV CochleaNet.

3) Scale-Invariant Signal-to-Distortion Ratio (SI-SDR)
comparison: SI-SDR is used to predict the distortion intro-
duced by the separated signal and usually defined as the
ratio between clean signal and distortion energy. The higher
SDR shows the better quality of SE and less distortion in the
enhanced speech. Fig. 4a, 4b, 4c depict the SI-SDR for speaker
independent, large vocabulary and language independent test
set. The SI-SDR scores shows that, the proposed AV model
outperforms state-of-the-art SE models including DNN based
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Fig. 5: Subjective evaluation using mean-opinion score listen-
ing test using real noisy ASPIRE and VISION corpora for the
resynthesised speech

CochleaNet [8], SEGAN+ [12], A-only version of proposed
models, and AV version of the proposed model without GAN.
It can be seen that, for the lower SNR (SNR < 0 dB) the
proposed AV outperforms A-only model especially, where AV
+ GAN model achieved the SI-SDR score of 3.50 (-12 dB),
4.45 (-9 dB), and 5.04 (-6dB) as compared to 2.53 (-12 dB),
4.39 (-9 dB), and 5.62 (-6 dB) SI-SDR score obtained by A-
only model for speaker independent test set. However, AV +
GAN perform similar to A-only model at high SNRs levels
(i.e. SNR >= 0 dB), where AV model achieved SI-SDR score
of 7.35 (0 dB), 8.01 (3 dB) and 8.35 (6dB), as compared to
7.25, 7.97 and 8.35 achieved by A-only model for speaker
independent test set. It is worth mentioning that, the proposed
A-only and AV + GAN model perform better than A-only and
AV CochleaNet.
F. Subjective listening tests on ASPIRE and VISION corpus

The subjective speech quality can be computationally ap-
proximated using state-of-the-art objective evaluation metrics
including PESQ and STOI [35, 36]. However, human listening
tests need to be conducted to accurately understand subjective
speech quality. In this study, the mean opinion score (MOS)
type listening test was conducted for comparative subjective
evaluation. The data used for these tests include ASPIRE [8]
and VISION corpora [9] recorded in a real noisy environment
with a range of visual and acoustic noises. Twenty native
English speakers (twelve men and eight women) with normal
hearing volunteered to participate in the listening test. The
listeners were first trained with five utterances and the purpose
of the study was explained. In each individual listening test,
twenty utterances chosen at random from the ASPIRE and
VISION corpora were played. Listeners were asked to rate
the enhanced speech quality on a scale of 0 to 5, with 0
representing incomprehensible, 1 representing very annoying,
2 representing annoying, 3 representing slightly annoying, 4
representing perceptible but annoying, and 5 representing per-
ceptible. SEGAN, SS, LMMSE, A-only and AV CochleaNet,
proposed A-only, proposed AV and proposed AV+GAN are
comparatively evaluated along with noisy audio as reference.
The speech quality scores for the aforementioned models are
presented in Fig.5. It can be seen that, the proposed A-only



Fig. 6: Visual Speech Enhancement Evaluation on Unseen
speakers from VISION Corpus

and AV models significantly outperform SS, LMMSE, A-only
and AV CochleaNet. It can be seen that, the proposed AV
model can handle the visual imperfections present in VISION
corpora as compared to state-of-the-art CochleaNet model.

G. Qualitative evaluation of Proposed GAN model

The GAN model is evaluated on the unseen utterances from
real Noisy VISION corpus. The real noisy VISION corpus
consists of a number of visual imperfections like improper
lighting, exposure and occlusions. Fig. 6 shows some of the
unprocessed and processed sample frames from real noisy VI-
SION corpus. It can be observed that, the model significantly
enhanced visual speech noise present in the VISION corpus.
The developed visual SE model will enable deployment of
real-time AV SE models in a variety of real-world settings.

H. Effect of Visual Speech Enhancement on Intelligibility

In real world settings, visual speech is often degraded by a
range of visual imperfection including poor lighting and head
movements. In order to evaluate the behaviour of proposed
model in such settings, the visual speech from test set of
GRID-CHIME3 was degraded using random transformations
including changing brightness, contrast and exposure. The
noisy visual speech images and audio are fed to the proposed
AV SE model. For further evaluation, then randomly replaced
a percentage of noisy lip image with corresponding enhanced
lip image generated using GAN. The results for the effect of
visual SE on intelligibility are depicted in Fig. 7. It can be
seen that, for the case of both -6 dB and -12 dB, the model
achieves performance similar to visually intact data when all of
the degraded images are enhanced using the proposed GAN. It
should be noted that, the model performance is slightly worse
than A-only model when the noisy visual speech images are
fed without denoising.

I. Spectrogram comparison

Fig. 8 illustrates the spectrogram for the resynthesised
speech signal of a randomly selected utterance from GRID
- CHIME3 AV corpus using proposed A-only and AV mod-
els as well as state-of-the-art approaches including SS [10],
LMMSE [11], SEGAN+ [12] A-only CochleaNet, and AV
CochleaNet [8]. In addition, spectrogram for clean and noisy
speech signals is shown for comparison. It is to be noted that,
the speech is completely swamped with street noise and the
performance of the proposed model is closer to clean spectro-
gram. The state-of-the-art A-only approaches were unable to
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Fig. 8: Spectrogram comparison of a randomly selected utter-
ance at -12 dB SNR from GRID-CHIME3 corpus. It can be
seen that proposed AV model recovers frequency components
better than state-of-the-art SE models

recover the speech components from the noisy signal. Finally,
it can be seen the AV models were able to better reconstruct
target speech as compared to A-only models specifically in
silent speech regions.

J. Processing latency

The processing latency for a SE algorithm can be defined
as the difference between the time of arrival of speech and the
time when the model finishes processing the noisy speech. The
latency is generally measured in milliseconds (ms). The ideal
processing latency of a listening device depends on the severity
of the hearing loss. The latency of most commercial hearing
aids generally ranges from 8-12 ms. The processing latency
of the proposed model is 15 ms. The latency is dependent
upon the Fourier window shift (8 ms), STFT (0.5ms), ISTFT
(0.5ms), and model prediction time (6 ms). These values are
calculated with a M1 Macbook Pro with 16 GB RAM. The
processing latency is mainly affected by the shift of Fourier
window and the model processing time. The model processing
time can be further optimised using mixed precision process-
ing and quantization. In addition, the window shift can be
optimised to further decrease the latency. Currently, the model



is being tested for noise suppression in video conferencing
scenario.

K. Limitations

The limitations with the proposed framework are: (1) the
framework is not privacy preserving. Privacy preserving visual
features could be explored (2) the resynthesised speech using
IBM ignores phase estimation and result in invalid STFT
problem (3) the STFT used for transforming time-domain
signals to frequency domain has fixed temporal resolution.
Other types of transform including discrete wavelet trans-
form [39], discrete Tchebichef transform [40] and the discrete
Krawtchouk transform [40] could be explored to address this
limitation (4) the model currently do not consider the noise
level in the environment for contextual switching between
A-only and AV model (5) the enhanced speech cannot be
localised in the space as the model only supports processing
single channel data

VI. CONCLUSION

In this paper, a novel framework is presented for robust real-
time AV SE that contextually takes account of both visual
and acoustic speech noises. Specifically, a GAN architec-
ture is developed to enhance the visual speech imperfections
encountered in real noisy environments. Further, the GAN
is integrated with a real-time AV SE model to contextually
exploit noisy visual and acoustic speech to suppress noise
dominant regions and enhance speech dominant regions. The
model is evaluated on benchmark visual speech noises from
real world recordings that consists of noisy speech recorded
in the presence of multiple competing background sources.
Preliminary performance evaluation in terms of objective
metrics and subjective listening tests demonstrates significant
improvement of the proposed AV SE framework compared
to the state-of-the-art A-only (including SS, LMMSE) ap-
proaches as well as DNN based AV approaches (including
benchmark SEGAN and CochleaNet models). Comparative
experimental results indicate that, the proposed framework
has the ability to work effectively in a range of SNRs with
both visual and acoustic noise and can be deployed in real-
world environments. Ongoing work involves optimisation of
trade offs between generalisation, latency and energy for
deployment of proposed framework in web communication
scenario. In future, we will address the current limitations of
the proposed model and further investigate its generalisation
capability using datasets collected in the wild. In addition,
we will explore alternatives to Fourier transform including
wavelet transform, and short-time discrete cosine transform for
robust AV SE. Finally, privacy concerns associated with AV SE
based assistive devices will be addressed by exploiting privacy
preserving visual features and homomorphic encryption.
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