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Abstract. This paper presents black box models to represent a LHTESS (Latent Heat Thermal 

Energy Storage System) coupled with heat pipes, aimed at increasing the storage performance 

and at decreasing the time of charging/discharging. The presented storage system is part of a 

micro solar CHP plant and the developed model is intended to be used in the simulation tool of 

the overall system, thus it has to be accurate but also fast computing. Black box data driven 

models are considered, trained by means of numerical data obtained from a white box detailed 

model of the LHTESS and heat pipes system. A year round simulation of the system during its 

normal operation within the micro solar CHP plant is used as dataset. Then the black box models 
are trained and finally validated on these data. Results show the need for a black box model that 

can take into account the different seasonal performance of the LHTESS. In this analysis the best 

fit was achieved by means of Random Forest models with an accuracy higher than 90%. 

1.  Introduction 

Heat pipes are devices widely used for increasing heat recovery and improving thermal performance of 

heat exchangers in different applications [1]. In particular, heat pipes (HP) can be used to enhance the 

performance of LHTESS (Latent Heat Thermal Energy Storage System) which are increasingly adopted 
as storage systems in renewable and hybrid power plants. In literature several studies  investigated heat 

pipes potential to increase the thermal conductivity of PCM (phase change materials) and to decrease 

PCM charging and discharging time [2, 3]. Robak et al. [2] found that inclusion of heat pipes increases 
PCM melting rates by approximately 60%. Naghavi et al. [3] shown different applications of heat pipes 
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coupled with PCM storage systems for low temperature and high temperature solar collectors. Among 

the other findings, some of the advantages guaranteed by heat pipes are: (i) very low temperature 

gradients between the two opposite sides of the HPs, so that an almost isothermal heat source is available 
for the PCM; and (ii) the heat flux through the HPs can be used to provide low heat flux densities within 

the LHTESS even in presence of large heat flow rates from the heat source/sink [3]. 

In this study a LHTESS equipped with reversible heat pipes is considered. Such system is embedded 
in a micro solar CHP (combined heat and power) plant for application in individual dwellings and small 

business residential buildings for on-site electricity and heat generation (2-kWel/18-kWth), using solar 

thermal energy at modest temperatures of 250-280°C (as proposed by researchers at Northumbria 

University [4] and under the European funded H2020 Innova MicroSolar project [5], led by 
Northumbria). The proposed technology is based on a linear Fresnel mirror solar concentrating collector 

and a micro Organic Rankine Cycle (ORC) plant [5]. In figure 1 a schematic representation of the micro 

solar ORC plant is provided. 
 

 
 

Figure 1. Schematics of the micro solar ORC pant. 
 

The role of the storage system is to store the surplus energy from the solar field and to supply the 

ORC in case the solar energy is not sufficient. In order to increase the overall efficiency of the plant, in 

this project new reversible heat pipes are developed by Aavid Thermacore [6]. They are capable of 
transferring heat at high rate in both directions. This means that heat flows through the heat pipes from 

the solar circuit to the thermal storage tank with PCM and from the tank to the ORC plant circuit. It is 

expected that the proposed novel design will significantly increase the specific heat accumulation and 
storage efficiency. The plant will be tested on the field at Almatret (Lleida, Spain) and, in the meanwhile, 

a simulation model for the overall micro CHP plant was developed. 

Purpose of this paper is to present the modelling of the LHTESS with the embedded heat pipes by 

means of an accurate but also fast computing model. At this aim, black box models are trained on the 
basis of a white box model simulation results, representing in detail the real system. This is intended 

also as a preliminary work to better understand the system behavior and the most influencing parameters, 

so to easily extend the methodology to the training/validation of black box models by means of 
experimental data collected during field test. 

2.  Methods 

The LHTESS, as designed by Northumbria University and Aavid Thermacore [4, 6], consists of a 
rectangular array of heat pipes embedded in PCM and the heat transfer fluid (oil) flows through the heat 

pipes evaporator /condenser that is not embedded in the PCM, named oil chamber (figure.2).  
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Figure 2. Schematic design of the LHTESS. 

 

Given the complexity of the physical behavior of PCM and heat pipes system (which includes also 

phenomena such as hysteresis or sub-cooling), its physical representation is challenging. In order to 
have a good representation of the real behavior and to obtain a tool easy to implement in a 

comprehensive energy system simulation environment, black box models are a good option. The choice 

of the black box model structure and its identification procedure is a critical issue. In this work 

AutoRegressive models with eXogenous inputs (ARX), Nonlinear AutoRegressive networks with 
eXogenous inputs (NARX) and Random Forest (RF) regression models are considered. The 

performance of the different black box models, in the validation procedure, is compared to the results 

of the white box model on the basis of the Root-Mean-Square Error (RMSE) and Normalized Root-
Mean-Square Error (NRMSE). In particular, accuracy of results is the key performance parameter taken 

into account to evaluate the effectiveness of the proposed black box models. 

2.1.  LHTESS and white box model description 
The PCM storage material, investigated by Northumbria University and the University of Lleida [7] is 

made of the so-called solar salt KNO3(40wt.%)/NaNO3(60wt.%), which has high heat of fusion but low 

thermal conductivity; its melting temperature is in the range 216-223°C [8]. In a volume of 1.90 m3 

there are 3.8 tons of this material to store about 100 kWh of latent thermal energy from the solar field 
in order to guarantee 4 hours of ORC unit operation during night time. Reversible heat pipes, developed 

by Aavid Thermacore [6], are charged with a sufficient amount of demineralized water to carry the 

required power; they are able to withstand a maximum pressure of 100 bar.  
The PCM storage material, investigated by Northumbria University and the University of Lleida [7] 

is made of the so-called solar salt KNO3(40wt.%)/NaNO3(60wt.%), which has high heat of fusion but 

low thermal conductivity; its melting temperature is in the range 216-223°C [8]. In a volume of 1.90 m3 

there are 3.8 tons of this material to store about 100 kWh of latent thermal energy from the solar field 
in order to guarantee 4 hours of ORC unit operation during night time. Reversible heat pipes, developed 

by Aavid Thermacore [6], are charged with a sufficient amount of demineralized water to carry the 

required power; they are able to withstand a maximum pressure of 100 bar.  
The physically based PCM storage tank model was developed according to the guidelines of the IEA 

Task 32 report on advanced storage concepts [9]. The PCM is supposed isotropic and isothermal in each 

time-step. Hysteresis and sub-cooling effects are neglected. The white box model represents the 
behavior of the heat pipes by means of: (i) a limitation in the maximum power exchanged with the oil 

because of the limited heat pipes capacity (40 kW) and (ii) a minimum temperature difference between 

the oil and the PCM equal to 5°C. 

The dataset used for training the black box models is represented by the simulation results of the 
white box model. The white box model is implemented in TRNSYS (an environment for transient 

representation of thermal systems behavior [10]) within the overall micro-solar CHP plant. A full year 

of operation of the plant, set in the city of Cagliari in Italy (local coordinates 39° 22’ 38.41’’ N and 9° 
12’ 16.61’’ E), is considered. Therefore, the operating conditions of the LHTESS during its operation 



IHPC 2018
IOP Conf. Series: Materials Science and Engineering 1139  (2021) 012010

IOP Publishing
doi:10.1088/1757-899X/1139/1/012010

4

 
 

 

 

 
 

 
 

in the integrated plant are taken into account. The simulation time step is 10 minutes (Tc, sampling 

period). 

The input variables to the black box models are: 

• Oil inlet temperature (𝑇𝑂𝐼𝐿
𝑖𝑛 ); 

• Oil inlet flow rate (𝐹𝑂𝐼𝐿
𝑖𝑛 ); 

• Ambient temperature (𝑇𝐴); 

• Direct Normal Irradiance (𝐷𝑁𝐼) of the sun; 

• Operation mode of the plant (𝑂𝑀). Indeed, there are 6 different operation modes in the control 

strategy of the micro solar CHP plant, where the LHTESS can be charged or discharged in 

different operating conditions. 

The input variables are averaged to better reflect their influence on the output variables by a test and 

trial procedure. Eventually, 𝑇𝐴 is filtered by a median filter over a 24 hours period, while 𝑇𝑂𝐼𝐿
𝑖𝑛 , 𝐹𝑂𝐼𝐿

𝑖𝑛  and 

𝐷𝑁𝐼 are filtered by a median filter over a 2 hours period and 𝑂𝑀 is filtered by a mode filter over a 24 
hours period. The output variables of the black box models, i.e. the variables to be predicted, are: 

• Oil outlet temperature (𝑇𝑂𝐼𝐿
𝑜𝑢𝑡); 

• Temperature of the TES (𝑇𝑇𝐸𝑆); 

• Thermal losses of the TES to the environment (𝑃𝐿𝑂𝑆𝑆). 

In figure 3 the input and output variables of the black box models are represented. 

 
Figure 3. Schematic representation of the Black Box models input and output variables. 

 

2.2.  ARX models 

The autoregressive model with exogenous inputs is a linear model defined by the equation 1 as in [11]: 

𝐴(𝑧)𝑦(𝑘) = 𝐵(𝑧)𝑢(𝑘) + 𝑣(𝑘)  (1) 

with 𝐴(𝑧) and 𝐵(𝑧) denoting polynomials with respect to time-shift operator z:  

𝐴(𝑧) = 1 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑎𝑧−𝑛𝑎     (2) 

𝐵(𝑧) = 𝑏0 + 𝑏1𝑧−1 + ⋯ + 𝑏𝑛𝑏𝑧−𝑛𝑏     (3) 

The ARX model considered in this study for simulation can be mathematically represented as: 
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∑ 𝑎𝑖

𝑛𝑎

𝑖=0

𝑦̂(𝑘 − 𝑖) = ∑ 𝑏1𝑗

𝑛𝑏

𝑗=0

𝐹𝑂𝐼𝐿
𝑖𝑛 (𝑘 − 𝑗 − 𝑛𝑘) + 

+ ∑ 𝑏2𝑗
𝑛𝑏
𝑗=0 𝑇𝑂𝐼𝐿

𝑖𝑛 (𝑘 − 𝑗 − 𝑛𝑘) + ∑ 𝑏3𝑗
𝑛𝑏
𝑗=0 𝑇𝐴(𝑘 − 𝑗 − 𝑛𝑘) + ∑ 𝑏4𝑗

𝑛𝑏
𝑗=0 𝐷𝑁𝐼(𝑘 − 𝑗 − 𝑛𝑘) +

∑ 𝑏5𝑗
𝑛𝑏
𝑗=0 𝑂𝑀(𝑘 − 𝑗 − 𝑛𝑘)        (4) 

 

where 𝑘 = 𝑛𝑇𝑐 denotes time, 𝑛 ∈ 𝑍, sampling period 𝑇𝑐 and 𝑎𝑖, 𝑏1𝑗, 𝑏2𝑗, 𝑏3𝑗, 𝑏4𝑗 and 𝑏5𝑗 denote the 

unknown model parameters. 𝑛𝑎, 𝑛𝑏 and 𝑛𝑘 are the orders of the model (so called hyper-parameters) 

associated with output, inputs and dead time in the system, respectively. 𝑦̂(𝑘) represents the estimated 

outputs, namely 𝑇𝑂𝐼𝐿
𝑜𝑢𝑡 , 𝑇𝑇𝐸𝑆  and 𝑃𝐿𝑂𝑆𝑆. 

2.3.  NARX models 
The A nonlinear autoregressive network with exogenous inputs is a special case of Recurrent Neural 

Network (RNN), which proved to be a very successful modeling tool for nonlinear systems and 

especially time series [12]. NARX networks converge faster, are less likely to develop long-term 
dependencies and typically have better generalization abilities than other networks [12]. The NARX 

structure considered in this study for simulation can be mathematically represented as: 

 

𝑦̂(𝑘) = 𝑓[𝐹𝑂𝐼𝐿
𝑖𝑛 (𝑘 − 𝑛𝑘), … , 𝐹𝑂𝐼𝐿

𝑖𝑛 (𝑘 − 𝑛𝑘 − 𝑛𝑏), 𝐹𝑂𝐼𝐿
𝑖𝑛 (𝑘 − 𝑛𝑘), … , 𝐹𝑂𝐼𝐿

𝑖𝑛 (𝑘 − 𝑛𝑘 − 𝑛𝑏), 𝑇𝐴(𝑘 −

𝑛𝑘), … , 𝑇𝐴(𝑘 − 𝑛𝑘 − 𝑛𝑏), 𝐷𝑁𝐼(𝑘 − 𝑛𝑘), … , 𝐷𝑁𝐼(𝑘 − 𝑛𝑘 − 𝑛𝑏), 𝑂𝑀(𝑘 − 𝑛𝑘), … , 𝑂𝑀(𝑘 − 𝑛𝑘 − 𝑛𝑏)]

          (5) 

 

The nonlinear mapping 𝑓 is generally unknown and can be approximated, for example, by a standard 

Multilayer Perceptron (MLP) network. 

Since in this paper the black box model is intended to be used as simulation model, the true past values 

of 𝑦̂(𝑘) are not available when the model is deployed (differently from predictive models).   

Therefore, the resulting architecture is a particular case of NARX network. 

2.4.  Random forest 

Breiman [13] defined a “random forest” as a variant of bagging meta-algorithm. Random forest is a 
general class of ensemble building methods which use decision trees for regression or classification. To 

be labeled a “random forest”, an ensemble of decision trees should be built by generating independent 

and identically distributed random vectors and should make use of each vector to model a decision tree. 
Therefore, a random forest could be built by sampling from the data set or feature set or just varying 

randomly some of the parameters of the tree. Any combination of these sources of diversity will also 

lead to a random forest. 

2.5.  Identification procedure 

Data pre-processing is the first step before the identification procedure. In particular, for ARX, data 

detrend is performed. This data processing operation helps to estimate more accurately linear models 

and overcome their inability to capture arbitrary differences between input and output signal levels. For 
NARX, data are normalized in the range [-1; 1] since a sigmoid function is considered in the hidden 

layer. In order to reduce the overfitting issue, regularization term is considered for both ARX and 

NARX. For all the three models, the 10-fold cross-validation technique is used. Only for RF modelling, 

the input operation mode of the plant (𝑂𝑀) is considered as a categorical predictor. 

The System Identification Toolbox in Matlab [14] is applied on a training dataset to estimate the 

unknown parameters for ARX. In the NARX model, instead, the optimal values of the model parameters 

have been estimated using the Neural Network Toolbox. Finally, RF regression model is built by the 
Statistics and Machine Learning Toolbox. 
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A grid search optimization procedure is considered to set the hyperparameters of the three models, 

in particular, the orders of ARX (i.e, 𝑛𝑎, 𝑛𝑏 and 𝑛𝑘), the orders of NARX (i.e, 𝑛𝑏 and 𝑛𝑘) and the orders 

of regression (i.e., 𝑛𝑏 and 𝑛𝑘), the leaf size and the number of decision trees of RF model. 
After identification, the models are tested by means of the following indicators: 

• the RMSE-values on the validation dataset; 

• the level of fit (NRMSE) on the whole dataset. 

The RMSE (root mean square error) is the objective function to be minimized both for training and 

validation sets. RMSE is defined as follows: 

𝑅𝑀𝑆𝐸 = (
1

𝑁
∑ 𝑒(𝑘)2𝑁

𝑘=1 )
1/2

    (6) 

where 𝑁 is the number of samples and 𝑒(𝑘) = 𝑦(𝑘) − 𝑦̂(𝑘) represents the difference between the 

variable 𝑦̂(𝑘) predicted by the simulation model and the variable 𝑦(𝑘) predicted by the white box model. 
NRMSE values are the normalized root mean square errors and thus they show in percentage the model 

goodness of fit. 

3.  Results  

The different black box models were first trained and then tested, as described in the previous section. 

Firstly, the ARX models were considered, because they have a simpler structure. Then the NARX and 

eventually the RF models, in order to improve the performance in fitting with the white box model. 

3.1.  ARX model results 

The optimum parameters of the ARX model identified are: 𝑛𝑎=4, 𝑛𝑏=4 and 𝑛𝑘=3 for 𝑇𝑇𝐸𝑆; 𝑛𝑎=1 , 𝑛𝑏=9 

and 𝑛𝑘=0 for 𝑇𝑂𝐼𝐿
𝑜𝑢𝑡; 𝑛𝑎=0 , 𝑛𝑏=6 and 𝑛𝑘=0 for 𝑃𝐿𝑂𝑆𝑆. The RMSE and NRMSE values are reported in 

Table 1.  

 
Table 1.  ARX results.  

Output variable RMSE NRMSE 

𝑇𝑇𝐸𝑆  3.1 (°C) 0.241 

𝑇𝑂𝐼𝐿
𝑜𝑢𝑡  8.4 (°C) 0.914 

𝑃𝐿𝑂𝑆𝑆 71.4 (kJ/h) 0.362 

 

The NRMSE obtained with the ARX model is not very good, especially for the variable 𝑇𝑇𝐸𝑆 . 

Looking in detail to the trend of such variable during the year (figure 4a e figure 4b), a different behavior 

of the storage system in summer and in winter is evident. That was expected, because the micro-solar 
CHP plant performance is strongly influenced by the solar radiation available. In winter the plant is off 

for longer periods of time and the LHTESS is partially charged, without reaching the melting condition, 

and rarely discharged. In summer, instead, the LHTESS works properly and can be fully charged and 
discharged using the latent heat available. 

The ARX model, as here identified, cannot represent such different behaviors by means of a single 

model. Looking at the predicted and original values of the output variables (figure 4a e figure 4b), the 
model can mimic the LHTESS temperature much better in summer than in winter. For this reason, a 

separate identification procedure for the two seasons was performed. The global performance indicators 

of the two new ARX models are reported in Table 2. 
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Table 2.  ARX results in summer and winter.  

Output variable NRMSE 

summer 

NRMSE 

winter 

𝑇𝑇𝐸𝑆  0.455 0.077 

𝑇𝑂𝐼𝐿
𝑜𝑢𝑡  0.914 0.884 

𝑃𝐿𝑂𝑆𝑆 0.415 0.167 

 
The results show an increased ability, even if still low, of the summer ARX model to predict the 

output variables trend, while in winter the goodness of fit is still poor. 

 

 
(a) 

 
(b) 

Figure 4. Predicted (p) vs original (o) values of the output variables for the ARX model in (a) winter 

and in (b) summer. 

 

3.2.  NARX model results 

Given the unsatisfying results shown in the previous section, another class of black box models was 

considered. The optimum parameters of the NARX model identified are: 𝑛𝑏=12 and 𝑛𝑘=0. 

The RMSE and NRMSE values are reported in Table 3. Again, a single NARX model cannot properly 
predict well the different LHTESS behavior in the different seasons. Considering the results already 

obtained for the ARX model, the NARX model has not been furtherly investigated. 

 

Table 3.  NARX results.  

Output variable RMSE NRMSE 

𝑇𝑇𝐸𝑆  2.8 (°C) 0.303 

𝑇𝑂𝐼𝐿
𝑜𝑢𝑡  6.9 (°C) 0.931 

𝑃𝐿𝑂𝑆𝑆 60.4 (kJ/h) 0.463 

 

3.3.  RF model results 

In order to improve the ability to reproduce the behavior of the LHTESS during the whole year, a more 
complex category of black box models was considered. Indeed the RF models contain internal different 

models and their outcome is an average of all the included models. The optimum parameters of the RF 

model identified are: 𝑛𝑏=12 and 𝑛𝑘=0 and it is used 1 leaf size and 20 decision trees. In Table 4 the 

corresponding RMSE and NRMSE values are reported.  
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Table 4.  RF results.  

Output variable RMSE NRMSE 

𝑇𝑇𝐸𝑆  0.7 (°C) 0.904 

𝑇𝑂𝐼𝐿
𝑜𝑢𝑡  4.2 (°C) 0.973 

𝑃𝐿𝑂𝑆𝑆 15.3 (kJ/h) 0.929 

 

In this case the NRMSE (FIT) obtained is pretty good, especially for 𝑇𝑂𝐼𝐿
𝑜𝑢𝑡  and 𝑃𝐿𝑂𝑆𝑆. Even the 

prediction of 𝑇𝑇𝐸𝑆  has been greatly improved and can be considered acceptable. However, looking at 

the RMSE values, it must be highlighted that, even if the absolute value of the RMSE is low, it could 

have a huge influence. For example, a RMSE of 0.7°C on the 𝑇𝑇𝐸𝑆  is not big, but given that the melting 

temperature range is 7°C (216-223°C), it could affect the ability to predict the latent heat available. 

Furthermore, 𝑇𝑂𝐼𝐿
𝑜𝑢𝑡  has values around 250-300°C, thus a RMSE of 4.2°C is a very small error in 

prediction, nevertheless the oil mass flow rate is pretty big, then also a small error in this temperature 
prediction is translated in a consistent mistake in assessing the heat exchanged with the TES. Instead the 

RMSE on the 𝑃𝐿𝑂𝑆𝑆 (kJ/h) is really very low, even if the relevance of this output variable is limited. It 

could also be obtained as result of a calculation, once known the input variables and the other output 
variables. 

In figure 5a and figure 5b the predicted and original output variables are shown for the two seasons. 

Predicted 𝑇𝑂𝐼𝐿
𝑜𝑢𝑡  follows pretty good the trend of the original value, while 𝑇𝑇𝐸𝑆  shows, especially in 

winter, an oscillating trend not visible in the original variable. As already mentioned, in winter there are 
long periods in which the LHTESS does not exchange energy with the rest of the plant, because there is 

not a surplus of energy to be stored or recovered. During these periods the TES exchanges heat only 

with the external environment as thermal losses. Thus, the 𝑇𝑇𝐸𝑆  results highly correlated with the 

external ambient temperature and this is reflected by the prediction of the black box model. However, 
the variability of the external ambient temperature is much higher than the actual variability of the 

temperature of the storage tank.  

 

 
(a) 

 
(b) 

  
Figure 5. Predicted (p) vs original (o) values of the output variables for the RF model in (a) winter and 

in (b) summer. 

 

Such aspect could be further improved with an in depth study of the influence of the input data on 
the output variables, in order to better represent the system behavior during the whole year. In Fig. 6 the 

influence of each input variable on the output variables is shown. In particular, for any variable, the 

prediction importance is the increase in prediction error if the values of that variable are permuted across 
the out-of-bag observations. This measure is computed for every tree, then averaged over the entire 

ensemble and divided by the standard deviation over the entire ensemble (it is a number >0).  
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(a) 

(b) 

(c) 

Figure 6. Influence of the input variables on the output variables: a) T_TES, b) Tout,oil, c) Ploss. 

 

It can be observed that 𝑇𝑂𝐼𝐿
𝑖𝑛  and DNI are the most influencing variables for all the different outputs. 

Moreover it is confirmed that the ambient temperature has also a quite important effect on the heat losses 

and on the TES temperature, as already discussed previously. 
 

4.  Conclusions 

In this study a first attempt to model a complex Latent Thermal Heat Energy Storage System (LHTESS) 
coupled with heat pipes by means of black box models is presented. Several configurations of black box 

models were considered in order to find a good fit between predicted and original values of the output 

variables of the system. As original values were taken the simulation results of a white box model of the 
LHTESS placed in a micro-solar CHP plant, obtained with a dynamic simulation tool to represent the 

system behavior during variable operating conditions. 

The analysis performed is intended as a preliminary study to better understand the influence of the 
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input variables of the system on its outputs. This will simplify the planned future work of training the 

black box models on real measured data. Main conclusion of this work is that the HP-LHTESS shows a 

very different behavior with changing the season and it is particularly difficult to predict its behavior during 
winter, when the system works less hours and cannot be completely charged/discharged for lack of surplus 

of energy. Thus, a single model for the all year cannot mimic very well the output variables. Therefore, 

different models identified in different seasons must be used, or more complex models, as the RF model 
here proposed, need to be considered. 
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