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All eukaryotic organisms require an adequate, balanced 
concentration of deoxyribonucleoside triphosphates 

(dNTPs) in order to assure accurate DNA replication and 
repair, and to maintain genomic integrity. The rate‑limiting 
step in dNTP synthesis is catalyzed by ribonucleotide re‑
ductase (RNR), an essential enzyme mediating the reduc‑
tion of ribonucleotides to desoxyribonucleotides, thereby 
providing the building blocks required for DNA synthesis. 
Consistent with its important role in cell proliferation, a 
significant increase in RNR activity has been associated 
with tumor cells and resistance to chemotherapy. Indeed, 
since the utilization of hydroxyurea in the 70s to the current 
development of sophisticated RNR inhibitors, RNR as been 
used as an important target for the chemotherapeutic treat‑
ment of numerous cancer types.[1] Therefore, understanding 

the molecular mechanisms that cells utilize to regulate RNR 
function in response to different stresses is critical for the 
development of new and efficient anticancer therapies. In 
this review, we focus on the yeast S. cerevisiae as a eukary‑
otic model to advance in our understanding of mechanisms 
regulating the function of eukaryotic RNRs during cell cycle 
progress and in response to environmental cues, including 
genotoxic stress and low iron bioavailability.

RNR structure, assembly, and allosteric 
regulation

In eukaryotes, class Ia RNRs are oxygen‑dependent 
enzymes composed of a large R1  (α

2
) and a small R2 

(β
2
 or ββ′) subunit. The R1 subunit contains the cata‑

lytic site and two allosteric effector binding sites that 
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Ribonucleotide reductases (RNRs) are essential enzymes that catalyze the 
reduction of ribonucleotides to desoxyribonucleotides, thereby providing the 
building blocks required for de novo DNA biosynthesis. The RNR function is tightly 
regulated because an unbalanced or excessive supply of deoxyribonucleoside 
triphosphates (dNTPs) dramatically increases the mutation rates during DNA 
replication and repair that can lead to cell death or genetic anomalies. In this 
review, we focus on Saccharomyces cerevisiae class  Ia RNR as a model to 
understand the different mechanisms controlling RNR function and regulation in 
eukaryotes. Many studies have contributed to our current understanding of RNR 
allosteric regulation and, more recently, to its link to RNR oligomerization. Cells 
have developed additional mechanisms that restrict RNR activity to particular 
periods when dNTPs are necessary, such as the S phase or upon genotoxic stress. 
These regulatory strategies include the transcriptional control of the RNR gene 
expression, inhibition of RNR catalytic activity, and the subcellular redistribution of RNR subunits. Despite 
class Ia RNRs requiring iron as an essential cofactor for catalysis, little is known about RNR function 
regulation depending on iron bioavailability. Recent studies into yeast have deciphered novel strategies 
for the delivery of iron to RNR and for its regulation in response to iron deficiency. Taken together, these 
studies open up new possibilities to explore in order to limit uncontrolled tumor cell proliferation via RNR.  
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determine substrate preference and overall activity. The 
R2 subunit harbors a stable diferric tyrosyl radical co‑
factor (Fe3+

2
‑Y∙) required for catalysis. Briefly, substrate 

binding to R1 initiates a ~35 Å proton‑coupled electron 
transfer pathway from R1 to the Fe3+

2
‑Y in R2 that leads 

to ribonucleotide reduction. At each catalytic site, the 
regeneration of an active RNR requires the reduction of a 
conserved pair of oxidized cysteines in R1 by thioredoxin 
or glutaredoxin.[2‑4]

One unique feature of S. cerevisiae RNR relies on the 
heterodimeric ββ′ nature of its active small R2 subunit, 
composed of two different proteins denoted Rnr2 and Rnr4. 
Whereas Rnr2 contains the indispensable Fe3+

2
‑Y∙ cofactor, 

the structurally homologous Rnr4 lacks essential ligands for 
iron binding and cannot, therefore, form the canonical tyro‑
syl radical.[5‑8] Despite this situation, deletion of RNR4 leads 
to lethality or severe growth impairment, which highlights 
its important role in the RNR function.[5,6] Interestingly, 
in vitro and in vivo studies suggest that Rnr4 contributes 
to the correct folding and assembly of the Fe3+

2
‑Y∙ cofac‑

tor in Rnr2, although the underlying mechanism remains 
unknown[9‑13] (for a recent review on cofactor assembly into 
class I RNRs, see Ref. 4). Recent evidence demonstrates 
that conserved cytosolic monothiol glutaredoxins Grx3 and 
Grx4 function in delivering iron to multiple iron‑containing 
proteins, including Rnr2.[14] Consistently with this, the yeast 
cells depleted of Grx4 exhibit reduced RNR‑specific activ‑
ity due to the inefficient incorporation of iron into Rnr2.[14] 
Furthermore, depletion of Fe–S cluster protein Dre2 also 
diminishes both Y levels and RNR activity, suggesting 
that Dre2 functions in providing reducing equivalents in 
order to deliver iron in its reduced state.[13] These results, 
and the genetic interactions among mutants RNR4, grx3 
grx4 and Dre2, suggest a model in which Grx3–Grx4 and 
Dre2 collaborate in delivering iron ion in its reduced state 
for Fe3+

2
‑Y∙ cluster formation in the Rnr2 partner of the 

Rnr2–Rnr4 heterodimer.[13]

The RNR large subunit is composed of an Rnr1 
homodimer, which is essential for mitotic viability.[15] In 
addition to RNR1, yeast cells express a second RNR large 
subunit, called RNR3, at very low levels, whose deletion 
does not cause any phenotype, but whose overexpression 
rescues the lethality of RNR1 null mutants.[15,16] Despite 
low Rnr3 specific activity, experiments with a catalytically 
inactive RNR1 mutant have indicated that Rnr3 increases its 
endogenous activity by associating with Rnr1.[16] However, 
further studies are required to elucidate the physiological 
function of yeast Rnr3.

Sophisticated allosteric regulations in the R1 large 
subunit contribute to maintain a balanced pool of dNTPs, 
which is essential to guarantee DNA synthesis fidelity.[17] 
Each R1 monomer contains two distinct regulatory sites: 

The specificity site (or S site) and the activity site (or A 
site). The S site, which is located at the dimer interface, 
acts as a sensor of each dNTP’s individual concentra‑
tion and determines which substrate is reduced at the 
catalytic site. When the allosteric effector binds to the S 
site, it alters the conformation of a flexible loop, which 
transmits the specific signal to the catalytic site to make 
it more amenable to discriminate between substrates, thus 
maintaining a balance among the four dNTP pools. There‑
fore, adenosine triphosphate (ATP) and deoxyadenosine 
triphosphate  (dATP) promote the reduction of cytidine 
diphosphate  (CDP) and uridine diphosphate  (UDP), de‑
oxythymidine triphosphate (dTTP) increases the guanosine 
diphosphate  (GDP) reduction rate, and deoxyguanosine 
triphosphate  (dGTP) up‑regulates adenosine diphos‑
phate (ADP) reduction. The A site, which is located in a 
small ATP amino‑terminal cone domain, acts as a master 
switch, which controls overall enzyme activity by monitor‑
ing the dATP (inhibitor)/ATP (activator) ratio. Despite ATP 
being more abundant in the cell, dATP has a higher affinity 
for the A site. dATP displays 10-20 times lower affinity 
for the A site than for the S site. Thus, at concentrations 
below micromolar, dATP only functions as an S site regu‑
lator. When the dATP pool reaches higher concentrations, 
RNR activity is turned off by dATP feedback inhibition. 
However, an unusual relaxed dATP feedback inhibition of 
yeast Rnr1 leads to an expansion of yeast dNTP pools in 
response to DNA damage, which does not occur in mam‑
malian cells.[18] Lack of Rnr3 inhibition by dATP suggests 
that an Rnr1–Rnr3 heterodimer may be advantageous in 
DNA‑damaged cells, as it allows larger dNTP pools to 
accumulate; however, no decrease in dNTPs is observed 
in rnr 3D mutants upon DNA damage.[16,18]

Studies on mammalian and yeast cells suggest that 
without nucleotide effectors, R1 exists as an inactive a 
monomer. Upon the binding of ATP, dATP, thymidine 
triphosphate  (TTP), or dGTP to the S site, R1 forms α

2
 

dimers, which can assemble as active α
2
β

2
 (α

2
ββ′ in yeast) 

heterotetramers.[19] Structural and functional data indicate 
that the binding of dATP to the A site promotes the associa‑
tion of three α

2 
dimers to form an a

6 
hexamer, which can 

interact only with a single R2 subunit to form an inactive 
a

6
β

2
 complex (a

6
ββ′ in yeast).[20] According to this model, 

the conformational changes accompanying dATP‑induced 
hexamerization probably disrupt the proper interaction be‑
tween the R1 and R2 subunits, leading to the disruption of 
the protein‑coupled electron transport chain. On the other 
hand, when dATP levels decrease, ATP binding to the A site 
may promote structurally different conformational changes 
in the a

6
β

2
 complex, which increase RNR catalytic activity. 

Additional RNR oligomeric structures, including active 
a

6
b

6
 complexes, have also been proposed.[17]
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Regulation of RNR during the cell cycle and in 
response to genotoxic stress

In all eukaryotic cells, including yeast, RNR activity is 
tightly controlled in order to avoid undesirable increases in 
dNTP pools, which raise mutation rates. Thus, the up‑reg‑
ulation of RNR activity is highly restricted to particular 
periods when dNTPs are required. The Mec1–Rad53–Dun1 
DNA damage and replication checkpoint kinase cascade is 
responsible for promoting yeast RNR activity in response to 
DNA damage, DNA replication stress, or when cells enter 
the S phase of the cell cycle. The Mec1 kinase sensor acti‑
vates the Rad53 central transducer. Both MEC1 and RAD53 
are essential genes that can be rescued only by increasing 
dNTP pools. Hyperphosphorylated Rad53 activates the 
Dun1 effector kinase by phosphorylation. Then, the Dun1 
checkpoint kinase enhances the RNR function by multiple 
mechanisms [Figure 1a].

One mechanism involves Crt1, also known as Rfx1, a 
DNA‑binding protein that recognizes 13‑nucleotide long 
cis‑regulatory elements known as X‑box motives, present 
in the promoter of damage‑inducible genes, including 
RNR2, RNR3, and RNR4, and represses their transcription 
by recruiting the general repressor complex Tup1–Ssn6.[21] 
The robust repression of RNR genes by the Crt1 protein is 
achieved by a synergic corepression with Rox1 and Mot3, 
two Ssn6–Tup1‑recruiting proteins that repress hypoxic 
genes, including RNR2–4.[22] Detailed studies on the nu‑
cleosomal structure of the RNR3 promoter have shown that 
the Ssn6–Tup1 corepressor requires the collaboration of the 
ISW2 complex to establish a regular array of positioned 
nucleosomes that represses the RNR3 expression.[23,24] In 
response to DNA damage or replication blocking, Crt1 
becomes hyperphosphorylated via the Mec1–Rad53–Dun1 
signaling pathway and moves away from DNA, thus pre‑
venting the formation of the repressor complex and leading 
to the activation of damage‑inducible genes [Figure 1a].[21] 
Genetic data indicate that CRT10 functions as a positive 
regulator in the CRT1 pathway in response to DNA dam‑
age.[25] Despite the Rox1–Mot3‑mediated repression still 
being functional during genotoxic stress, a substantial 
part of its repression is lost from lack of a synergy with 
Crt1.[22] Before dissociating from the RNR3 promoter, Crt1 
recruits the Transcription Factor IID (TFIID), the SWItch/
Sucrose NonFermentable SWI/SNF chromatin remodeling 
complex, and histone deacetylases to promote transcription 
activation.[26,27] An additional level of regulation is possible 
because of the X‑box motifs present in the CRT1 promoter 
permitting an autoregulatory mechanism on the CRT1 gene 
expression, which mediates its induction upon genotoxic 
stress and rapidly restores its repressed state after eliminat‑
ing damage.[21]

Regulation of RNR genes upon genotoxic stress is 

not completely dependent on Dun1 kinase. For instance 
in dun1∆ mutants, RNR genes continue to be significantly 
induced in response to DNA damage.[21] Furthermore, re‑
cent results have demonstrated that the RNR1 expression 
is induced upon DNA damage in a Dun1‑ and Crt1‑inde‑
pendent manner. Instead, in response to genotoxic stress, 
Mec1 and Rad53 activate Ixr1, a DNA‑binding protein that 
interacts with the RNR1 promoter and which activates its 
transcription[28]  [Figure 1a]. Consistently with a reduced 
RNR1 expression, IXR1 deletion results in lower dNTP 
levels, sensitivity to DNA damage agents, a Mec1–Rad53–
Dun1–Crt1‑dependent elevation of Rnr3 and Rnr4, and the 
down‑regulation of Sml1 levels, which explain why DUN1 
is indispensible in irx1∆ mutants.[28]

The transcriptional regulation of RNR genes also con‑
tributes to fluctuating RNR activity during the cell cycle. 
Whereas RNR1 mRNA levels increase more than tenfold 
in the G1/S phase, RNR2 transcripts display only a slight 
twofold up‑regulation.[15] No cell cycle regulation has 
been observed for RNR3 and RNR4 transcripts.[5,15] RNR1 
transcriptional activation during the transition from G1 to 
S phase is regulated by the MBF transcription factor, which 
coordinately controls the expression of many genes required 
for early cell cycle functions, including DNA replication 
and repair. MBF is an heterodimeric complex composed of 
regulatory transactivating protein Swi6, which is tethered to 
MCB elements at the promoter of RNR1 and to other G1/S 
genes via its DNA‑binding partner, Mbp1 [Figure 1b].[29,30] 
The MBF complex restricts the expression of its target genes 
to the G1/S transition. A Swi6‑interacting protein, denoted 
Stb1, mediates MBF‑dependent transcriptional repres‑
sion, probably via Sin3, prior to its Cln/Cyclin‑Dependent 
Kinase  (Cln/CDK)‑dependent phosphorylation, which 
occurs when cells enter G1.[31‑33] In a late G1 phase, Stb1 
is released from MBF promoters by an unknown mecha‑
nism, while a protein called Nrm1 accumulates, interacts 
with MBF, and promotes MBF‑dependent transcriptional 
repression in the S phase.[34] Interestingly, recent results 
have demonstrated that in the S phase, genotoxic stress 
induces the activation of the Rad53 checkpoint kinase, 
which directly phosphorylates the Nrm1 corepressor in a 
Dun1‑independent manner and prevents it binding to MBF, 
thereby permitting the specific transcriptional activation of 
G1/S cell cycle targets, including RNR1.[35,36] Moreover, the 
cell cycle regulatory SBF complex, composed of Swi6, and 
DNA‑binding protein Swi4 have also been implicated in 
the transcriptional activation of RNR2 and RNR3 genes in 
response to DNA damage.[37]

As a result of the relaxed dATP feedback inhibition 
of RNR, yeast cells have developed an additional RNR 
repression mechanism. The Sml1 protein binds through its 
carboxy‑terminal tail to the yeast R1 large subunit by inhib‑
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Figure 1: Model for regulating RNR activity in the S phase and in response to genotoxic stress. In addition to allosteric regulation mechanisms, 
RNR is tightly regulated in the S phase and after DNA damage or DNA replication blocks. (a) In response to genotoxic stress and in the S 
phase, the Mec1–Rad53–Dun1 kinase pathway activates RNR activity by (1) promoting the phosphorylation and degradation of the Sml1 
R1‑inhibitor and (2) enhancing R2 relocalization to the cytoplasm via Wtm1 and Dif1 modifications. Upon genotoxic stress, the Mec1–
Rad53–Dun1 checkpoint pathway phosphorylates Ctr1, leading to the derepression of RNR2/3/4 transcription. Recent results show that RNR1 
transcription is activated via Ixr1 in a Mec1–Rad53‑dependent, but Dun1‑independent manner, in response to genotoxic stress. Blue arrows 
refer to the pathways activated in genotoxic stress and in the S phase, whereas red arrows indicate the pathways only activated in response to 
genotoxic stress. (b) The transcription of RNR1 in the G1/S cell cycle transition phase is regulated by the MBF heterodimeric complex, which 
is composed of the regulatory transactivating protein Swi6 and its DNA‑binding partner Mbp1. Several proteins participate in the repression 
of RNR1 outside the G1/S phase. Stb1 mediates MBF‑dependent transcriptional repression prior to its Cln/CDK‑dependent phosphorylation 
occurring at G1, whereas Nrm1 promotes the MBF‑dependent transcriptional repression of RNR1 as cells exit the G1 phase
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iting its activity when DNA synthesis is not required.[38‑40]  
Elegant in vivo experiments have shown that when each 
catalytic cycle is completed, reduction of cysteine residues 
at the R1 active site in the amino‑terminal part of an a 
protomer is performed by a couple of cysteines located in 
the carboxy‑terminal domain of the other a protomer.[41] 
Since Sml1 also binds to the amino‑terminal region of 
R1, it competes with the carboxy‑terminal cysteines and 
inhibits cysteine reduction at the active site and, hence, the 
enzyme turnover.[41] In the S phase, in response to DNA 
lesions, Sml1 protein levels dramatically lower, leading 
to an increase in dNTP levels. The underlying mechanism 
involves the activation of the checkpoint signaling path‑
way, which results in the direct phosphorylation of Sml1 
by the Dun1 kinase.[42‑45] Sml1 phosphorylation triggers its 
release from the R1 subunit and its degradation by the 26S 
proteasome to allow RNR activation [Figure 1a]. Recent 
data have demonstrated that the targeted destruction of 
phosphorylated Sml1 depends on a multimeric complex 
which includes E2 ubiquitin‑conjugating enzyme Rad6, 
E3 ubiquitin ligase Ubr2, and E2–E3‑interacting protein 
Mub1.[44]

Another mode of RNR regulation is the differential 
localization of its subunits. Under normal conditions, the 
yeast R1 large subunit localizes to the cytoplasm, whereas 
the R2 small subunit is predominantly localized to the 
nucleus. Upon DNA damage, replication blockage, or in 
the S phase, the majority of the R2 subunit is redistributed 
from the nucleus to the cytoplasm, resulting in an active 
RNR complex [Figure 1a].[46] Intriguingly, R2 redistribution 
to the cytoplasm is fully dependent on the Mec1–Rad53–
Dun1 kinase pathway upon treatment with methyl meth‑
anesulfonate (MMS), but is only partially dependent when 
hydroxyurea (HU) is added.[46] In any case, both proteins 
Rnr2 and Rnr4 in R2 are cotransported between the nucleus 
and the cytoplasm as one heteromeric complex.[47] The sub‑
cellular localization of the R2 small subunit is simultane‑
ously controlled by two different proteins: Wtm1 and Dif1. 
Under normal growth conditions, the WD40‑containing 
protein, Wtm1, physically interacts with the R2 subunit 
by anchoring it to the nucleus. When cells undergo geno‑
toxic stress, this interaction diminishes and the Rnr2–Rnr4 
heterodimer relocalizes from the nucleus to the cytoplasm 
[Figure 1a].[48,49] The nature of this interaction and the un‑
derlying release mechanism upon DNA damage have not 
been characterized to date. The subcellular localization of 
R2 is also regulated by Dif1, a primary cytoplasmic protein 
containing a Hug domain conserved in Spd1, a Schizosac-
charomyces pombe protein that interacts and sequesters 
the fission yeast R2 subunit into the nucleus away from its 
catalytic subunit.[50] Under normal conditions, Dif1 binds 
directly to R2 via the Hug domain and drives its import to 

the nucleus.[51,52] Dif1 protein levels are regulated during 
the cell cycle with a maximum increase at the end of the S 
phase when the R2 small subunit returns to the nucleus.[51] 
In response to DNA damage or replicative stress, the Dun1 
checkpoint kinase directly phosphorylates Dif1 at specific 
residues within its Sml domain and promotes its degradation 
relieving RNR inhibition.[51,52] Thus, compartmentaliza‑
tion of the R2 small subunit contributes to modulate RNR 
activity and dNTP pools to ensure accurate, efficient DNA 
synthesis.

Regulation of RNR in response to low iron 
bioavailability

Iron is an indispensable micronutrient for all eu‑
karyotic organisms because it participates as an essential 
cofactor in class  Ia RNRs, among other reasons. The 
oxo‑diiron center in RNR is responsible for generating 
and maintaining the stable tyrosyl radical that initiates the 
electron transfer leading to ribonucleoside diphosphate 
reduction. The low solubility of ferric iron at physi‑
ological pH frequently leads to iron deficiency, which 
is the most common and widespread nutritional disorder 
worldwide.[53] Despite this, very little is known about the 
mechanisms regulating the RNR function in response 
to iron limitation. Previous studies in mammals have 
shown that severe iron deficiency conditions can result 
in decreased RNR activity and dNTP pools.[54,55] A care‑
ful analysis of those studies shows that dNTP synthesis 
slightly increases during early iron deficiency stages,[55] 
suggesting that cells may possess mechanisms to maintain 
the RNR function when iron becomes scarce. By using 
budding yeast, we recently uncovered a novel mechanism 
to promote the RNR function when iron availability de‑
creases.[56] We observed that in response to low iron, yeast 
R2 subunits redistribute from the nucleus to the cytoplasm, 
where R1 subunits permanently reside, in a manner that is 
independent of the well‑established regulatory activation 
mechanism controlled by checkpoint kinases Mec1 and 
Rad53. Instead, a novel strategy promotes the Rnr2–Rnr4 
subcellular relocalization, and optimizes both the RNR 
function and dNTP synthesis when iron bioavailability 
becomes limited. In response to low iron, yeast cells 
activate the expression of two RNA‑binding proteins, 
denoted as Cth1 and Cth2, which specifically interact with 
the AU‑rich elements within the 3′ untranslated region 
of many of the mRNAs encoding proteins which either 
contain iron or participate in metabolic pathways that 
utilize iron as a cofactor to promote their degradation.[57,58] 
Specifically, Cth1 and Cth2 mediate the degradation of 
transcripts that function in the tricarboxylic acid cycle, 
mitochondrial electron transport chain, lipid and amino 
acid metabolisms, and heme synthesis, among other 
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Figure 2: Regulation of RNR activity in response to iron deficiency. RNR activity is partially regulated by controlling the subcellular 
localization of the Rnr2–Rnr4 heterodimer. Under sufficient iron conditions, the catalytic Rnr1 homodimer resides in the cytoplasm, while 
iron‑containing heterodimer Rnr2–Rnr4 is predominantly localized in the nucleus. Wtm1, a WD40 protein, anchors Rnr2–Rnr4 to the nucleus 
and limits RNR activity. Iron deficiency activates the expression of Cth1 and Cth2 proteins, which bind to WTM1 mRNA and promote its 
degradation. The drop in the Wtm1 protein levels leads to the Rnr2–Rnr4 subunit translocation to the cytoplasm, where it binds to Rnr1 to 
form an active RNR enzyme

iron‑dependent pathways.[57,58] Multiple approaches dem‑
onstrate that upon iron deficiency, Cth1 and Cth2 promote 
the down‑regulation of WTM1 mRNA.[56] The consequent 
decrease in Wtm1 protein levels facilitates the transloca‑
tion of Rnr2–Rnr4 to the cytoplasm, leading to dNTP 
synthesis [Figure 2]. Mutagenesis of either Cth1–Cth2 or 
WTM1‑specific binding motifs reduces R2 redistribution 
and diminishes dNTP pools during iron deficiency.[56] 
These results suggest that the Sml1‑mediated repression 
of the R1 subunit should be relieved under low iron. 
However, the mechanisms regulating Sml1 under these 
conditions have not yet been described. Moreover, Cth1 
and Cth2 also interact with RNR2 and RNR4 transcripts in 
response to iron deficiency by promoting their degradation 
and limiting new R2 subunit synthesis,[56] probably due to 
the scarce availability of the iron cofactor to incorporate 
into Rnr2. Interestingly, recent studies in yeast indicate 
that eukaryotic DNA polymerases rely on iron–sulfur 
clusters as essential cofactors for the formation of active 

complexes, thus highlighting the central role of iron in 
DNA synthesis.[59] Furthermore, a recent study in fission 
yeast has shown a direct link between DNA synthesis and 
RNR regulation. Briefly, the interaction of Spd1 with the 
polymerase processivity factor proliferating cell nuclear 
antigen (PCNA), complexed onto DNA, is essential for 
the Spd1 ubiquitylation and degradation that leads to RNR 
activation.[60] Further studies are required to elucidate 
how mammalian RNR activity and DNA synthesis are 
regulated in accordance with iron availability, and how 
these regulatory mechanisms influence the utilization of 
RNR as a target for anticancer treatments.

Conclusion

The budding yeast S.  cerevisiae has outstandingly 
contributed to our current understanding of how eukaryotic 
cells function. Yeast cells possess multiple mechanisms to 
tightly control RNR activity in response to changes during 
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the cell cycle and environmental cues such as genotoxic 
stress and iron deficiency. The time has now come to deci‑
pher how these multilayered strategies are interconnected 
in order to regulate the yeast enzyme and to what extent 
they occur in mammalian cells.
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