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Interaction networks are widely used as tools to understand plant–pollinator

communities, and to examine potential threats to plant diversity and food secur-

ity if the ecosystem service provided by pollinating animals declines. However,

most networks to date are based on recording visits to flowers, rather than

recording clearly defined effective pollination events. Here we provide the first

networks that explicitly incorporate measures of pollinator effectiveness (PE) from

pollen deposition on stigmas per visit, and pollinator importance (PI) as the

product of PE and visit frequency. These more informative networks, here pro-

duced for a low diversity heathland habitat, reveal that plant–pollinator

interactions are more specialized than shown in most previous studies. At the

studied site, the specialization index H02 was lower for the visitation network

than the PE network, which was in turn lower than H02 for the PI network.

Our study shows that collecting PE data is feasible for community-level studies

in low diversity communities and that including information about PE

can change the structure of interaction networks. This could have important

consequences for our understanding of threats to pollination systems.
1. Introduction
Given current concerns over pollinator declines and the resultant impact on

both food production and plant diversity, we need to understand how pollina-

tor deficits could affect pollination services for both crops and wild plants

[1–3]. The field of plant–pollinator networks is flourishing, with increasing

numbers of studies using interaction web or network approaches, and more

sophisticated analytical methods being developed to examine interactions

between plants and their potential pollinators [4–6]. Most networks quantify

plant–pollinator interactions as numbers of animal visits to flowers (‘visitation’

or ‘flower-visitor’ networks), though a few ‘pollen-transport’ networks demon-

strate which visitors are potentially important pollinators, based on quantity

and species composition of pollen loads carried [7,8] (although this pollen

may have many fates other than deposition on stigmas [9]).

While these studies examine community-level interactions among plants

and visitors, most do not distinguish between mere flower visitors and effective

pollinators. An animal visit to a flower does not necessarily constitute a polli-

nation event, which requires a visitor that transfers pollen from anthers of

one flower to stigmas of conspecifics. Networks are increasingly used as tools

to assess effects of introduced and/or invasive species [10,11], potential extinc-

tion rates [12,13] or resilience to anthropogenic factors such as climate or

landscape change [6,14,15], all of which have implications for conservation

strategies [16]. Visitation networks provide essential information on resource
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use by flower visitors. However, when pollination itself is

being investigated it is crucial to know which apparently

legitimate visitors are depositing significant conspecific

pollen on stigmas and thus potentially effecting pollination.

All pollination biologists are fully aware that ‘visitor’ is not

a synonym for ‘pollinator’; some visitors are purely cheaters,

removing pollen or nectar without pollinating flowers, while

other (non-cheating) visitors may be detrimental (e.g. causing

stigma blockage with heterospecific pollen) and/or have low

effectiveness. Authors have varied in how far they allow for

these problems. Some have assumed the most effective pollina-

tors were the most frequent flower visitors [17,18] but this has

been strongly criticized (e.g. [19]). Others aimed to improve

accuracy by recording only visitors making contact with

floral reproductive organs, thus hoping to exclude illegiti-

mate visitors [20,21]; however, high-speed video recordings

of visitors to Clerodendrum trichotomum [22] reveal significant

differences in behaviour between visitor species not visible to

the naked eye, showing that the most frequent visitors are

rarely most efficient at contacting anthers or stigmas. Other

studies have explicitly incorporated additional data, such as

visit patterns (number, or rate, or duration, or visits per

plant), pollen transport (amount carried on body, or distance

moved), or resultant seed-set [13,23,24]. Recognizing the limit-

ations of all these approaches, a few authors (e.g. [8,10,24,25]

refer only to ‘visitation networks’ rather than implying that

they are recording effective pollination. Nevertheless, others

assert that most visitors are functionally equivalent in their

pollen-moving ability (e.g. [26]), or that visitor frequency is

an acceptable surrogate (e.g. because variation in frequency

‘overwhelms per visit effectiveness’ [27]).

Analyses of visitation data have concluded that ‘pollina-

tion networks’ are relatively robust, with nestedness and

connectance invariant across years, whether working with

simulations [12,13] or empirical datasets [28,29], and that a

moderate level of extinctions could therefore be tolerated.

They also conclude that most flower-visiting animals are gener-

alized in their flower choices, with specialist interactions being

rare. But if some common flower visitors in fact contribute little

conspecific pollen transfer, these analyses could give mislead-

ing perspectives for approaches to plant conservation and thus

ecosystems as a whole [30,31]. Recognizing this, a more realistic

representation of community interactions is desirable [32–34].

Thus, there is a need to incorporate functionality measures

indicating effective pollination into community studies and

thence into networks. Here we compare traditional flower-

visitor networks with novel pollinator effectiveness (PE)

networks, following Ne’eman et al. [35] and King et al. [33] in

defining PE as single visit deposition (SVD: number of conspe-

cific pollen grains deposited on a virgin stigma during a single

visit by a particular animal). We then create pollinator impor-

tance (PI) networks by combining PE with visit frequency for

each flower visitor interaction.

Some early studies were exemplary in using pollen depo-

sition onto stigmas to compare visitors with single species

(e.g. [36,37]). We have since demonstrated [33] that SVD

can be compared between visitors and flowers with very

different morphologies, and that it varies significantly

between visitor species. Other recent studies have compared

PE for visitors with single flower species or a few congeneric

species (e.g. [38,39]). Here we show that SVD is feasibly incor-

porated in community-level field studies with low plant

diversity, and present the first explicit PE and PI networks,
specifically addressing the following questions: (i) how does

PE (SVD) vary between different flower visitors? We predict

there will be significant variation in the effectiveness of pollen

deposition by different insect species, due to variation in size

and behaviour. (ii) Does visit type influence PE? Visitation by

pollen-collecting insects, contacting anthers and usually

stigmas, is predicted to result in higher pollen deposition

compared with nectar-foragers. Legitimate visitation should

also result in higher pollen deposition than robbing visits,

as nectar robbers/thieves (often visiting via basal holes in

the corolla) are less likely to contact stigmas. (iii) How do

PE and PI networks compare with flower visitor networks?

Here we predict that incorporating more detailed information

concerning the nature of the visit will yield more specialized

networks.
2. Material and methods
(a) Study site and species
Fieldwork was carried out at Hyde Heath, Dorset (50843.70 N

2807.20 W) from June to August 2013, and in May 2014 to incorpor-

ate the early flowering Ulex europaeus. This site, covering around

600 ha, offers a low diversity community, for which visitation

data have already been published [40]. It is, therefore, an ideal habi-

tat to demonstrate the feasibility of the approach before addressing

more complex (higher diversity) communities. The site’s flora is

almost exclusively heather (Erica tetralix, E. cinerea and Calluna vul-
garis) and gorse (U. europaeus and U. minor). Polygala serpyllifolia is

present at very low density, but received no visits during the study.

For additional information on floral phenology, abundance and

reward levels, see electronic supplementary material, S1.
(b) Pollen deposition
To obtain SVD data, our measure of PE, flower buds were bagged

each evening, weather permitting, throughout the study period;

this involved covering whole E. tetralix, E. cinerea and C. vulgaris
plants or groups of Ulex buds with mesh. The mesh was carefully

removed the following morning, once flowers had opened and

virgin stigmas identified on flowers that had opened overnight

using a hand lens.

Individual flowers were then observed until they received

their first visit. We obtained SVD data from a minimum of 90

individual flowers per plant species and up to 350 flowers for

the more common species (table 1). Visitor identity, time and

duration of visits and visitor behaviour on the flower were

recorded, including resources collected and nature of collection:

legitimate (via the corolla mouth) or robbing (chewing a hole

through the corolla). Where identity to genus was not obvious

the visitor was photographed and/or caught for later identifi-

cation. Bombus could be identified to species, although the

common B. terrestris and B. lucorum are difficult to distinguish

in the field [41] so were grouped as B. terrestris/lucorum (cf.

[40]). Owing to small sample sizes, other visitors were grouped

according to taxonomy and/or size. Halictid bees (almost all

Lasioglossum) were pooled, while Andrena and Colletes (similarly

sized bees) were pooled as ‘other solitary bees’. For hoverflies,

Episyrphus balteatus and Eupeodes corollae visits were identified

specifically, with other less common genera grouped as ‘large

hoverflies’ (Eristalis, Syrphus, Helophilus and Volucella) and

‘small hoverflies’ (Stratiomys, Platycheirus and Meliscaeva). Sur-

veys continued on each day until there were no more bagged

flowers left to sample or visitation rate had decreased to a very

low level (no visits recorded for 1 h). Most data were collected

between 08.00 h and 15.00 h in dry conditions with low winds.



Table 1. Mean SVD values (numbers of conspecific pollen grains deposited on stigmas) for different visitors to each plant species; means+ s.e., with n
(number of visits recorded) in parentheses. Mean controls rounded to the closest whole number and subtracted from all SVD values shown for that plant
species. ‘Flower hours’ is calculated as the product of length of time flowers were watched and the number of flowers watched in each hour.

Erica tetralix Erica cinerea Calluna vulgaris Ulex minor Ulex europaeus

observation time

(flower hours)

2070 2268 1326 618 168

control stigmas 0.31+ 0.18 (13) 0.47+ 0.22 (12) 8.13+ 2.02 (23) 8.36+ 1.29 (14) 8.00+ 2.68 (9)

visitor groups

bees

Bombus terrestris/

lucorum

11.59+ 1.54 (271) 35.33+ 3.39 (228) 21.02+ 2.10 (135) 45.36+ 8.28 (33) 43.10+ 4.35 (40)

Bombus

pascuorum

29.29+ 12.74 (14) — — 43.13+ 7.44 (31) 45.55+ 7.33 (11)

Bombus lapidarius 28.50+ 10.50 (2) 32.70+ 7.48 (33) 22.41+ 4.60 (17) 63.00+ 8.81 (48) 48.11+ 11.80 (9)

Bombus hortorum — — — — 24.20+ 8.29 (5)

Bombus jonellus 55.27+ 16.27 (11) 47.83+ 23.26 (6) — — —

Apis mellifera 2.94+ 0.51 (77) 21.79+ 4.93 (56) 25.07+ 2.06 (175) — 17.67+ 3.65 (12)

Halictidae 25.80+ 11.84 (5) 19.17+ 3.62 (23) — — —

other solitary bees — — 6.33+ 4.11 (6) 82.33+ 20.84 (9) 67.00+ 19.54 (6)

flies

Episyrphus — — 19.17+ 8.50 (12) 21.00+ 20.00 (3) —

Eupeodes — 3.00+ 2.08 (3) 7.75+ 7.42 (4) — —

large hoverflies 8.00+ 4.90 (4) — 6.00+ 4.02 (4) 3 (1) —

small hoverflies — 11+ 4 (2) 7.83+ 7.83 (6) 3 (1) —

Muscidae — — 22.37+ 6.17 (19) — —

soldier fly — — 1 (1) — —

other

ants (Lasius) 5.50+ 4.97 (14) — — — —

Lepidoptera — — — — 9 (1)

total visits recorded 398 351 379 126 84

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151130

3

On warmer July days sampling occurred until 19.00 h, matching

visitor activity patterns.

After each insect visit, the stigma from that flower was removed

with clean tweezers and dabbed onto a cube of fuchsin agar gel, thus

removing and staining the pollen. Use of a hand lens ensured all

pollen grains had been removed. Gels were melted on microscope

slides under coverslips, and all conspecific and heterospecific

pollen grains deposited were counted by light microscopy (�100

or�400). Pollen morphology of Erica species varies little, so absolute

distinction of E. tetralix and E. cinerea pollen was not always possible,

but errors would be reduced by their differing flowering phenology

with only E. cinerea still abundant into August (see electronic

supplementary material, S1).

To account for pollen found on stigmas due to opening of the

flower and/or handling and bagging procedures, control stigmas

were also sampled for each plant species (8–12 per species).

Stigmas were removed from newly uncovered virgin flowers

before a visit took place and checked for pollen as above. Mean

control values for each species were subtracted from SVD values

obtained from individual visits.

(c) Floral visitation
The visits to flowers during SVD observations provided data used

to construct visitation networks. Total observation time per plant
species in the visitation dataset varied because of the diversity of

flower visitors, length of flowering season and floral abundance

within the habitat; hence the very common heather flowers, with

a wide range of visitors, were observed for longer than the less

common gorse flowers.

(d) Network construction
The data were used to construct the following networks: (i) visita-

tion (V) network, using the frequency of interaction between visitor

groups and plant species. As network metrics may be strongly

influenced by methodology of data collection [42], this network

was constructed using data collected during stationary PE obser-

vations. As sample sizes varied among species, visit frequency

for a plant–visitor group interaction was calculated as a proportion

of the total number of visits by all visitor groups, so that interaction

bar widths sum to 1 for each plant species, removing bias from vari-

ation in sampling effort. (ii) PE network, using mean SVD values

for each visitor group to each plant species. Pollen production

and hence deposition varied greatly between plant species; to

remove bias from this variation, the PE interaction between each

visitor group and plant species was calculated as a proportion of

the total SVD for that plant species (i.e. total pollen grains deposited

across all SVD observations). (iii) PI network, combining data from

V and PE networks. PI for each interaction was calculated as the
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product of total visitation frequency (using stationary observation

data) and mean PE for that visitor group. Again biases were

accounted for by using PI values for each visitor group/plant

species interaction calculated as a proportion of the total PI

summed across all visitor groups for that plant, so that all

interaction bar widths for each plant species sum to 1.

(e) Data analysis
(i) The effect of visitor identity on pollen deposition
Parametric statistics could not be used to analyse pollen deposition

data as residuals were not normally distributed given the high

proportion of zeros in the dataset. Therefore, non-parametric

Kruskal–Wallis tests were used to compare SVD among visitor

groups for each plant species. Post hoc tests (pairwise Wilcoxon

rank sum tests) tested for significant differences among visitor

groups. A Holm–Bonferroni correction for multiple testing was

used for both steps. (Results from a more complex analysis using

a negative binomial GLM, supporting the results obtained from

these tests, can be found in electronic supplementary material, S2.)

(ii) The effect of individual visitor behaviour on pollen deposition
Kruskal–Wallis tests determined whether different visitor beha-

viours (pollen versus nectar-collecting, and legitimate versus

robbing visits) yielded different SVD levels. Visitors to Ulex
species only gathered pollen, and were, therefore, excluded

from this comparison, while robbing behaviour was only

observed for Erica species.

(iii) Comparing visitation networks with pollinator effectiveness
and pollinator importance networks

Interaction networks were analysed using the bipartite package

(v. 2.05 [43], in R v. 3.0.1 [44]) and a number of network metrics

extracted. The relevance and/or utility of common network

metrics have been much debated (e.g. [45,46]). Following an

emerging consensus, our analyses focused on a key range of

metrics. We used H02 to measure network specialization as it

best represents the level of interaction selectiveness by estimating

the deviation of observed interaction frequencies from expected

values from a null distribution of interactions. H02 is based on

weighted links and, therefore, robust against sampling effort

[47]. H02 ranges from 0 (extreme generalization) to 1 (perfect

specialization). We used d0 to measure of species-level specializ-

ation, which measures the exclusivity of interactions that

individual species take part in [48]. This is the most biologically

informative measure of visitor specialization in resource choice in

a visitation network, and most relevant predictor of specialization

in pollination for a plant in a PI network. As the matrix data are

proportional, all values were multiplied by 1000 before calculating

this metric. Species strength, on the other hand, measures the sum

of an individual species dependencies (relative interaction

weights) within a network [49]; it is most biologically informative

for plants in a visitation network, as resource use of these species

by visitors is measured, and for visitors in a PI network, where

potential pollination quality is measured. We compared d’ and

species strength between V and PI networks using paired t-tests

(data conformed to parametric test assumptions and, as d0 values

are proportions, these were arcsine square-root transformed

before testing). We did not statistically compare d0 and species

strength of the PE network as these did not include a measure of

visitor interaction frequency. Generality of visitor species, together

with generality of plant species (the latter is also termed vulner-

ability because of its use in the food web literature, describing the

vulnerability of prey to predation [50]), measures the mean num-

bers of species a plant or visitor group directly interacts with,

weighted to account for sample size. Interaction evenness measures

homogeneity in interaction frequencies, which reaches 1 when the
number of interactions between plants and visitor groups is uni-

formly distributed, and is inversely related to network stability

[51]. Nestedness, weighted by sample size (WNODF [52]), esti-

mates linkage structure. Here 1 indicates perfect nestedness and 0

perfect chaos, with greater nestedness conferring higher stability

in mutualistic networks [53]. Recent studies (e.g. [54]) indicate

that nestedness may only be a secondary indicator of stability; how-

ever, the primary driver, degree distribution (linkage density),

cannot be accurately calculated for small networks [55].
3. Results
(a) The effect of visitor identity on pollen deposition
A total of 1338 insect–flower interactions were observed, all

providing SVD data (table 1). Sixty-seven per cent of obser-

vations were Bombus spp., 24% Apis, 4% solitary bees, 3%

hoverflies and 1% other rare visitors (butterflies, ants, other

Diptera). Bumblebees were the main flower visitors (over

75% of visits) for all plant species except C. vulgaris, where

Apis was most common (45% of visits). Of all Bombus visits,

79% were made by the B. terrestris/lucorum group.

All visitor groups showed high variation in SVD (table 1).

There were no significant differences in SVD among visitor

groups for E. cinerea, C. vulgaris, U. minor or U. europaeus follow-

ing correction for multiple testing. Only visitors to E. tetralix
differed significantly in SVD (x2 ¼ 45.2, d.f. ¼ 7, p , 0.001);

here post hoc tests revealed that Bombus jonellus deposited sig-

nificantly more pollen onto stigmas than B. terrestris/lucorum
(W ¼ 2476, p , 0.001), Apis (W ¼ 75.5, p , 0.001) and Lasius
(W ¼ 16.5, p , 0.001), while B. terrestris/lucorum deposited

significantly more pollen onto stigmas than Apis (W ¼ 7153,

p , 0.001). When visitor groups with fewer than five visits

were excluded from analyses the results were found to be the

same. Comparable results were obtained using negative

binomial GLMs (electronic supplementary material, S2).

(b) The effect of visitor behaviour on pollen deposition
Pollen-foraging visitors had significantly higher PE than

nectar-foraging visitors for E. tetralix (figure 1a; x2 ¼ 39.81,

d.f. ¼ 1, p , 0.001), E. cinerea (x2 ¼ 68.16, d.f. ¼ 1, p , 0.001)

and C. vulgaris (x2 ¼ 23.62, d.f. ¼ 1, p , 0.001). A pollen-

forager was more likely to receive pollen on its body and

thus to move conspecific pollen between flowers. This

result is unlikely to be skewed by visitor size (cf. [56]), as

large bumblebees often collected only nectar (occasional

male visitors doing so exclusively), and smaller visitors

(small hoverflies, halictid bees) nearly always directed their

mouthparts to the anthers (which are extended away from

the nectaries in all three species) and collected just pollen.

As expected, legitimate visitors were usually visibly coated

in pollen and deposited significantly more pollen than visitors

that robbed flowers of both E. tetralix (figure 1b; x2 ¼ 53.7,

d.f. ¼ 1, p , 0.001) and E. cinerea (x2 ¼ 12.54, d.f. ¼ 1, p ,

0.001). Legitimate visitors are more likely to contact anthers

and stigmas than basal robbers, and will, therefore, more

readily pick up pollen and deposit it on stigmas.

(c) Comparing visitation, pollinator effectiveness and
pollinator importance networks

Bipartite networks constructed from the three different data-

sets are shown in figure 2a–c, and corresponding network
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metrics in table 2. Figures 2b,c allow direct comparisons of

individual visitor performance. For example, some visitors

such as B. jonellus visiting Erica spp., or solitary bees visiting

U. minor, do deposit high numbers of pollen grains but have

low PI levels (figure 2c) because of their low visitation rates.

By contrast, others such as B. terrestris/lucorum deposit aver-

age numbers of pollen grains, but their high visitation rates

result in much higher PI values.

The V network was reasonably generalized (H02 ¼ 0:305;

figure 2a), whereas the PE network based on SVD data was

slightly more specialized (H02 ¼ 0:341; figure 2b). When station-

ary visitation and SVD data were combined, the resulting PI

network was more specialized than both SV and PE networks

(H02 ¼ 0:365; figure 2c). These results suggest that the addition

of pollen deposition data (PE) to visitation data to give PI values

can produce an increase in network specialization.

The other metrics show less clear trends among the three

types of network. Interaction evenness varied little, though

slightly higher for the PE network (table 2). It is likely that

the PE network would have higher stability, as there is less

variation in pollen deposition than in visitation rate. Weighted

nestedness was lowest for the V network and highest for the PI

network. This follows the same trend as for H02 and suggests

that the PI network had potentially higher stability (although
given concerns regarding nestedness values for relatively

small network sizes, this issue should be treated with caution).

Visitor generality did not greatly differ among visitor groups,

which is unsurprising given the limited pool of plant species

that could be visited. Plant generality was higher in the PE

network than in the V and PI networks. Most visitors to a

particular plant species deposited similar amounts of pollen

per visit (table 1), whether they were frequent or infrequent

visitors, so that all contributed to this weighted metric. Both

plant and visitor generality were lower in the PI network

than in the V network, as the importance of visitors depositing

little pollen was reduced.

There were no significant differences in species-level

specialization d0 between V and PI networks for plants (t ¼
1.677, d.f.¼ 4, p ¼ 0.169) or visitors (t ¼ 0.433, d.f. ¼ 15, p ¼
0.671) (electronic supplementary material, S3). All visitors in

the V network showed fairly low specialization. Plant species

also had relatively low specialization levels, with C. vulgaris
and U. minor showing the highest d’ values of 0.370 and 0.372,

respectively, in the PI network. There were also no significant

differences in species strength between V and PI networks for

plants (t ¼ 0.001, d.f.¼ 4, p ¼ 0.999) or visitors (t ¼ 0.003,

d.f.¼ 15, p ¼ 0.997) (electronic supplementary material, S3).

C. vulgaris was the most important contributor to link weighting
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Figure 2. Bipartite networks illustrating (a) flower visitation, from stationary observations; (b) pollinator effectiveness of visitors (mean SVD); (c) pollinator impor-
tance of visitors, combining the data from (a) and (b). Key code, visitor group: 1, Bombus terrestris/lucorum; 2, Bombus pascuorum; 3, Bombus lapidarius; 4, Bombus
jonellus; 5, Bombus hortorum; 6, Apis mellifera; 7, Halictidae; 8, other solitary bees; 9, large hoverflies; 10, Episyrphus; 11, Eupeodes; 12, small hoverflies;
13, Muscidae; 14, ants (Lasius); 15, Lepidoptera; 16, soldier fly.
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with the visitor community, with the highest species strength in

the visitation network (4.830), while B. terrestris/lucorum contrib-

uted the most to PI link weightings, with the highest species

strength in the PI network (2.465).

Overall, incorporating information on PE into visitation

networks results in relatively more specialized interactions

and provides slightly more accurate measures of plant species

exclusivity, and of the contribution of visitor species to polli-

nation. These results proved to be robust against alterations

in visitor groupings (electronic supplementary material, S4).
4. Discussion
Measuring the difference between visitation and pollination

is a challenge for pollination ecologists. For the first time,
we report values for pollen deposition onto stigmas for

virtually all components of a plant–pollinator community

and demonstrate that such data enhance the quality of

flower visitor interaction studies by producing networks

giving a more accurate estimate of PI.

(a) Patterns of insect – flower interactions
The flowering plants in this low diversity heathland habitat

were visited by similar insect species to those recorded at

the same site by Forup et al. [40], dominated by Bombus
spp. and Apis. Although bees deposited the greatest mean

quantities of pollen grains on stigmas, deposition rates were

highly variable, resulting in no differences in effectiveness

between most visitor groups. For the three heather species

this was not surprising as they have small, easily accessed



Table 2. Network metrics for visitation, pollinator effectiveness (PE) and
pollinator importance (PI) networks.

metric

network type

visitation

pollinator
effectiveness
(SVD)

pollinator
importance

H02 0.305 0.341 0.365

interaction

evenness

0.663 0.780 0.643

weighted

nestedness

0.108 0.041 0.179

generality

visitors 3.764 3.195 3.561

plants 3.724 6.174 3.392

rspb.royalsocietypublishing.org
Proc.R.Soc.B

282:20151130

7

flowers with only moderately specialized morphology. Visi-

tation to the labiate keel flowers of both Ulex species is

clearly limited by floral morphology and trait complementar-

ity [57], translating into ‘forbidden links’ in the context of

networks [58]. Only insects able to push apart the flag and

keel petals will release the anthers, so flowers are almost

exclusively visited by large-bodied bees (table 1). As inap-

propriate visitors mostly avoid Ulex flowers there is often

little variation in pollen deposition by those that do visit.

Some visitor species to plants with more specialized floral

morphology may deposit no pollen onto stigmas, emphasizing

the visitor/pollinator distinction.

While bees appeared to be effective pollinators for all five

plant species, hoverflies always deposited relatively few

pollen grains on stigmas. Their relatively short tongues com-

pared with bees, combined with their habit of making little

bodily contact with anthers or stigma, mitigate against

pollen deposition in either heather or gorse, and their low vis-

itation rates further decreased their importance as pollinators.

They may be highly effective pollinators of more generalist

blooms such as rape flowers [59] or of specific ‘hoverfly

flowers’ (cf. [2]).

As predicted, visitors that robbed flowers were also poor

pollinators as they seldom contacted the anthers or stigmas of

flowers. We also found that pollen-collecting visitors depos-

ited more pollen on stigmas than nectar-collecting visitors

for plant species on which both pollen- and nectar-foragers

were recorded (C. vulgaris, E. cinerea and E. tetralix). Pollen-

collectors forage more actively among anthers, thus enabling

more pollen to accumulate on their bodies. Our findings,

therefore, match with other studies (e.g. [39]), although the

precise effect of foraging behaviour on pollen deposition

may vary with floral morphology (e.g. [60]).

Several visitor groups, including small hoverflies and

butterflies, visited flowers infrequently. Considering the visita-

tion data in isolation these insects could be interpreted as

providing a ‘back-up’ pollination service, as proposed [61]

and detected [40] in other studies. While a ‘back-up’ option

may often be useful for plants (especially, if there is temporal

variation in visitor numbers), taking SVD into account in

this study revealed that these infrequent visitors deposited
rather small amounts of pollen. This again demonstrates the

importance of considering pollen deposition data alongside

visitation studies.

(b) Comparing visitation and pollen deposition
networks

The type of data used in a flower visitor network affects net-

work structure and will thus influence interpretation of the

relationships among plants and pollinators in a given com-

munity. As we predicted, visitation networks potentially

underestimate the levels of specialization among plants and

their pollinators, although this needs confirmation for diverse

communities in a range of habitats. Crucially, our data

suggest that combining visitation data with SVD data as a

measure of functionality to create PI networks can subtly

change the network structure, increasing specialization,

decreasing the corresponding generality of plant species

and visitor groups, and providing potentially more accurate

measures of exclusivity for plant species and of species

strength for visitors. Previous studies that focused on visitor

behaviour (and thus probable effectiveness as pollinators)

also demonstrated that removing ineffective pollinators

affected network properties (e.g. [25]).

Our study considers a community with low plant

diversity, deliberately selected to test the hypothesis that

including data on PE would affect network structure, so

showing the feasibility of our approach. Construction of

comprehensive PE and PI networks for large, complex plant

communities would be more challenging. However, effects

of including SVD data could be even more pronounced in

such communities, with a greater range of floral morphologies

(and thus potentially higher variability in pollen deposition),

not least because PE and PI networks will more accurately

represent the likely role of each visitor as a pollinator.

For example, our SVD data support the visitation data in

showing the importance of Apis as a pollinator of C. vulgaris,

but Apis as a pollinator of E. tetralix from visitation

alone would be greatly overestimated as it deposited little

conspecific pollen on stigmas.

We recognize that incorporating SVD into interaction net-

works presents challenges. Firstly, it may not be possible to

accurately identify pollen to species; for example, our Erica
possessed similar pollen morphologies, and in habitats with

higher numbers of congeneric plants this problem could be

magnified. Secondly, not all plant species are self-compatible,

and there is no easy way to differentiate self- from non-self-

pollen. Emasculation of experimental flowers would prevent

any deposition of self-pollen, but risks altering visitor behav-

iour and time spent on flowers, especially for pollen-foragers.

Future SVD studies incorporating data on pollen tube growth

and self-compatibility will help to differentiate self- and

cross-pollen. Thirdly, while PI networks have the potential to

describe pollination interactions more accurately than visita-

tion networks alone, collecting data is more time-consuming.

Resultant smaller sample sizes could then limit opportunities

to split data reliably, for example, by time-slicing across the

day or flowering season, and could thus restrict the usefulness

of certain network metrics. Fourthly, the sampling method

could introduce subtle temporal biases, as SVD data can only

be collected for the first visitor to a virgin stigma; though

sequential unbagging through a day can limit this effect.

Finally, there is also potential bias due to the reward status of
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flowers at the time of unbagging. When experimental flowers

are exposed early in the day they will have rewards similar

to other newly opened flowers, whereas those uncovered

later may have retained higher reward levels, potentially

leading to greater attractiveness and longer visits relative to

non-experimental flowers (e.g. [62]). This could result in

diurnal variation in recorded SVD.

Despite these potential issues, we propose that infor-

mation gained from incorporating SVD data to create PE

and PI networks provides greater insight into the quality of

interactions between plants and their potential pollinators,

and brings the field of plant–pollinator networks much

closer to the construction of true pollination networks. SVD

measures both an animal’s ability to pick up pollen in pre-

vious visits to the same plant species (thus incorporating

the key aspect of visit constancy), and to accurately deposit

it in the only place where it can germinate and potentially

lead to fertilization. By using single visits, SVD largely

avoids problems of stigmatic overload or saturation, and

resultant pollen competition. Furthermore, it avoids the com-

plications that measurements of seed- or fruit-set bring,

where post-pollination factors may have major effects on

reproductive outcomes that are essentially unrelated to polli-

nation; though at a smaller scale, under more controlled

conditions, the methods could be accompanied by studies

of post-pollination processes, investigating resulting seed-

set. Ongoing construction of PE and PI networks for more

complex, species-rich communities will demonstrate the

feasibility of our approach for a wider range of visitors and

of floral morphologies.
(c) Conclusion
The choice of methods used to sample potential pollinators in

flower-visitation studies will depend on the questions being

asked. Where the main interest is visitation and resource collec-

tion from the perspective of flower visitors, SVD data add little

extra information. If the focus is on pollination and pollen trans-

port among conspecific flowers, SVD as a measure of PE gives

valuable insights from the perspective of the plant. The result-

ing more realistic PE and especially PI networks bring us a

step closer to understanding pollination at the community level.

While we have shown somewhat greater levels of special-

ization in our PE and PI networks, at least from the plant’s

perspective, we do not imply that extreme specialization is

common in plants, and all visitors to flowers should be con-

sidered as potential pollinators. Understanding how true

pollination networks are structured is crucial to understand-

ing community interactions and thus how to restore and

conserve pollination services in the face of pollinator decline.
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11. Bartomeus I, Vilà M, Santamarı́a L. 2008 Contrasting
effects of invasive plants in plant – pollinator
networks. Oecologia 155, 761 – 770. (doi:10.1007/
s00442-007-0946-1)

12. Memmott J, Waser NM, Price MV. 2004 Tolerance of
pollination networks to species extinctions.
Proc. R. Soc. Lond. B 271, 2605 – 2611. (doi:10.
1098/rspb.2004.2909)

13. Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB,
Caflisch A. 2010 The robustness of pollination
networks to the loss of species and interactions: a
quantitative approach incorporating pollinator
behaviour. Ecol. Lett. 13, 442 – 452. (doi:10.1111/j.
1461-0248.2009.01437.x)
14. Memmott J, Craze PG, Waser NM, Price MV. 2007
Global warming and the disruption of plant –
pollinator interactions. Ecol. Lett. 10, 710 – 717.
(doi:10.1111/j.1461-0248.2007.01061.x)

15. Willmer P. 2012 Pollinator – plant synchrony tested
by climate change. Curr. Biol. 22, R131 – R132.
(doi:10.1016/j.cub.2012.01.009)

16. Tylinanakis JM, Laliberté E, Nielsen A, Bascompte J.
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