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ABSTRACT ARTICLE HISTORY

The emergence of practical quantum computers poses a significant ~ Received 10 June 2016
threat to the most popular public key cryptographic schemes in  Accepted 17 August 2016
current use. While we know that the well-understood algorithms for KEYWORDS

factoring large composites and solving the discrete logarithm problem Post-quantum cryptography;
run at best in superpolynomial time on conventional computers, new, Shor’s algorithm; hidden
less well understood algorithms run in polynomial time on certain subset problem
quantum computer architectures. Many appear to be heralding this

next step in computing as ‘the end of public key encryption’. We argue

that this is not the case and that there are many fields of mathematics

that can be used for creating ‘quantum resistant’ cryptographic

schemes. We present a high-level review of the threat posed by

quantum computers, using RSA and Shor’s algorithm as an example

but we explain why we feel that the range of quantum algorithms that

pose a threat to public key encryption schemes is likely to be limited in

future. We discuss some of the other schemes that we believe could

form the basis for public key encryption schemes, some of which could

enter widespread use in the very near future, and indicate why some

are more likely to be adopted.

1. Emergence of public key encryption

One of the perennial problems with symmetric encryption has been establishing a
secure channel over which to pass the shared secret key. It has always been much
easier to compromise the transmission of the keys than to try to find some weakness in
the encryption algorithm. Military and other government organisations have put in place
elaborate methods of passing secret keys: they pass secrets more generally, so using
similar channels to pass an encryption key is not a great leap.

However, as the general public has become more connected, and especially with the
commercialisation of the Internet, encryption has become a requirement for the vast majority
of networked users. As a result the traditional methods of passing secret keys have become
impractical, if only because you might not actually know who you want to communicate with
in an encrypted fashion far enough in advance to securely transmit a shared key.
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As computers increasingly became networked in the 1970s, it was recognised that
encryption needed to be more accessible, so a great deal of work was done on
algorithms that could ensure that if a key had been passed over relatively insecure
channels, it was not compromised. Those most associated with the emergence of public
key encryption were Whifield Diffie and Martin Hellman, but they were not the only
ones: some were hidden as they operated inside organisations such as GCHQ [1].
However, it was when Diffie and Hellman published their seminal paper entitled ‘New
Directions in Cryptography’ [2] that, as far as the general public was concerned, public
key encryption was born. Diffie-Hellman key exchange still features today as part of the
protocol in some highly secure messaging applications [3].

When the implementation of the early public key encryption methods was compared to
symmetric-key encryption, it was found that public key encryption was significantly slower
and hence communication using public key encryption alone was, at the very least, going
to require far more processing power than would otherwise have been the case. But, the
original problem being studied was secure key transmission so why not use public key
encryption to securely transmit the secret key for a symmetric-key algorithm, and then use
the faster, more efficient symmetric-key encryption algorithm for the bulk of the commu-
nication. In essence, that is how most public key encryption works today.

The majority of public key encryption algorithms rely upon a mathematical function
that is easy to compute in one direction but computationally hard to reverse. One of the
earliest public key encryption schemes, RSA, named after Ron Rivest, Adi Shamir, and
Leonard Adleman [4], was based upon the mathematics of prime numbers. If one has a
number, n, that is derived from multiplying two prime numbers, and n is very large, it is
practically impossible to calculate what the two constituent prime numbers were
(known as factoring) within a time frame that would make the decrypted data useful.
To date RSA, and similar public key crypto schemes, have proven to be secure.

Of course, ‘secure’ is a relative word and there are many ways of recovering the
private element that was used to derive, for example, the n used in RSA. These do not
involve a direct attack on the RSA algorithm but instead, they use side channel attacks.
Research in the past two years that has been able to recover the private keys from the
two most popular public key cryptosystems (RSA and Elliptic Curve Digital Signature
Algorithm (ECDSA) [5]) in ways ranging from the electronic noise emitted by laptops [6],
through to attacks on shared cache memory in virtual machines using the same physical
infrastructure [7].

However, there is now an emerging threat that does attack the public key algorithms
directly: quantum computers.

2. Breaking RSA

An example of how quantum computers will impact current public key encryption
schemes is exemplified by studying how the RSA algorithm is at risk.

2.1. Factoring algorithms

Breaking the RSA [4] encryption scheme can be done on conventional computers
through factoring. There are several algorithms known. The ways in which RSA might
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be attacked are well studied and 20 years ago the attacks were well catalogued [8]. The
intervening years has seen new forms of attack reported [9] but the problem is always
the efficiency with which we can implement these factoring algorithms on conventional
computers.

To understand how RSA can be attacked you need only know how the keys for the
RSA algorithm are generated, i.e.

(1) Choose two distinct prime numbers p and g

(2) Compute n=p.q

(3) Compute ¢(n) = d(p)¢p(q) = (p — 1)(q — 1), which is known as Euler's Totient.
This value is kept private

(4) Choose an integer e such that 1 < e < ¢(n) and the greatest common divisor of
e@(n)is 1

(5) Determine d.e=1mod ¢(n)

The public key consists of the modulus n and the encryption exponent e. The private key
consists of the modulus n and the decryption exponent d.
Typically attacks on RSA employ one of three approaches:

(1) Factor nand hence compute ¢(n) and thence d; or
(2) Determine ¢(n) directly (without factoring) and thence d; or
(3) Determine d directly.

Current opinion suggests (although we are not aware of any formal proofs) that each is
as computationally difficult as the other. However, it is factoring that has the greatest
number of algorithms, as they have evolved over the history of the underlying mathe-
matics not just use of composites in cryptography.

The factoring algorithms generally considered when factoring a large composite
number, n, on a conventional computer are:

(1) Fermat’s difference of squares.

Euler’s factoring method where Euler extended Fermat's method.

Kaitchik’'s method: as late as 1945 Kraitchik revisited Fermat's approach and found
a further representation where the difference of squares was a multiple of n,
allowing further sieving of results. It is the basis of the quadratic sieve.

Pollard’s P-1 method.

Pollard’s rho method: published just one year after his P-1 method.

Quadratic Sieve: this was developed in the 1980s.

—_
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The General Number Field Sieve is the fastest factoring algorithm we currently have on
conventional computers. It relies upon choosing polynomials that have a common root
related to n. The efficiency of the algorithm depends very much on the choice of
polynomials and there is no known method for optimally making this choice. Hence, it
is not always reliable.

Although the basic mathematics has been studied for hundreds of years, and despite
our modern computing power, RSA has so far resisted all published attacks for keys of the
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size used in modern implementations. Research continues to be published on improved
algorithms for factoring composites by considering the fundamental mathematics (for
example, [10]) but there is little expectation that it will lead to a fundamental break-
through in attacking RSA.

2.2. Quantum computing

In the computers with which we are familiar, processing is done using bits. A bit has two
possible values: 0 and 1. A quantum computer uses qubits, a term introduced by
Stephen Weisner when he proposed quantum money [11]. When measured, a qubit
also has the values 0 or 1, but during computation a qubit is both 0 and 1 simulta-
neously. In quantum physics this is called ‘superposition’ [12]. So, if you have two qubits,
you can have four possible states, three qubits gives eight possible states; and all
simultaneously. In a bit-based computer you have the same number of possible states
but only one exists at any one time. It is the fact that these states, |0) and |1), can exist
simultaneously in a quantum computer, which is both counter-intuitive and extraordi-
narily powerful.

Qubits are manipulated using quantum logic gates in the same way that conventional
computation is done by manipulating bits using logic gates. In essence, you can apply a
computation to all possible values of the qubits simultaneously, thereby increasing the
amount of computation you can undertake in any given time over that you could
otherwise do in a conventional computer [13].

The algorithms developed over many years for conventional computers have been
optimised for conventional architecture, and different algorithms are needed to run on a
quantum computer. Hence, trying to compare speeds of conventional and quantum
computers can be spurious. It is important to note that quantum computers do not offer
a universal speed advantage over conventional computers. When researchers talk of
‘quantum parallelism’ it does not apply to all algorithms. In the case of factoring large
composites, for example, the algorithm must be tailored to achieve the required speed up.

It is noteworthy that since the development of early quantum algorithms there has
not been a large array of new algorithms as was expected. Shor himself commented on
this point when he wrote [14] that quantum algorithms appear to fall into one of three
classes: those that we now consider part of the Hidden Subgroup Problem (HSP) [15]
[16], Search algorithms such as Grover's algorithm [17], and the original quantum
systems simulations, which were the original motivation for Feynman’s suggestion for
a quantum computer.

The US National Institute of Standards and Technology (NIST) maintains a catalogue
of known quantum algorithms (known as the Quantum Algorithm Zoo) [18]. This
currently contains 57 different algorithms. However, even this could be considered an
overestimate as the majority of the algorithms are a specific application of one of the
classes suggested by Shor, with the possible addition of another class: solving linear
equations. Of the 57 algorithms listed in the Quantum Algorithm Zoo, only 27 provide
superpolynomial speedup, and these in turn rely upon a very small number of primitives
such as the Quantum Fourier Transform (QFT).

Researchers have also suggested that the list of quantum algorithms should have
another class called Quantum Walks [19]. This newest category would incorporate
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quantum algorithms that are the analogues of conventional algorithms based upon
random walks and Markov chains.

Markov chains and random walks have proven to be very powerful tools in speeding
up algorithms on conventional computers. However, whether the analogue will extend
to quantum computers is still an open question. In any event, it is unlikely that quantum
algorithms derived from such an approach would demonstrate the superpolynomial
speedup seen in the quantum algorithms derived from solving variants of the HSP.

It appears that whilst the quantum algorithms derived from solving HSP pose a
known threat, Grover’s algorithm is the only other quantum class that could pose a
threat to public key encryption. And, where Grover's algorithm has been proven to pose
a threat to a particular scheme, it does not offer the same magnitude of speed-up seen
in the solutions to the HSP.

Given the history of quantum algorithm development, it appears highly unlikely that
any new class of quantum algorithm is likely to emerge. Thus, the basic test for whether
or not an encryption scheme is quantum proof is most likely to remain how it resists
algorithms from within the HSP.

2.3. Factoring using a quantum computer

One of the earliest algorithms developed for quantum computing was Peter Shor's 1994
algorithm [20]. It was designed to factor composite numbers into their prime number
components using Euler's method. However, Shor recognised that part of Euler’s
method (determining the period of the function) could be computed using a version
of the fast Fourier transform modified to take advantage of quantum parallelism.

For those seeking a detailed explanation of Shor’s algorithm and how it achieves the
quantum speed up, we have included this at Appendices 1 and 2. We describe Shor’s
algorithm using the Phase Estimation Algorithm as an Order Finding Algorithm, which is
a specific instance of the HSP. Appendix 3 shows how the subgroup problem leads not
just to an Order Finding Algorithm but also to quantum algorithms for Period Finding
and Discrete Logarithms, which are the basis for quantum attacks on elliptic curve
cryptography and finite field cryptography.

Shor’s algorithm runs on a quantum computer in polynomial time as opposed the
General Number Field Sieve running on a conventional computer, which runs in super-
polynomial time [21]. Even with the largest values of n in use today in RSA, this means it
would be feasible to decrypt messages in meaningful timescale using Shor's algorithm
on a quantum computer.

2.4. Practical considerations

Current implementations of quantum computers require large, expensive infrastruc-
ture for supercooling and electromagnetic shielding, and even then we have been
able to assemble only a handful of qubits in a single processor. However, the history
of computing shows that although conventional computers began by requiring
similar infrastructure, size soon shrank dramatically and the environmental require-
ments for today’s machines allow for domestic operation. The pattern can already be
seen with a company in Canada, D-Wave Systems Inc. [22], which offers access to a
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form of quantum-based computing. The D-Wave system appears just as mainframe
computing did 20 years ago but if it follows the same trajectory as conventional
computing, routine operation of quantum computers will be in routine, widespread
use before 2030.

However, D-Wave's version of a quantum computer uses adiabatic quantum comput-
ing, [23] which does not support Shor’s algorithm [24].

Despite the engineering difficulties encountered in building a quantum computer,
work continues on improving how gate-based quantum computers (the architecture
required for Shor’s algorithm), might better be used to factor large composites. Work
published earlier in 2016 [25] has shown for the first time that quantum computers
could be used to factor large prime composites using Shor's algorithm, with 99%
confidence, which is a major improvement on previous work. And, even though the
number factored is only 15, most thought it would take 12 qubits to run the algorithm
successfully, but the same researchers ran Shor’s algorithm using only five qubits. These
five qubits were only five atoms in an ion trap.

Not only have they shown in [25] that fewer qubits than previously thought can be
used, the architecture suggested by their experiment is scalable. That means that,
provided researchers can keep the atoms stable in the ion trap, they could expand
the size of the numbers being factored. The team at Innsbruck who have been building
the equipment have shown particular expertise in achieving just such a scaling of these
ion traps. Hence, whilst many believe it will take decades to achieve a scalable quantum
computer, this recent work suggests that running Shor’s algorithm on a quantum
computer will be achieved in the foreseeable future.

The demonstration reported in [25] is believed by some researchers not to support
the necessary steps (see Appendix 2) of Continued Fraction Expansion, and Quantum
Modular Exponential, in Shor’s algorithm [26]. This suggests that it may not be a true
implementation of Shor’s algorithm. Such doubt demonstrates the difficulties of com-
paring various implementations of quantum algorithms.

Improvements in the technology used to implement quantum computers, and the
efficiency of algorithms that attack the most popular public key encryption schemes, will
converge within a very few years. In the foreseeable future we will have programmable,
relatively inexpensive quantum computers capable of running more than just Shor’s
algorithm; the threat to current public key encryption appears high.

Gartner showed in their 2015 Hype Cycle that it will be more than 10 years away [27]
and yet IBM, which is the only organisation to have a functioning five-qubit processor
available for general use, suggest they will have a 100 qubit based system by 2020 [28].
Also, a large amount of money is being invested in quantum technologies by govern-
ments. For example, the UK government announced in 2015 that it would invest £270
million in the field [29].

The facts indicate that a quantum computer capable of threatening public key
encryption systems will exist by 2025. The fact that quantum computers, when they
emerge, will not be universally available affects the threat model posed by these
devices. Whilst governments might be the first to operate viable quantum computers,
the way in which D-Wave and IBM have introduced their systems shows that access to
quantum computing may not be restricted only to government agencies. Shared system
will emerge rapidly once viable quantum computers can be reliably produced.
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Table 1. NIST impact analysis of quantum computing on encryption schemes [31].
Impact from large-scale quantum

Cryptographic algorithm Type Purpose computer

AES-256 Symmetric key Encryption Larger key sizes needed

SHA-256, SHA-3 Hash functions Larger key sizes needed

RSA Public key Signatures, key No longer secure

establishment

ECDSA, ECHD (Elliptic Curve Public key Signatures, key No longer secure
Cryptography) establishment

DSA (Finite Field Cryptography)  Public key Signatures, key No longer secure

establishment

2.5. Public key encryption schemes affected

RSA is only one of the public key encryption schemes in use today. However, following
his factoring algorithm, Shor quickly developed a quantum algorithm for solving the
discrete logarithm problem [30], and in so doing showed that quantum computers pose
a similar risk to other popular public key encryption schemes. Further quantum algo-
rithms derived from the HSP have shown that there are algorithms that pose a threat to
all current popular public key encryption schemes (see Appendix 3).

A recent report from the NIST [31] contained a table (Table 1) that indicates quantum
computer will be the end for current public key encryption.

Importantly, the NIST review shows that if the key lengths are sufficient, symmetric
key encryption (specifically the Advanced Encryption Standard AES) is quantum resis-
tant. Although Grover’s algorithm poses a threat to some symmetric key schemes, most
analysis indicates that simply doubling the key length will be sufficient protection. Thus
it is the key exchange element of public key encryption that is under threat.

As the symmetric encryption schemes remain quantum resistant, it has been suggested
that using Kerberos for key management may be an immediate answer to the threat
posed by quantum computers. It is already in widespread use and could be deployed
publicly if a suitable post-quantum public key system is not found [32]. However, several
factors militate against Kerberos being used as a truly public key exchange mechanism:

(1) Kerberos would need to be integrated into web services;

(2) Open source implementations, with a royalty free license, would be required;

(3) Service providers would need to adopt a common federation, certification and
auditing standard;

(4) Binding agreements with service providers would be required to engender trust.

Hence, most believe that a post-quantum asymmetric candidate needs to be developed.

3. Post-quantum public key candidates
3.1. Quantum key distribution

Many years before Shor developed his algorithm, there was a method, also based upon
quantum principles, which many believe is the answer to the risk posed by quantum
computers. The method is Quantum Key Distribution (QKD).
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QKD first appeared in 1984 when Bennett and Brassard developed their BB84 proto-
col [33], although it was not until 1992 that it was reliably demonstrated experimentally
[34]. It relies upon the fact that photons can be polarised to form qubits but that the
polarisation that represents the basis states |0 |1, can be alternated between two pairs of
polarisations. If anyone attempts to intercept a polarised photon, it will affect the
polarisation and make it impossible to consistently recover the key that is encoded in
the stream of qubits [35] [36].

Since the BB84 protocol, other protocols have been developed, most notably that by
Ekert in 1991, which uses entangled pairs of photons [37]. However, all fundamentally
rely upon the principle that interception disturbs the quantum state.

QKD is unlikely to be a universal answer to the risk posed by quantum computers for
three reasons:

(1) The security relies upon quantum mechanical principles and only recently has
work been publicly reported on developing formal proof that QKD is semantically
secure; [38]

(2) QKD requires an expensive infrastructure;

(3) QKD can operate over relatively short distances: the longest to date being
approximately 150 km although some reports suggest over 300 km has now
been achieved [39].

Cryptographers will provide further proofs of the semantic security of QKD, and the
engineering challenges associated with using QKD at range will be accommodated. In
2016 architectures are already being suggested for an extensive ‘quantum network’ [40].
However, all such architectures rely upon repeaters which, from a security perspective,
will always be weak points thereby undermining the original end-to-end security that
attracted many to QKD.

Assuming such large-scale networks could be implemented and proven secure, they
will always be based upon a physical infrastructure for which costs scale with size.
Hence, whilst it might be appropriate for portions of the backbone of a large network,
it is unlikely to be suitable for multiple end point security.

The principles behind QKD was showing advantages over other post-quantum can-
didates in Unconditional Secure Signature (USS) schemes. This was because it made
fewer assumptions than conventional USS schemes, and particularly did not have the
same reliance on trusted third parties. However, recently a USS scheme was proposed
[41] that does not rely upon a quantum distribution scheme (QDS), makes the same
limited assumptions as QDS and has the added advantages that it requires fewer secret
bits to be shared whilst generating a shorter signature.

3.2. Mathematically based solutions

There is a range of alternative mathematical problems to those used in RSA and ECDSA
that have already been implemented as public key cryptographic schemes, and for
which the HSP does not apply. That is, they appear to be quantum resistant. These
implementations include:
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(1) Buchmann-Williams Key Establishment [42]

(2) The NTRU Cryptosystem [43]

(3) The Goldreich-Goldwasser-Halevi Cryptosystem [44]
(4) The Ajtai-Dwork Cryptosystem [45]

(5) The McEliece Cryptosystem [46]

Early analysis of the levels of quantum resistance of these crypto schemes [47] dismissed
the Buchmann-Williams scheme as a post-quantum candidate. Although the scheme was
based upon a mathematical problem (Pell's equation) for which the solution is exponen-
tially slower than the best known factoring algorithms, it is susceptible to a quantum-based
attack. It serves as a good example of why simply changing the mathematical problem
upon which a scheme is based does not necessarily make it quantum resistant.

The ideal candidate would be not only quantum resistant but would also:

(1) Be based upon a mathematical problem that is NP-hard to solve on conventional
computers, that is, something that replaces the one-way functions that underlie
the current popular public key encryption systems such as RSA;

(2) Be efficient to implement, requiring minimal computing power without compro-
mising the difficulty in solving the underlying mathematical problem;

(3) Generate a small public key for ease of storage and transmission amongst multi-
ple parties;

(4) Enable perfect forward secrecy.

The mathematical problems that are most actively being investigated are
(1) Lattice-based cryptography

(2) Multivariate-based cryptography

(3) Hash-based signatures

(4) Code-based cryptography

(5) Supersingular elliptic curves-based cryptography.

The existing alternatives, and new schemes emerging, from these areas of mathematics,
do not all necessarily satisfy the characteristics of an ideal scheme.

3.2.1. Lattice-based cryptography
The Ajtai-Dwork (AD), Goldreich-Goldwasser-Halevi (GGH) and NTRU encryption
schemes mentioned above are lattice based.

The AD system has the drawback that the pubic key is large and it causes message
expansion. Also, traditional cryptanalysis has shown any practical implementation of AD
is not sufficiently secure [48]. Hence, unless further work improves these aspects it is
unlikely that the AD system is a realistic candidate.

The GGH scheme is more efficient than the AD system but cryptanalysis indicates that
although it is based upon the Closest Vector Problem (CVP) in a lattice, which is known to
be NP-hard, decryption can be reduced to solving CVP instances that are much easier than
the general problem [49]. Such concerns militate against it being a practical candidate.
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NTRU has no known feasible attack despite many years of research attempting to
develop one. There is also a related but newer NTRU signature based and BLISS [50]
scheme. Researchers have found sub-exponential time attacks on NTRU-like schemes
but they are still not practical attacks. The most effective attack to date is a hybrid
attack [51].

The project sponsored by the European Commission to study post-quantum candi-
dates [52] suggested that the Stehle-Steinfeld variant of NTRU be considered for
standardisation rather than the patented NTRU algorithm [53] [54]. However, several
of the NTRU algorithm patents are due to expire in 2017 [55], so the patents alone will
no longer be an issue.

The security of the NTRU encryption scheme and the BLISS signature is believed to
depend on the CVP. However, we are not aware that the security of NTRU and BLISS is
provably reducible to the CVP.

Implementations of lattice encryption may not be subject to attacks using Shor's algo-
rithm, but Grover's quantum algorithm [17] might still pose a threat. For example, if you
consider the BLISS Ring-LWE (Learning with Errors) Signature Scheme [56], Grover’'s algo-
rithm can be used to mount an attack against the random oracle element of the scheme.
The original implementation used an oracle that is not collision resistant. Hence conducting
a preimage search would be a suitable form of attack, and preimage searches (using, say,
Grover’s algorithm) are where quantum computers do provide dramatic speed advantages.

It is noteworthy that the D-Wave quantum computer does run Grover’s algorithm. It is
this very ability to improve searching large datasets that prompted Google to buy one of
these systems and with which they are already producing results that they claim are 100
million times faster than conventional computers [57].

Other concerns about lattice-based encryption emerged when it was shown that the
Soliloquy lattice-based scheme developed by CESG [58] was vulnerable to a quantum
algorithm from those based on solving the Abelian Hidden Subgroup Problems. The
authors concluded in their paper that their finding indicated that this quantum algorithms
posed a wider threat than had ‘traditionally’ been documented. That appears to be an
oversimplification for the reasons given in the dialogue that was posted to the crypto-
graphic algorithms mailing list, entitled ‘What does GCHQ's ‘cautionary tale’ mean for
lattice cryptography?’ The key points were made in the following extracted points [59]:

(1) ‘Lattice-based’ cryptosystems are not based on ‘lattices’ per se, but rather on
certain computational problems on lattices. There are many kinds of lattice pro-
blems, not all of which appear to be equally hard - therefore, not all lattice-based
cryptosystems offer the same qualitative level of security. For ideal lattices, the
choice of problem matters at least as much as the choice of ring.

(2) Soliloquy is not representative of modern ideal/lattice-based cryptography. In
contrast to the vast majority of works in the area, Soliloquy does not come with
any meaningful security proofs/reductions. Moreover, it relies on a more specia-
lised — and hence potentially easier to break - lattice problem.

(3) The GCHQ attack works because Soliloquy unexpectedly turns out to rely on
‘weak ideals’ that can be broken more efficiently than general ideals. There is a
direct link between the lack of security reduction and this unforeseen reliance on
weak ideals.
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(4) The GCHQ attack does not affect the vast majority of ideal-lattice-based crypto-
systems. In particular, it does not work against any system that has a ‘worst-case’
security proof via the Ring—LWE or Ring-SIS problems.

(5) This state of affairs underscores the importance of worst-case security proofs in
ideal/lattice-based cryptography. Among other advantages, such proofs ensure
that a cryptosystem does not have any unexpected reliance on ‘weak’
instances.

Other lattice based schemes are rapidly developing such as LWE and Ring-LWE. The use
of ideal lattices combined with LWE is currently producing significant results [60] [61].
Since 2014 we have seen this mature into a ciphersuite for TLS [62] and further modified
to form the New Hope scheme [63], which notably has been chosen by Google as their
experimental implementation for the Chrome browser.

The lower bound on the security of these Ring-LWE schemes reduces to the Shortest
Vector Problem (SVP), which is known also to be NP-hard [61].

Recently published, tight security analysis of NTRU indicates that it is theoretically
weaker than Ring-LWE, although this does not translate into a practical attack. However,
the researchers concluded that the effort in transforming an NTRU scheme to a Ring-
LWE-based system is small enough for key exchange mechanisms as to be worth
doing [64].

3.2.2. Multivariate-based cryptography

This relies upon the difficulty of solving systems of multivariate equations. Many
attempts to build encryption schemes based on this principle have failed. However,
the Rainbow scheme does show promise as a quantum resistant signature scheme, but a
patent has been filed [65].

The Rainbow Multivariate Equation Signature Scheme is a member of a class of
multivariate quadratic equation cryptosystems called Unbalanced Oil and Vinegar
(UOV) Cryptosystems which has been shown to reduce to a generic multivariate quad-
ratic UOV systems [66]. We know that the Multivariate Quadratic Equation Solving
problem is NP-hard but the public key is relatively large, although it is still an order of
magnitude less than that for the McEliece Goppa code based scheme.

3.2.3. Hash-based signatures

Hash-based signature schemes were introduced around the same time as RSA and
have been studied as a possible alternative to schemes that rely upon number
theory. The most widely studied are Lamport signatures and the Merkle signature
scheme.

There is a proof that the Merkle Hash Tree signatures reduce to the security of the
underlying hash function, [67] which is a reason why the EU project recommended it as
a quantum resistant candidate.

Until interest was renewed because of their possible quantum resistance, these
schemes had been dismissed due to the limitations on the number of signatures that
can be created from any one private key. This has not changed and so is likely to impede
its widespread adoption.
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3.2.4. Code-based cryptography
This relies upon error-correcting codes. It includes the McEliece scheme as well as the
variants Niederriter encryption scheme and Courtois, Finiasz and Sendrier signature schemes.

The original method McEliece developed in the 1970s relied upon random Goppa
codes. No fundamental flaw has been found since it was first developed. The McEliece
Encryption System depends upon the Syndrome Decoding Problem (SDP) [68] which we
know is NP-hard [69].

The most effective attacks on McEliece are the information-set decoding algorithms. It
has been suggested that Grover's algorithm may been a means of conducting such
attacks [70]. However, the claims for the speed-up were shown to be based upon
incorrect assumptions about Grover's algorithm [71] and the speed-up was not signifi-
cant enough to pose a serious threat. Hence, the McEliece scheme is currently consid-
ered quantum resistant.

The main disadvantage of the McEliece scheme is the length of the public key.
Whereas other post-quantum candidates have public keys as low as 1 kB in size, the
public key for McEliece, when based on Goppa codes, is approximately 1 MB. There have
been alternative codes suggested in order to reduce this issue but concerns have been
raised about the security of these alternatives. It remains an area of active research and it
may yet produce a candidate that is as robust as the original Goppa code based scheme
whilst being efficient to implement.

3.2.5. Supersingular elliptic curve isogeny cryptography

This cryptographic system relies on the properties of supersingular elliptic curves and
the difficulty of constructing an isogeny between two such curves with the same
number of points. The idea of applying this problem for cryptographic purposes was
first considered in 1999 [72] and the early cryptographic primitives published have so far
remained unbroken.

The technique is attractive as it works in a similar way to existing Diffie-Hellman
implementations [73]. However, we are unaware of any security reduction of this
scheme to a known NP-hard problem. There is a fundamental assumption made about
the equivalence of how hard it is to solve the Computational Supersingular Isogeny
(CSSI) problem, the Supersingular Computational Diffie-Hellman (SSCDH) problem, and
the Supersingular Decision Diffie-Hellman (SSDDH) problem, and a conjecture that these
problems cannot be solved in polynomial time [74].

4. Conclusion

Gate-based quantum computers do pose a significant threat to the public key encryp-
tion schemes most widely used today via, for example, Shor’s algorithm, even though
quantum computers do not offer a generalised speed up in computing all algorithms.
The threat is likely to move from the theoretical to the practical within the next 10 years.

It is unlikely that QKD will be a complete answer to the threat, primarily because of
cost and scale. However, there are a number of alternatives, some of which have already
begun experimental deployment. Whilst some of these alternatives may prove vulner-
able to quantum attack using an algorithm derived from one of the existing classes of
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quantum algorithm, there is nothing to suggest that a new class of quantum algorithm
will be discovered that might pose a threat.

Of the existing post-quantum candidates the most likely to succeed are the lattice-
based cryptography schemes, specifically the Ring-LWE schemes, which appear to have
some advantages over the older NTRU schemes.

The development of gate-based quantum computers will not be the end of public key
encryption, but the open question remains as to whether a truly quantum resistant system,
that is cost effective at scale, will be in widespread use before the threat is in operation.
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Appendices

Appendix 1. Shor’s Algorithm Explained

In 1760, Euler showed that if n is the product of two primes p & g then for x' mod n,x?> mod n,
x3 mod n, x* mod n, ... (provided x is not divisible by p or g) the sequence repeats with some
period that evenly divides (p - 1)(g - 1), that is, F(a) = x"mod n is a periodic function with period,
r where x is an integer coprime to n,and a is an integer < n.

We know from number theory that

x'=1 mod n, (1)
2

%) (x’/2> =x"=1 mod n )
2

(x’/2> —1=0mod n 3)

If r is an even number then (x/2 —1)(x/2 4+ 1)= 0 mod n
that is, (x/2 — 1) (x/2 + 1)is an integer multiple of n

If x"/2 #1, then at least one of (x/2 — 1) or (x"/2 + 1) must have a nontrivial factor in common
with n.

Thus by computing ged((x/2 — 1), n) and ged((x"/? + 1), n), we will obtain a factor of n.

So the algorithm for factoring is:

Choose x randomly
xef{2,..,n—1} 1 i
!

Is x coprime of n?
d=gcd(x,n)

No l
d=1?

1 Yes
Find period r of function

x%mod n
a={0,1,2,3..}=N

A4

No
Is T even? >

Yes

A 4

-
d =max {gcd(xr/2 —1,n),ged(xZ + 1, n)}

d=¢17 Yes |
l No

Outputd =porq

A 4

Figure 1. Factoring algorithm.
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For a small composite this algorithm can be computed manually to see how it operates. For
example, the trivial case of factoring 15 would be as follows using the above:

(1) Pick a coprime - for 15 the obvious number is 11. Now raise 11 to increasing powers (1,2,3...)
modulo 15, i.e. compute x?=1mod n:
(a) Divide 11 by 15 to get 0 with a remainder of 11
(b) Divide 121 by 15 to get 8 with a remainder of 1
(c) Divide 1331 by 15, to get 88 with a remainder of 11

(2) Proceed this way, raising 11 to higher powers: the remainder when we divide by 15 alternates
between 11 or 1

(3) Hence, the period of 11 with respect to being divided by 15 is 2

(4) Now, raise 11 to the power given by its period, which is 2, the answer is 121 and now take the
square root to get 11, i.e. compute x'/?

(5) Add 1 to 11 and subtract 1 from 11 to get a pair of numbers: 10 and 12, i.e. compute (x/2 — 1)
and (x/2+1)

(6) Find the greatest common denominator of 10 and 15 and 12 and 15. The former is 5 and the
latter is 3, which we know are the prime numbers that compose 15.

The problem is that as n increases it becomes increasingly difficult to determine the period
rof the function F(a). Whilst the Fourier transform runs in conventional computers using highly
efficient fast Fourier transform implementations, it is still impractical to run this algorithm on a
conventional computer when n exceeds relatively small numbers.

Shor devised a quantum computing algorithm for determining the period. This is the only part
of this algorithm that requires a quantum computer, and it is because of this one stage that we
obtain the quantum speed up over a conventional computer.

At the heart of Shor's quantum period finding method is the quantum Phase Estimation
Algorithm. This relies upon the fact that for a unitary operator U with eigenvector |u) with
eigenvalue e you can determine ¢.

To do this two quantum registers are created. The first register has t qubits in initial state |0).
The second register begins in state |u)

The first step is to apply a Hadamard transform to first register and the operator U to the
second register, with U raised to successive powers of 2.

The first register becomes

1

57 <|O> I e2rri2”1qa|—|>> (|0> i e2ni2"ztp|1>> . <|0> 4 e2ni2°(p|1>)7 @)

which equals

201

1 ;
ﬁ kz e2n/(pk|k>. (5)
=0

If we apply the inverse quantum Fourier transform and read out the state of the first register, we
find a value = ¢.

As a quantum gate circuit the Phase Estimation Algorithm could be considered as shown in
Figure 2.

W —— U HU? - -

Figure 2. A possible quantum circuit for phase estimation algorithm.
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In Shor's algorithm, we begin by creating initial conditions in a two register quantum
computer:

(1) t=2L+1+log(2+1) qubits initialised to |0) as register 1,
(2) L qubits initialised to |1) as register 2.

Next we put the registers into superposition, which creates the following state:
— =2 - ©6)
N
We then employ a unitary function such that
Uen : iKY — L)Xk mod n), 7

where x is co-prime to the L-bit number n. This creates the state

1 2 '
— —= > _ ¥ mod n), ®)
23
which approximates to
1 r—1 211 -
~ e2ﬂl5j/r U) ‘U5> . (9)
25 i

Which means that by applying the inverse Fourier transform, we effectively create this state:

IR
= 2B/ (10
s=0
By measuring the values in first register we will obtain:

—3/r (1)

where s is equally likely to be any of the possible values of s. However, by using the continued
fractions algorithm you can determine r.
The remainder of the algorithm can now be determined using a conventional computer.

Appendix 2. Continued Fractions Algorithm

The Phase Estimation Algorithm produces only ¢ ~ s/r, which we know to 2L + 1 bits. However,
we also know that it is a rational number as it is the ratio of two bounded integers. By computing
the nearest fraction to ¢ we can obtain r.

Every possible rational number ¢ can be written as an expression of the form:

1
E=ay+—
1 )
a1+a+ T
a1

aN

(12)

where apa;...ay is a non-negative integer and ay > 1. For simplicity we write this as

[ao,ay,- - -, an]. Assuming ¢ is rational then the following recurrence relation always terminates:
_1
= ni1 =
{ o =¢ ,and if £&,#0, then i ] /f” (13)
So=&—ao §ni1 =g — dni

The n-th convergent (0 < n < N) of this continued fraction is defined as the rational number &,
given by [007 ai,- - 7an]'
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Sn

Each convergent can be written in the form ¢&, =2, where gcd(sp,rm) =1, and s,,r, are

determined by the recurrence relation:

So = do,S1 = d1do + 1,8, = AnSp—1 + Sn—2,

ro=1,r =ay,fh = Aanprn_1 + _2. (14)

Suppose s/r is a rational number such that
S| < =. (15)

Then s/r is a convergent of the continued fraction for ¢. Thus it can be computed in O(L®) using
the continued fraction algorithm.
Since ¢ is an approximation of s/r accurate to 2L + 1 bits, it follows that

s 1
‘; — <p‘ <2741 < 37 because r < n < 2. (16)

Hence, we can be sure that the continued fractions algorithm produces
s’ and r’ with no common factors such that i—:f We can check if r' is the correct order by
ensuring X"mod n = 1.

Appendix 3. Hidden Subgroup Problem

If a group G is finite and Abelian, we can use the quantum Fourier transform to create a superposition
over the group elements to which we can also apply a quantum black box function f to give

lg)If (17)
vl
We can rewrite |f(g)) using the Fourier basis:

6|1

eZmIg/\G\ f (18)
(9)) \/IE Z If(1

where e~2"9/16l represents g € G indexed by I. However, this can be simplified if f is constant and
distinct on cosets of K (a subgroup of G):

Z —2mlg/\G\‘f (19)
V |G geG

which has nearly zero amplitude for all values of / other than where

Ze72nilh/\6\ _ ‘K| (20)

heK

By determining / we can determine the elements of K, which being Abelian enables the generation
of a set for the whole hidden subgroup. This does rely upon using the continued fraction
expansion algorithm, which is possible only where in determining / from //|G| there is a high
probability that there are no common factors.

However, finite Abelian groups are isomorphic to a product of cyclic groups of prime order
power, i.e.

G="12Zp, X ZLp, X -+ X Lp,, 21

where p; are primes and Zy; is the group over integers {0, 1, -- -, p; — 1} with addition modulo p;.
Thus we can express the phase in Equation (18) as
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(X004 = (51— T+ X Jrepg = (X104 L=p'z73{p} VAEKNICEN) (4 pow) + 7 x 'z, wypebo) 212510
(X)f = (1 +X)40 = (x)5 L=p'z3Kp} 93 - uz's'0} +Z BuIpuy-19pIO

()= (+x4 195 auuy Auy DERSRAN); +7 Buipuy-poniad

4 X bl D) wyiobyy
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e2milg/16] — lM—IEZHI/fg,/p;’ 22)
i=1

where g; € Z,. The phase estimation algorithm now gives us I;- from which we can determine .

By using the following for G, K along with a defined set X and function f, we see that the
Hidden Subgroup Problem is the basis of the algorithms indicated, which are used as the basis for
the quantum attacks on RSA, elliptic curve cryptography and DSA:

The importance of the Abelian Hidden Subset Group as a standard model is further illustrated
by noting that the quantum attack on the Buchmann-Williams scheme mentioned in Section 3 is
also a solution to the hidden subgroup problem: where G is the reals R.
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