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ABSTRACT 

This paper presents a study of the influence of the geotextile encasement on the behaviour 

of soft soils improved with fully penetrating encased columns. This influence is analyzed 

by means of measuring soil-column stress distribution, pore pressures and soil 

deformation during the consolidation process. For this purpose, a horizontal slice of a 

representative "unit cell” has been analysed by means of small-scale laboratory tests. The 

tests were carried out in a large instrumented Rowe-Barden oedometric cell. Results 

showed that the vertical stress supported by encased columns is about 1.7 times that 

sustained by the non-encased ones. The stress concentration factor for encased columns 

is between 11 and 25, which is clearly higher than that obtained in tests with non-encased 

columns, which are between 3 and 6. Finally, the improvement in relation to settlements 

is presented by the ratio of settlement in soils reinforced with ordinary or encased columns 

and the settlement of non-treated soft soil. This settlement reduction factor is around 0.6 

when the soil is treated with encased columns and 0.8 for soil with non-encased columns. 

 

KEYWORDS: Geosynthetics, small-scale test, soft soil, settlement reduction, stress 

concentration factor, encased-columns. 

Introduction 

Encased stone columns are widely employed in very soft soils (su<15kPa) to improve 

bearing capacity, to reduce settlements and to increase the speed of consolidation. 

Columns act as relatively rigid and permeable inclusions in the soft soil allowing for the 

reduction of settlements, the increase of bearing capacity, and the reduction of time 

needed for consolidation. The effectiveness of its performance is mainly based on the 

soil-column load distribution, which largely depends on the lateral support provided by 

the soft soil. In very soft soils, with undrained shear strengths lower than some limit 
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between 15 and 5 kPa (Wehr, 2006), this lateral support is not sufficient, and columns 

may fail because of excessive bulging (McKenna et al., 1975). In these situations, one 

widely employed solution to enhance the performance of this treatment is to wrap the 

columns with a geosynthetic encasement. The main advantages of encased columns 

compared to ordinary columns are the extra lateral support provided by the geotextile 

encasement, and stopping fine particles of the soft soil squeezing inside the column 

avoiding clogging. This technique has been successfully employed in foundations of 

roads and railways under embankments (Raithel et al., 2005). 

The use of encased stone columns among the last decades has come with an increase in 

studies performed to analyse their behaviour. One of the first attempts was presented by 

Van Impe (1989). Since then, several analytical studies have been developed such as 

Castro and Sagaseta (2011, 2013), Pulko et al. (2011) and Raithel and Kempfert (2000) . 

In addition to analytical research, several numerical studies have been performed. Some 

of them presented parametric studies focused on the influence of the stiffness of the 

geotextile encasement (e.g., Almeida et al., 2013; Malarvizhi and Ilamparuthi, 2007; 

Murugesan and Rajagopal, 2006) or on the influence of the encasement length (e.g., Dash 

and Bora, 2013). Most of the numerical studies have been performed using 2D simulation 

but there are also some 3D approaches (e.g., Keykhosropur et al., 2012; Lo et al., 2010, 

Yoo, 2015 and Yoo and Kim, 2009). 

Numerous experimental studies related to encased columns have also been developed. 

Full-scale tests were performed in several analyses (e.g., Alexiew et al., 2009; Almeida 

et al., 2015; Chen et al. 2015; Hosseinpour et al. 2015; Raithel et al., 2002 and Yoo and 

Lee, 2012), although small-scale laboratory tests were carried out in most of the studies. 

In these last cases the column diameter is significantly smaller than that in real treatments 

and the geotextile sleeves are generally formed by a flat fabric with a longitudinal joint; 
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however, continuous sleeves are usually employed in real treatments. This joint in 

laboratory tests is commonly made by an overlap of the fabric, which can be sewn (e.g., 

Hong, et al. 2016; Murugesan and Rajagopal, 2007, 2010) or it can be glued (e.g., Ghazavi 

and Afshar, 2013 and Gniel and Bouazza, 2009, 2010). This results in a weak point that 

reduces the strength of the geotextile (Alexiew et al. 2012). The majority of these 

experimental studies focus on the load-settlement response (e.g., Gniel and Bouaaza, 

2009; Murugesan and Rajagopal, 2007, 2010). 

The objective of this research is to analyse the influence of the encasement on stone 

columns by means of small-scale laboratory tests. The main novelty of this research is 

the analysis of settlements, total stresses and pore water pressures not only for drained 

conditions but also during the whole consolidation process. This is accomplished by 

performing experimental laboratory tests in a large diameter oedometric cell. The 

research is focused on soil-column stress distribution, settlements and pore pressure 

dissipation in soft soils treated with encased columns. In addition, the improvement 

achieved when the stone column is encased with a geotextile is compared with non-

encased columns. 

Experimental set-up 

In real treatments under large uniformed loaded areas, stone columns are installed 

forming meshes of regular patterns (triangular, hexagonal or square). A widely employed 

simplification for their analysis is the consideration of one single column and its 

corresponding surrounding soil which is referred to as "unit cell". The laboratory tests 

were designed to study fully penetrating encased columns, neglecting tip effects, with no 

influence of the column length and only radial drainage. This allows simplifying the 

analysis to a slice of a "unit cell" at a certain depth. For this purpose, small-scale 

laboratory tests were performed in a Rowe-Barden oedometric cell (Rowe and Barden, 
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1966), 254 mm in diameter and 146 mm height. The geometry of the unit cell was defined 

by a diameter ratio of N=3 (N, ratio between diameter of the elementary cell and column 

diameter). This corresponds to a column diameter of 84.7mm and to an area replacement 

ratio of ar=11%, resulting a scale of the tests about 1/10 respect to real cases. Regarding 

the boundary conditions, only radial drainage towards the column was allowed and equal 

strain condition was simulated by placing a rigid plate on the top surface. 

The oedometric cell was instrumented focussing on the study of column-soil stress 

distribution, pore pressure dissipation and measurement of the rate of strains during the 

consolidation process. With this aim 6 pore pressure transducers (PPT) and 7 total stress 

transducers (TST) were allocated in the base of the oedemetric cell. Total stresses under 

the column were measured by three TST (XPM10-50G-HA-LC1, QBM, pressure cells 8 

mm in diameter) placed in a triangular pattern, at 22.5 mm from the centre of the cell. 

Total stresses on the soil were measured by 4 TST (XPM10-10G-LC1, QBM, pressure 

cells 8 mm in diameter) which were placed at different distances from the centre (r=49, 

58, 69 and 115 mm). Pore pressures (WF17060, Wykeham Farrance, pressure cells 4 mm 

in diameter) were also measured at different distances from the centre (r=49, 53, 58, 69, 

84.5 and 115 mm). Figure 1 shows the instrumented base. Two horizontal TST (XPM10-

10G-LC1, QBM, pressure cells 8 mm in diameter) were placed diametrically opposed in 

the lateral boundary of the cell at 20 mm height from the base to measure horizontal 

stresses on the soil. Finally a LVDT was set up at the central point on the top of the cell 

to measure vertical displacements. More details of the instrumentation can be found in 

Cimentada, 2009 and Miranda, 2014. 

Characterization of the materials 

Kaolin clay was employed as soft soil, limestone gravel for the column and two different 

geotextiles as encasements. 
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Relevant properties of the kaolin, obtained from laboratory tests, are summarised in 

TABLE 1 (Cimentada et al. 2011). 

Uniform gravel with particle sizes between 4 and 5 mm was used for the column, 

according to the 1/10 scale of the test. The maximum and minimum dry unit weights are 

16.5 and 13 kN/m3, which correspond to void ratios of emin=0.64 and emax=1.06 

respectively. A relative density of 50% was chosen to form the column which corresponds 

to a dry unit weight of 14.5kN/m3. Conventional drained triaxial tests were performed to 

obtain the values of the internal friction angle () and the dilatancy angle (). A summary 

of the most relevant properties of the gravel obtained from these tests is given in TABLE 

2. Laterally confined stress path-controlled drained triaxial tests were also carried out to 

obtain the oedometric modulus of the gravel resulting in a value of Emc=20000 kPa. 

Two different geotextiles were employed to encase the column; both of them were 

provided by Huesker Synthetic Gmb and made using a different flat fabric. In both cases 

the fabric was cut and prepared in a cylindrical shape; hence a longitudinal joint was 

needed to form the sleeve. 

Geotextile1 fabric is Stabilenca 120/120, which is formed by longitudinal and transversal 

polyester threads. Its design tensile strength is 120 kN/m. The longitudinal joint was 

formed by an overlap of 2 cm of the fabric that was glued with an epoxy adhesive. 

Geotextile2 fabric is Robutec 130/25, which is formed by threads of polyvinyl alcohol in 

longitudinal direction and polypropylene threads in the transverse direction. Its design 

transversal tensile strength is 130 kN/m. The longitudinal joint was made in the same 

manner as for geotextile1. 

Tensile strength tests were performed by Huesker Synthetic Gmb for both fabrics and 

both geotextiles (fabric+joint) following the standards DIN EN ISO 10319 and DIN EN 

ISO 10321, respectively. All of the tests were performed on 200 mm wide samples 
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(similar dimension to the circumferential length of 266 mm of the encasements employed 

for the tests). The results of these tests are shown in Figure 2 and the values of the secant 

modulus obtained from them are given in TABLE 3 and TABLE 4 for geotextile1 and 

geotextile2, respectively.   

The behaviour of the gravel encased with these geotextiles was analysed by triaxial 

drained tests (Miranda and Da Costa, 2016). 

Sample preparation  

Sample preparation involved the preparation of the kaolin clay bed and the installation of 

the central encased column. Remoulded kaolin clay consolidated under 50 kPa was used 

as clay bed. First, the kaolin clay was mixed with a water content of 1.5 times its liquid 

limit, then it was poured into the Rowe-Barden cell and finally, it was consolidated under 

50 kPa. Under this pressure the undrained shear strength of the kaolin clay is about 12 

kPa, value in the range for treatment with encased columns. 

The column was prefabricated with the aid of a nylon mould. In cases of encased columns, 

the geotextile was placed inside the mould and the required quantity of gravel needed to 

achieve the desired density (14.5 kN/m3 dry unit weight) was placed inside the mould. 

Afterwards, it was saturated with water and left to freeze for at least 48 hours. Finally, 

the column was taken out of the nylon mould and placed in a pre-bored central hole. Once 

the column was placed, it was left to thaw, and the sample surface was levelled. Finally, 

the soil-column sample was consolidated again under 50 kPa. This method of column 

installation does not represent the real one but makes the repeatability of the tests easier. 

In addition, it has been successfully employed in previous studies (Cimentada et al., 2011; 

Gniel and Bouazza, 2009 and 2010; Miranda et al., 2015 or Sivakumar et al., 2004). 
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Test procedure 

Each test consisted in three vertical stress increments, 50 kPa for the first one and 100 

kPa for the other two, reaching a final vertical stress of 300kPa. Each vertical stress 

increments started with the application of the load under undrained conditions. Once the 

excess of pore pressure reached the value of the applied load, the drainage was allowed 

and the consolidation process took place for 24 hours. To avoid problems with the air 

trapped into the soil, a back pressure of 300 kPa was set during the whole test. To interpret 

the results, this back pressure has been subtracted from the measurements. 

Three different series of tests were performed, each one using a different type of column: 

encased columns with geotextile1, encased columns with geotextile2 and non-encased 

columns. Each series consisted of 3 or 4 equal tests to ensure repeatability. 

Results and discussion 

Results obtained from the tests with encased and non-encased columns are compared in 

this section to analyse the influence of the geotextile encasement. The obtained results 

are presented focusing on soil-column stress distribution, reduction of settlements, and 

dissipation of pore pressures. 

Measurements were obtained for the three load steps in each of the 10 performed tests. In 

the following, to make the analysis of the results clear, average values of tests performed 

with the same characteristics were employed. This average was considered since results 

show good repeatability, as it can be seen in Figure 3. 

 

Vertical stresses 

Soil-column stress distribution is one of the main features of soft soils improved with 

encased stone columns. Vertical load supported by the natural soil decreases due to the 

transfer of part of the applied load to the column. The stress on the column was calculated 
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as the average of the readings in the three sensors located under the column, while the 

stress on the soil was obtained as the average, weighted with the influence area, of each 

of the sensors located under the soil. 

Values of the stresses on the soil and on the column during the consolidation process are 

presented in Figure 4 and Figure 5, respectively. In both figures, the stresses are given as 

the ratio of the increment in the soil and column vertical stresses from the beginning of 

the step (∆𝜎𝑧𝑠, ∆𝜎𝑧𝑐), to the increment of the total applied pressure (pa=50 kPa in the first 

load step and pa=100 kPa in the second and third ones). The tendency is the same for the 

three series of tests (encased with geotextile1, encased with geotextile2 and non-encased). 

The results show that at the beginning of a load step, all of the applied pressure is nearly 

equally supported by the soil and the column. With time, soil behaviour changes from 

undrained (no volume change and therefore high stiffness) to drained behaviour (the soil 

becomes softer). Regarding the influence of the encasement, the stresses supported by 

encased columns are higher than the stresses on the non-encased columns. This is 

attributed to the extra lateral support provided by the geotextile and therefore the higher 

stiffness of the encased columns. Comparing the two encasements, the load transmitted 

to the column is similar in both cases, with slightly lower values with geotextile2 .This is 

in agreement with the lower stiffness of this geotextile in the low range of radial strains 

developed during the test (1 to 3%). 

Stresses on the soil and column at the end of each load step are shown in Figure 6 for 

both, column and soil. The results show the great influence of the encasement on the same 

way as previously presented. The encasement generates an increase in the stresses 

supported by the column, with values of the stresses on encased columns around 1.7 times 

the stresses on non-encased columns. In addition, there is a decrease in the stresses on the 
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soil with values for samples with encased columns between 0.5 and 0.7 times the stresses 

on the soil in tests with non-encased columns. 

Small differences between the values obtained for both encasements can be observed in 

the first two load steps (in agreement with the lower stiffness of the geotextile2 in the 

range of 1 to 3% vertical stains developed during the tests). However, in the third load 

step these differences are higher showing a noticeable decrease in the stresses on the 

column encased with geotextile2. This is associated to the partial breakage of the 

longitudinal joint, which is due to a worse behaviour of the adhesive with the fabric of 

geotextile2. In these cases the joint was found partially broken at the end of the test 

(Figure 7). This degradation of the joint is mean to be progressive achieving the breakage 

just in the last load step. 

 

Stress concentration factor 

The transfer of load between the column and the soil is usually expressed by means of the 

stress concentration factor (SCF), ratio between the total vertical stress on the column and 

on the soil. To analyse each load step independently, the incremental SCF defined as 

∆𝜎𝑧𝑐/∆𝜎𝑧𝑠 has been used. Final drained values of the SCF at the end of each load step, 

for all of the performed tests, are given in TABLE 5. There is some scatter in the results 

caused by the readings in the transducers located under the column, as usually happens in 

granular materials. Nevertheless, the trend and the obtained average values are clear. The 

values obtained for the non-encased columns are between 6 and 3, within the usual range 

of 3-10 presented by Barksdale and Bachus (1983). The SCF values related to encased 

columns are higher, being in the range of 11 to 25 (disregarding the low values in the last 

load step in tests with geotextile2 because of the breakage of the joint of the geotextile). 

The values obtained for the two encasements are similar for the first two load steps, being 
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lower the ones of tests performed with geotextile 2. This is due to the lower stiffness of 

this geotextile at low stains. In the last load step the difference is higher due to the partial 

breakage of the joint in cases with geotextile2. 

Average values of the incremental SCF at the end of each load step for encased and non-

encased columns are plotted in Figure 8. The trend is clear, the SCF decreases with 

increasing loads due to the development of plastic strains in the column. The SCF values 

obtained in the tests with encased columns are between 2.5 and 4.5 times those obtained 

in the tests with ordinary columns, which is in accordance with the higher stiffness of the 

encased columns. 

The development of the SCF during the consolidation process is plotted in Figure 9 for 

the second load step. At the beginning of the stress increment the load is equally supported 

by the soil and the column. At this initial point the behaviour of the soil is undrained, with 

no volume change and therefore stiffer soil, but with time the soil drains and the load is 

transferred to the column. During this process of consolidation the stiffness of the soil 

decreases and the column is stiffer than the drained soil. This load transfer occurs until 

the column achieves its active state and no more load transfer takes place. The trend is 

similar for encased and non-encased tests, but a higher load transfer in tests with encased 

columns can be observed. 

 

Horizontal stresses in the soil 

Horizontal stresses in the soil were also analysed from the measurements taken at the 

sensors located in the cell lateral boundary. The values during the consolidation process 

are shown in Figure 10. The trend is the same as previously presented for the vertical 

stresses in the soil. They decrease with time as the load is transferred to the column. 

Average final values at the end of each load step are given in Figure 11. Regarding the 
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influence of the geotextile, horizontal stresses in tests with encased columns are around 

30% lower than those obtained in those with non-encased columns. The same behaviour 

can be observed for vertical stresses (Figure 4), since the geotextile encasement provides 

part of the lateral stresses in the soil-column contact. Comparing both geotextiles, the 

values in samples with geotextile1 are slightly lower than those for geotextile2, which is 

in agreement with the results of vertical stresses on the soil. 

 

Settlements 

The decrease in the vertical stress on the soil due to the presence of the columns, leads to 

a reduction of settlements. Axial strains during the consolidation process are presented in 

Figure 12. The measurements show that the reduction of settlements is higher when the 

column is encased, which is in agreement with the extra lateral support provided by the 

geotextile.. The reduction of settlements achieved by this treatment is usually expressed 

by the settlement reduction factor, ratio between the settlement with and without columns, 

(𝛽 = 𝑠𝑧/𝑠𝑧0) or its inverse, the improvement factor (n). The settlement reduction factor 

for each load step was obtained dividing the vertical strain in tests with column by the 

vertical strain in a reference test with only kaolin, both for the same applied load. Values 

of the settlement reduction factor at the end of each load step are presented in Figure 13. 

Average final values at the end of the tests are: 0.58 in tests with columns encased with 

geotextile1, 0.62 for tests with geotextile2 and 0.77 for non-encased tests. This means 

that the reduction of settlements with the encased columns is around 40%, and around 

30% for non-encased columns. Comparing both encasements, the values are quite similar, 

slightly lower for geotextile1, in agreement with the values of the SCF presented 

previously. 

 



 13 

Pore pressures 

The acceleration of the consolidation process is another of the main features of the 

treatment with stone columns. The dissipation of the excess pore pressures during the 

consolidation process is presented in Figure 14. It is plotted as the ratio of the increment 

of pore pressures at the beginning of the load step, to the initial increment (100 kPa). 

Curves have been plotted for encased and non-encased columns. A curve obtained with 

Barron's solution using the coefficient of consolidation of the kaolin for the range 100-

200 kPa has been included. This curve shows the process of consolidation in the case of 

kaolin with drains (zero stiffness). The results show the high improvement achieved, in 

terms of faster consolidation, by using stone columns compared with the case of drains 

(Barron's solution). Comparing the results for non-encased and encased columns, it can 

be observed that the geotextile encasement increases the speed of consolidation even 

more. 

The analytical solutions for the consolidation around stone columns use the same classical 

solution as for vertical drains but including the influence of the column stiffness through 

a modified consolidation coefficient. In this case, this equivalent coefficient of 

consolidation, 𝑐𝑣𝑟
𝑒𝑞

, represents the radial consolidation neglecting the vertical one. This 

parameter has been derived from the measurements of settlements in the tests, using the 

inflection point method proposed by Robinson (1997). Figure 15 shows the obtained 

values. This values are presented as the ratio of the equivalent coefficient of radial 

consolidation to the coefficient of consolidation of the kaolin clay obtained from an 

oedometric test (cv= 2.16 m2/day). The results show that the dissipation of pore pressures 

is around 3 or 2 times quicker in samples with encased columns than that in the case of 

considering radial consolidation but with drains. The values obtained for geotextile1 are 

slightly higher than those for geotextile2. The influence of the encasement can also be 
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observed as the values for encased columns are slightly higher (around 1.3 times) than 

those obtained in tests with non-encased columns. 

 

Conclusions 

Three series of tests (one with non-encased columns and the other two with two different 

geotextile encasements) were examined. The results show the high influence of the 

encasements employed on the soil-column stress distribution. Encased columns support 

a vertical stress of around 1.7 times the vertical stress supported by the ordinary columns. 

Consequently, vertical stresses on the soil are lower in samples with encased columns. 

These differences in the stress distribution lead to higher values of the stress concentration 

factor in samples with encased columns. The results show that the values of the SCF in 

drained situations and in samples with encased columns are between 11 and 25 and in 

cases of non-encased columns are between 3 and 10. Therefore, the SCF in encased 

columns is around 2 to 4 times the SCF in non-encased columns. In samples with encased 

columns horizontal stresses on the soil are around 30% lower than those with ordinary 

columns. 

The settlement reduction factor obtained at the end of the tests is 0.58 and 0.62 for 

columns encased with geotextile1 and geotextile2 respectively, and 0.77 for non-encased 

columns. 

The acceleration of the consolidation process is noticeable, with pore pressures that 

dissipate around 1.3 times quicker in samples with encased stone columns than in those 

with non-encased columns. 

Comparing the two employed encasements, the behaviour is quite similar, according with 

the similar stiffness of both geotextiles at low radial strains. Slightly higher differences 

appear at the end of the tests, which is attributed to the partial breakage of the longitudinal 
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joint in geotextile 2 due to the worse behaviour of the adhesive with the fabric of this 

geotextile. 
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FIGURE CAPTIONS 

Figure 1. Instrumented base of the Rowe-Barden cell 

Figure 2. Tensile force versus strain of the geotextiles. 

Figure 3. Normalized vertical stresses on the soil with time (encased columns). 

Figure 4.  Normalized mean vertical stresses in the soil with time. 

Figure 5. Normalized mean vertical stresses in the column with time. 

Figure 6. Vertical stresses on the soil and on the column under drained conditions. 

Figure 7. Encased column with geotextile2 at the end of the test. 

Figure 8. Incremental SCF in drained situation. 

Figure 9. Incremental SCF with time for the three load steps. 

Figure 10. Horizontal stresses in the soil with time. 

Figure 11. Horizontal stresses on the soil under drained conditions. 

Figure 12. Axial strains with time. 

Figure 13. Settlement reduction factor at the end of each load step. 

Figure 14. Pore pressure with time. 

Figure 15. Equivalent coefficient of consolidation using Robinson (1997) method. 
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TABLE 1. Properties of the kaolin clay (Cimentada et al., 2011) 

Liquid limit [%] 73 

Plastic limit [%] 38 

Plasticity index 35 

cv [cm2/s] 2.510-3(*) 

Cc 0.53 

Cs 0.10 

e (50 kPa) 1.529 

su/'v ( C-U triaxial tests) 0.30 

 [º] (C-U triaxial tests) 26.5 

(*) range from 1.9 to 2.710-3 cm2/s 
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TABLE 2. Results of triaxial tests on the gravel 

 Sample 1 Sample 2 Sample 3 

𝑝0
′  [kPa] 50 150 300 

 [º] 47 42 39 

Ψ [º] 15 5 0 

ν 0.25 0.16 0.15 

E50 [MPa] 5.96 12.68 16.03 

p'0: confining stress 
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TABLE 3. Tensile strength and stiffness of the geotextile1with joint 

Strain [%] Tensile force [kN/m] Secant modulus Jg [kN/m] 

2 13 650 

5 31 620 

8 50 625 

Max 12.3 77 626 
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TABLE 4. Tensile strength and stiffness of the geotextile2 with joint 

Strain [%] Tensile force [kN/m] Secant modulus Jg [kN/m] 

2 10 500 

5 31 620 

8 60 750 

Max 8.7 67 770 
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TABLE 5. Values of the incremental SCF at the end of each load step 

Vertical 

stress [kPa] 
 100 200 300 

GTEX1 

Test1 45.6 18.5 10.5 

Test2 14.3 14.4 8.7 

Test3 21.5 18.6 11.0 

Test4 25.6 21.1 15.7 

Average 20.5 18.2 11.5 

GTEX2 

Test1 15.8 18.3 6.2 

Test2 16.2 12.6 6.0 

Test3 18.1 8.6 5.7 

Average 16.7 13.2 6.0 

Non-Encased 

Test1 5.6 3.8 3.3 

Test2 5.4 3.5 3.5 

Test3 9.5 5.3 5.7 

Average 6.8 4.2 4.2 
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Figure 1. Instrumented base of the Rowe-Barden cell 
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Figure 2. Tensile force versus strain of the geotextiles. 
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Figure 3. Normalized vertical stresses on the soil with time (encased columns). 
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Figure 4.  Normalized mean vertical stresses in the soil with time. 
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Figure 5. Normalized mean vertical stresses in the column with time. 
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Figure 6. Vertical stresses on the soil and on the column under drained conditions. 

  

0

500

1000

1500

2000

2500

0 100 200 300 400

Vertical applied pressure (kPa)

V
e

rt
ic

a
l 
s
tr

e
s
s
e

s
 o

n
 t

h
e

 c
o

lu
m

, 


v
c
 (k

P
a

)

0

50

100

150

200

250

0 100 200 300 400

 GTEX2

 GTEX1

Non-En

(average values)


pre

Vertical applied pressure (kPa)

V
e

rt
ic

a
l 
s
tr

e
s
s
e

s
 o

n
 t

h
e

 s
o

il,
 

v
s
 (k

P
a

)



 32 

 
 

Figure 7. Encased column with geotextile2 at the end of the test. 
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Figure 8. Incremental SCF in drained situation. 
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Figure 9. Incremental SCF with time for the three load steps. 
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Figure 10. Horizontal stresses in the soil with time. 
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Figure 11. Horizontal stresses on the soil under drained conditions. 
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Figure 12. Axial strains with time. 
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Figure 13. Settlement reduction factor at the end of each load step. 
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Figure 14. Pore pressure with time.  
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Figure 15. Equivalent coefficient of consolidation using Robinson (1997) method. 
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