
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

A Classification and Comparison Framework
for Cloud Service Brokerage Architectures

Frank Fowley, Claus Pahl, Pooyan Jamshidi, Daren Fang, Xiaodong Liu

Abstract—Cloud service brokerage and related management and marketplace concepts have been identified as key concerns
for future cloud technology development and research. Cloud service management is an important building block of cloud
architectures that can be extended to act as a broker service layer between consumers and providers, and even to form
marketplace services. We present a 3-pronged classification and comparison framework for broker platforms and applications.
A range of specific broker development concerns like architecture, programming and quality are investigated. Based on this
framework, selected management, brokerage and marketplace solutions will be compared, not only to demonstrate the utility of
the framework, but also to identify challenges and wider research objectives based on an identification of cloud broker architecture
concerns and technical requirements for service brokerage solutions. We also discuss emerging cloud architecture concerns
such as commoditisation and federation of integrated, vertical cloud stacks.

Index Terms—Cloud Broker; Service Brokerage; Architecture Patterns; Cloud Broker Classification; Service Management.

F

1 INTRODUCTION
Several organisations active in the cloud technology
area, such as Gartner, Forrester and NIST [17], [14],
[27], have identified cloud service brokerage as an
important business model, but also as an architectural
challenge that needs to explore how to best construct
broker applications on top of suitable platforms. A
cloud service broker manages the use, performance
and delivery of cloud services and negotiates rela-
tionships between cloud providers and cloud con-
sumers [14]. Cloud service management, an important
building block of cloud architectures, can be extended
to act as a brokerage layer between consumers and
providers, and to even form marketplaces. Archi-
tecture, development and quality concerns are key
enablers of any service brokerage solution that inter-
mediates between different providers by integrating,
aggregating and customising their individual services.

Our main contribution is a classification framework
for cloud service management, brokerage and market-
place solutions that use some form of intermediation
mechanism that goes beyond Gartner, Forrester and
NIST and aims to resolve different existing interpre-
tations. In addition to providing a comprehensive
definition, our framework allows us to classify and
compare broker solutions. We look at architectural
concerns, i.e., software-based intermediation solutions
that support brokerage as a business model. We
distinguish between an application and a platform

• F. Fowley, C. Pahl and P. Jamshidi are with the Irish Centre for Cloud
Computing and Commerce IC4, Dublin City University, Dublin 9,
Ireland.
E-mail: Claus.Pahl@unibz.it (contact author)

• D. Fang and X. Liu are with the School of Computing, Edinburgh
Napier University, Edinburgh, UK.

perspective. Marketplaces, like app stores, are broker
applications that assemble and provide end-user ser-
vices. These broker applications often run on cloud
platforms with specific broker-oriented capabilities.

This classification framework is based on a broader
classification in terms of capability and feature cat-
egories, architectural patterns and a more refined,
descriptive scheme specifically looking at architec-
ture, language and quality as technical aspects. The
emphasis here is on a systematic determination of
classification categories based on different cloud and
software bodies of knowledge. We compare selected
cloud service management and brokerage solutions
to illustrate and evaluate the framework, and also to
derive trends and challenges from this comparison.
The selection of subjects is again systematic, aiming
to identify technically advanced solutions that cover
the cloud service broker space comprehensively to
ensure that the adequacy and the completeness of
the framework is properly evaluated. Based on an
identification of cloud broker architecture patterns for
service brokerage solutions, we discuss challenges.

Such a dedicated framework does not exist for
cloud brokers and goes beyond existing service tax-
onomies such as [19]. Grozev and Buyya [18] go
beyond this and introduce a taxonomy and compare
solutions. However, their effort is focussed on a tax-
onomy for inter-cloud architectures. Their comparison
scheme uses 5 basic aspects (type/organisation, archi-
tecture, brokering approach, application type, aware-
ness). The definitions provided by Gartner, Forrester
and NIST [17], [14], [27] are also high-level and not
suitable for a detailed classification and comparison.
In [15], the need for a multi-dimensional classification
is recognised and a basic multi-facetted framework
is proposed. However, it does not clearly distinguish

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

between application and platform dimensions, lacks
a detailed vocabulary at concept instance level, nor
does it provide a systematic identification, extraction,
modelling and evaluation of the framework.

The paper is organised as follows. Cloud service
management and brokerage is introduced and anal-
ysed in Section 2. Section 3 defines the comparison
framework. In Section 4, we apply the comparison
framework to selected solutions and evaluate its fit-
ness for purpose. This investigation leads to a broader
research challenges discussion, before ending with
conclusions in Section 5.

2 CLOUD SERVICE BROKERAGE - LITERA-
TURE REVIEW AND ANALYSIS

We start with a review of existing cloud service
brokerage definitions to obtain a consolidated list
of broker types (Section 2.1) and a list of their
typical capabilities (Section 2.2). We revisit the bro-
ker types to define the scope of emerging archi-
tectural patterns for cloud service brokers (Section
2.3). Then, we investigate the cloud stack deploy-
ment models – namely, infrastructure (IaaS) and plat-
form/applications (PaaS/SaaS) - to determine layer-
specific concerns (Section 2.4). Finally, we discuss the
perspectives of different user types (Section 2.5). We
adopt the NIST definitions [27] refering to capabilities
provided covering processing, storage, networking
resources (IaaS), deployment of applications created
using programming languages, libraries and tools
(PaaS) and using a providers applications (SaaS).

2.1 Brokerage - Definitions and Analysis
We begin by focusing on a brokerage-as-a-service
delivery model based on intermediation as a tech-
nical principle. Advanced multi-cloud management
platforms, as well as brokers as marketplaces, can be
considered as specific models in the wider broker-
age space. Forrester, Gartner and NIST define Cloud
Service Brokerage (CSB) in different ways [14], [17],
[27]. Gartner and NIST both follow a three-pronged
classification. They define a cloud broker as an entity
that manages the use, performance and delivery of
cloud services and negotiates between providers and
consumers, i.e., intermediates between both [14].

In this initial overview of key concepts, we start
with Gartner [17]. For each broker type, we name
the typical broker role (agent), the application types
(application) and the typical functionality of brokered
(or mediated) services (functions).

• Aggregation is about delivering two or more
services to possibly many consumers, not neces-
sarily providing new functionality, integration or
customisation, but typically offering centralised
management of SLAs and security.

– Agent: distributor

– Application: marketplace, cloud provisioning
– Functions: discovery, billing, marketplaces

• Customisation is about altering or adding capa-
bilities in order to improve the service function-
ality and provide enhanced service analytics.

– Agent: independent software vendor (ISV)
– Application: analytics, monitoring, interface
– Functions: wrapper, adaptivity

• Integration involves making independent ser-
vices work together as a combined offering. This
could be the interworking between layers of
the vertical cloud stack, or could involve the
data/process integration within a single layer.
Techniques such as transformation, mediation
and orchestration are the classic solutions.

– Agent: systems integrator (SI)
– Application: integrated PaaS
– Functions: orchestration, mashup, mediation

NIST uses aggregation, arbitrage and intermediation
as the three core broker types [27]. NIST and Gartner
agree on the importance of aggregation. Some further
commonalities exist. NIST intermediation and Gartner
customisation focus on enhancing existing services.
NIST arbitration and Gartner integration both con-
sider the flexible mediation and integration of differ-
ent systems. Otherwise, the views diverge. NIST in-
cludes arbitrage (which supports dynamic pricing in a
cloud service marketplace), whereas Gartner does not.
NIST intermediation differs from Gartner integration.
Intermediation between consumers and providers, in
the NIST understanding, includes a range of capabil-
ities (SLA management, invoicing/billing consolida-
tion) as opposed to a merely technical integration.

• Gartner’s classification is building on traditional
IT roles, which can be seen as a limitation. The
role of the aggregation broker matches the tradi-
tional distributor role, the integration broker role
aligns with a systems integrator and, finally, the
customization broker corresponds to an indepen-
dent software vendor role – note that we have
singled out the agent in the Gartner summary.

• NIST’s terminology is not undisputed either. A
service intermediary should be a party with no
commercial aims, i.e., no consumer cloud policies
should be affected by the commercial bias of an
intermediary. An intermediary can play the role
of a broker (receiving a commission is included in
the activity), but might choose not to. Note that
NIST defines five actors (including brokers) in its
Cloud Computing Reference Architecture, which
we will simplify later (see Section 2.4).

Forrester starts with the assumption that the cloud
broker model offers IT and telecom service providers
and other vendors the opportunity to overcome the
rapid commoditisation of their existing services busi-
ness and build a sustainable service delivery model. A
simple broker model compares similar cloud provider

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

options and dynamically provisions selected services
based on the actual spot prices of these resources.
A full broker goes beyond this to include cloud
bursting, i.e., the dynamic relocation of workloads
from private environments to cloud providers and
vice versa. Forrester’s model is based on three core
cloud models [39]: tool vendor (software focus), in-
frastructure provider (infrastructure focus) and cloud
builder (consultancy focus). A cloud broker is defined
as the combination of three capabilities arising from
three core models:

• SaaS Provider - combines software and infrastruc-
ture focus with hosting and management.

• Value-Added Reseller - combines software and
consultancy focus with management and also
customisation and integration capabilities.

• Integrator - combines infrastructure and consul-
tancy focus with integration and hosting.

We use these definitions to extract five core broker
types and a vocabulary of capabilities and features.

2.2 Broker Mediation Construction - Capabilities
and Features
The broker architecture needs to be divided into two
layers – broker platform and broker application:

• The platform is the implementation platform on
which a broker application is implemented. This
platform can be provided ’as-a-service’. The plat-
form provides a range of services to construct the
application through intermediation techniques.

• The application provides a concrete broker –
possibly targeting a specific vertical sector or a
specific service type (e.g., for a cloud delivery
model). The broker application is constructed us-
ing the platform services, providing features such
as SLA management, a service catalogue, ser-
vice provisioning, including self-service access, as
well as user authentication and authorisation.

Several tools specifically target this architecture. We
will review open-source platforms later. The com-
mercial space also provides advanced solutions that
validate the relevance of this architectural setting1.

From the discussion in Section 2.1 based on the
different definitions from NIST and Gartner and from
an analysis of features that commercial broker plat-
forms provide, we extract five rather than the usual
three core broker capabilities following [11], see Table 1.
We started with capabilities and features from Section
2.1 that we then validated using the descriptions of
the commercial tools. These reflect how the different
mediated services are constructed, which is part of
the platform perspective. The capabilities referred to

1. Examples, in no particular order, are Jam-
cracker (www.jamcracker.com/solutions), Vordel
(www.axway.com/vordel-products), Gravitant
(www.gravitant.com), AppDirect (www.appdirect.com) or
ComputeNext (www.computenext.com).

by Forrester (such as hosting or management) can
be mapped to integration and intermediation. We
defined these capabilities and associated capability
types. Composition as a type combines application
services or application and platform services. Manage-
ment refers to platform-provided management capa-
bilities. Adaptation refers to a specialisation of a service
to meet a specific user profile. Distribution is involved
if services originate from different cloud providers.

To further describe the features of a broker for a
multi-cloud or a federated cloud setting beyond the
capabilities definition, we need to provide a more
exhaustive list of lower-level features that are used to
create SLA and service management, self-service user
access and authorisation functions. The following are
extracted from the list given in [39], supplemented by
other sources such as the features offered by commer-
cial broker platforms. They are associated with a set
of feature categories – which are the relevant broker
capabilities they apply to, as well as the management
view from the capability types, see Table 2.

2.3 Management, Broker Platform and Market-
place - Scope and Patterns

Cloud brokerage applications are built up on exist-
ing virtualisation techniques, cloud platforms, and
IaaS/PaaS/SaaS offerings. Emerging from the earlier
discussion, we can single out three architecture pat-
terns that cover the wider brokerage platform and
application space, and that frame the broker capabil-
ities. These can help to put broker applications into
context in terms of their key application direction.
Here, the description of the architecture patterns does
not describe some concrete structural or behavioural
architecture, but rather the features and objectives
of each cloud service architecture type, see Table 3.
These patterns are characterised by technical features.
However, they should not be considered as broker
layers. For example, the Cloud Management pattern
may include a billing integration feature, whereas the
Broker Platform pattern may not.

Management brokers could also be called internal
brokers as their main purpose is often managing
an internal service catalogue. On the other hand,
classical brokers typically mediate between customers
and externally provided services. This perspective is
complementary to the broker platform capabilities,
which focuses on the broker construction only, but
not the objective embedded in the architecture. The
discussion below will show that a fine-grained charac-
terisation of the types of cloud brokerage applications,
even beyond these three, is necessary to identify
and distinguish specific challenges. We look at open-
source solutions (or solutions provided by publicly
funded projects) as these are well-documented.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

TABLE 1
Broker Capabilities.

Broker Capability Capability Type Definition
Aggregration Composition &

(internal) Management
delivering combined and centrally managed services to many consumers, not
necessarily providing new functionality, integration or customisation.

Customisation Adaptation altering or adding capabilities to change or improve, enhance and analyse the
service function.

Intermediation Composition &
(external) Management

intermediation between cloud consumers and providers including advanced
capabilities (SLA management, invoicing/billing consolidation).

Integration Distribution &
Composition

building independent services and data into a combined offering – often as an
integration of a vertical cloud stack or data/process integration within a layer
through transformation, mediation and orchestration.

Arbitrage Distribution flexible composition of service chosen possibly from multiple providers selected
statically or dynamically based on technical as well as cost aspects.

TABLE 2
Broker Features.

Feature Category Features1
Aggregation
Integration
Customisation

service orchestration, service catalogue management, provider contracting, resource selection, identity
management, user authentication and authorisation, security management, interoperability

Intermediation
Management
Arbitrage

SLA compliance, self-service enablement, metering, dashboards, monitoring, helpdesk support, business
transaction monitoring, billing/invocing consolidation, dynamic pricing

Dynamic
Integration

service operations, dynamic routing, capacity management, dynamic orchestration, performance
management, life migration, cloud bursting, replication

Workload
Management

workload classification, capacity planning, price prediction, metering, billing and chargeback, perfor-
mance management, configuration management,

Note 1: Extracted from the categorised feature list, Fig. 4, p.9 presented in [39], augmented and validated by feature
descriptions used in the selected commercial products listed in Footnote 1.

TABLE 3
Broker Scope and Patterns.

Pattern Scope Definition Architecture
Cloud Broker
Platform

Supports the broker activity types discussed earlier –
such as aggregation, customisation, integration etc. –
which needs a specific language to describe services in a
uniform way and to define the integration mechanism.

Broker Platform: The origin of this is the
common intermediary/broker pattern from
software design patterns, applied to a cloud
setting.

Cloud Service
Management

Supports the design, deployment, provisioning and
monitoring of cloud resources, e.g. through management
portals. This is an extension of the core lifecycle
management (LCM), adding monitoring features or
graphical forms of interaction. Rudimentary features for
the integration of compatible services can be provided.

Broker Application: A management layer
is often identified in cloud architecture that
facilitates efficient and scalable provisioning
in a number of the platforms reviewed below.
Required capabilities include intermediation and
aggregation.

Cloud
Marketplace

Builds up on intermediary/broker platform to provide a
marketplace to bring providers and customers together.
Again, service description for core and integrated
services plays a role for functionality and technical
quality aspects. Consolidated pricing and invoicing
should here be included.

Broker Application: Marketplaces for apps
are omnipresent and this marketplace pattern
is a reflection of upcoming cloud-specific
marketplaces, which will be discussed in more
detail in Section 5. Required capabilities include
customisation, arbitrage and often aggregation.

2.4 Layer-specific Requirements Analysis

We now investigate the possible impact of the dif-
ferent cloud layers, IaaS and PaaS/SaaS, on cloud
service broker requirements, based on generic, layer-
agnostic concerns arising from the definitions above.
Brokers often target service at a specific layer and,
consequently, have to deal with various cloud layer-
specific concerns [5]. We identify requirements and
refer to the earlier broker features such as replication,
migration or orchestration here.

Specific concerns for the IaaS layer can be described:
• A key requirement for the IaaS model is elasticity

management – see workload management and

dynamic integration capabilities. With techniques
such as replication, provisioned services can be
scaled. Images can be replicated and dynamically
migrated to other, interoperable offerings and
platforms to create a virtual layered environment.

• Problems arise due to platform engines being
proprietary or not replicating fully, unless stan-
dards like OVF for VMs are used. Moreover,
replicating an image with data needs bandwidth,
which requires optimised solutions.

• Image and data management aims to 1) minimise
replication and manage deletion, 2) use segmen-
tation for services, 3) differentiate between user-

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

data and images/services to optimise resources
and 4) include intelligent data management such
as map-reduce techniques. Horizontal scaling of-
ten requires the full dataset to be replicated. Ver-
tical scaling can be based on data segmentation
and distribution.

This indicates that automation is of critical importance
to IaaS, as the cloud elasticity need is the driver
for these techniques. Elasticity requires an automated
management of integration tasks, specifically dynamic
integration and workload management, cf. Table 2.

Specific concerns for the PaaS layer (SaaS is sub-
sumed here as we are considering PaaS-provisioned
application services) apart from elasticity are:

• Platforms need to support composition, orches-
tration and service mashups to aggregate and
customise service offerings [13], [4], [6].

• For most applications, base image duplication
suffices. However,with many users per applica-
tion, full replication with customer-specific data
and code is generally required. Where base im-
ages (e.g., for .NET) are available, we only need to
replicate service instances, and not a full image.

• Further problems arise for composition as QoS is
generally not compositional, e.g., the security of
a composition is determined by its weakest link.

In contrast to IaaS, automated management of aggrega-
tion, customisation and integration is more of a concern
for PaaS. Note that the financial aspects for arbitrage
apply to IaaS, PaaS and SaaS equally. Intermediation
and arbitrage refer to activities relevant for all layers.

A common concern for all layers is standardisation.
Standardisation in terms of OVF as an image format, or
OCCI as an interface for infrastructure-level resource
management, are solutions. Interoperability, which
is reflected in the first feature category in Table 2,
can be achieved through standardisation based on
open and published standards, or on de-facto stan-
dards from widely used open-source or proprietary
systems. However, standards often do not succeed.
Some proposals in the Web services stack (WS-*) are
examples. Problems encountered are 1) diversion of
specifications, 2) the slow process of standardisation
and 3) competing standardisation bodies – the latter
is an obvious problem in the cloud domain, where
organisations from different areas of IT and com-
puting are active (SNIA, DMTF, OMG, W3C, OGF
etc). While some mature standards exist for the ser-
vices domain in the context of Web Services (W3C,
OASIS etc), cloud services are not necessarily WS-
compliant. Some solutions exist. IaaS standards, such
as OCCI and CIMI, cover service lifecycle manage-
ment; TOSCA addresses portability and CDMI data
management. Open-source IaaS supporting these in-
clude Openstack, which is a lifecycle management
product in line with the CIMI and OCCI aims, and the
mOSAIC API that supports composition and mashups

at an infrastructure level [38]. Compliant PaaS sys-
tems include Cloudify, a management tool for vertical
cloud stack integration, and Compatible One, a broker
for horizontal integration [9], [11].

2.5 Brokerage - User Perspectives

Brokerage is a mediation process between different
parties. It is important to consider different user per-
spectives, i.e., the consumer and service provider as
well as the broker itself. Both consumers, providers
and also prosumers (that consume and provide at the
same time) have their own lifecycles. They differ in
terms of their responsibility for different features and
also the relevance of these in the context of their activ-
ities. Gartner, for instance, has organised its brokerage
model along different provider and prosumer types.

• App Developers and Suppliers: The app devel-
oper’s work should be supported by abstract-
ing the lower-level work through architecture
and programming features, only exposing the
business-rule coding interface. This is seen by the
progression from API libraries and frameworks,
to devops and now PaaS platforms for multi-
language, multi-framework development and de-
ployment, to collaborative app composition, and
to app lifecycle management. The developer does
not need to know about the elasticity of the
IaaS, for example. These will become prosumers
that construct the broker application on top of a
broker platform.

• End Users: Consumers of the app/cloud service
just need the interface and use the broker ap-
plication service. They are arguably the greatest
beneficiaries of cloud brokerage.

• Platform Providers: The other main player influ-
enced by these technologies is the new player, the
Broker Platform Provider. Their primary task is
the platform development addressing both end-
user and developer needs. Although, it is often
the case that the providers not only develop, but
also host and provision the broker platform.

The different user perspectives need to be considered
when weighing and interpreting comparison results.
Developer features, for instance, are less relevant for
end users, but critical for application developers.

3 A CLASSIFICATION AND COMPARISON
FRAMEWORK FOR CLOUD SERVICE BROKER
ARCHITECTURES

In this section, we introduce a dedicated 3-pronged
framework for broker classification and comparison,
which we will introduce first (see Fig. 1).

• Broker application dimensions: categorisation in
terms of cloud delivery model, broker construc-
tion, broker scope

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

Broker Platform
Generic Dimensions

Core
Features

Cloud Services
Broker

Broker Platform
Broker Dimensions

Broker
Features

Broker Application

Core
Capabilities

Layer

Type

Language and
Programming

Architecture
and

Interoperability

Quality
Service
Scope

Target
Service
Layer

Architecture
Components

Clouds Supported
Interoperability

Service Language

Programming
Model

Service
Engineering

Elasticity /
Scalability

QoS / SLA
Monitoring

Broker
Capabilities

Generalisation Uses

Fig. 1. Cloud Broker Architecture – Basic Ontology.

• Generic platform dimensions: a categorisation
schema for a basic cloud platform classification

• Broker platform dimensions: broker-specific cate-
gories plus a detailed, descriptive classification

This forms a basic formal ontology, i.e., a taxon-
omy with defined concepts and instances, that allows
the description of broker applications and platforms
in terms of three dimensions, each defined through
concepts and either predefined instances or textual
descriptions. The ontology use a mix of categorical
and descriptive elements. The former also combines
single and multiple-valued categories. Fig. 2 describes
the structure of a description from platform to appli-
cation using a hierarchy of generic and broker-specific
capabilities and features. The classification is a soft-
ware architecture specification, involving architecture
definition and quality assurance concerns – using the
features and capabilities of the platform.

Core
Features

Broker Platform
Broker Dimensions Broker

Features

Broker
Application

Core
Capabilities

Layer Type

Language and
Programming

Architecture
and

Interoperability
Quality

Service
Scope

Target
Service Layer

Broker
Capabilities

Broker Platform
Generic Dimensions

Fig. 2. Cloud Broker Architecture – Structure.

Section 3 is the core contribution section with the
classification framework. Section 4 describes its ap-
plication both to illustrate its utilisation and to val-
idate the quality of the framework. Section 2 plays
an equally important role. It analyses the literature
on brokerage and extracts key concerns (through Ta-
bles 1, 2 and 3). This is then converted into a 3-

pronged framework covering application and plat-
form concerns as identified: broker application di-
mensions, generic platform dimensions and broker
platform dimensions. Specifically the platform dimen-
sion requires more description mechanisms, covered
in Tables 4 and 5 on generic and broker-specific
platform concerns. The categories emerge from the
analysis. The origin of the concepts/vocabularies are
documents as notes to the Tables (e.g., 2, 4 and 5).
Core artefacts to provide overall conceptual and archi-
tectural views are an ontology capturing key concepts
(Fig. 1) and a reference broker architecture (Fig. 2).

3.1 Broker Application Dimension - Service Layer
and Scope

A cloud service broker application is a cloud-based
software system that builds on top of a broker plat-
form (often cloud-based) and provides an application
service to providers and end-users as consumers.
Based on our requirements analysis from Section 2,
two application dimensions can be identified:

• service scope defined through patterns that iden-
tify the extent of support: Management (oper-
ations), Broker (mediation), Marketplace (open
collaboration and competition) (Section 2.3).

• target application services: referring to the cloud
delivery models IaaS, PaaS and SaaS (Section 2.4).

The platform dimensions will be addressed now in
Sections 3.2 and 3.3.

3.2 Generic Platform Dimension - Categorisation-
based Taxonomy

We categorise brokerage solutions by the deployment
model, but also specific features or functions that
each of them provides. We have defined a comparison
framework to categorise cloud solutions along these
concerns in Table 4. We chose these concerns to,

• firstly, broadly categorise the system in terms of
its main function (the system type that indicates
its target layer and central function in that layer)
and whether it is proprietary or open-source,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

TABLE 4
Categorisation Taxonomy – Generic and Broker Platform Properties.

Category Concepts Source
Platform - Generic:

System Type Multi Cloud API Library, IaaS Fabric Controller, Open PaaS Solution, Open
PaaS Provider

typical cloud product
description categories1

Cloud Stack Layer IaaS, PaaS, SaaS widely accepted cloud
delivery models

Distribution
Model2

Open Source (for all solutions considered) typical software product
description categories

Core Capabilities Multi-IaaS Support, Multi Language / Multi Framework Support, Multi
Stack Support

from categorisation of generic
cloud terms1

Core Features /
Components2

Service Description Language, Native Data Store, Native Message Queue,
Programming Model, Elasticity & Scalability, QoS/SLA Monitoring

from categorisation of generic
cloud terms1

Platform - Broker-specific:
Broker Capabilities Aggregation, Customisation, Intermediation, Integration, Arbitrage – broad

support for broker and marketplace applications
from capability discussion in
Section 2.2 (Table 1)

Broker Features Service Management, Discovery/Composition, SLA and User Management,
Monitoring, Metering, etc. – direct support for broker application features

from feature discussion in
Section 2.2 (Table 2)

Note 1: categorisation terms (instances) extracted from these sources: [10], [12], [20], [27], [43].
Note 2: Other general cloud platform properties could have been considered. These include auxiliary information for the

distribution model, e.g., license model, or properties that describe interoperability aspects, e.g., cloud tools or
programming languages supported. We have left out features that are not strictly oriented towards broker construction or
that would only add auxiliary descriptive information for core categories (such as languages support if support exists).

• secondly, a range of standard properties and in-
dividual components are singled out. Properties
chosen here (Core Capabilities) refer to the neces-
sary capabilities for brokers to integrate offerings.

The two features categories organise a number of
system components into common and more advanced
ones. For the brokerage types introduced earlier, we
distinguish support dimensions for service descrip-
tions and the associated manipulation functions: ver-
tical support for the brokerage types customisation
and aggregation through e.g., discovery and selection
features for services; horizontal support for the bro-
kerage types integration and aggregation through e.g.,
queuing, storage or elasticity management features (in
federated environments) as applications.

There are multiple dimensions for categorizing bro-
ker systems. An ontological system allows a product
to be tagged with multiple attributes, values, and
relationships. The taxonomy is a simple ontology. The
aim was to create the right structure of categories
and attributes for the systems, assigning multiple
categories, attributes, and attribute values.

In Figs. 6, 7 and 8, we will categorise a number of
solutions [16], [8], [9], [11], [22], [38], [29], [30], [31].

3.3 Broker Platform Dimension - Categorisation
and Descriptive Facet-based Description
The broker-specific platform characteristics shall be
described in two ways:

• categorisation-oriented: addressing the main ob-
jective of the service broker construction (service
prosumption - how services/functions are com-
bined and passed on): Integration, Aggregation,
Customization, Arbitration, Intermediation. This
has been described in Section 2.2.

• descriptive: addressing platform-based broker
construction as a software systems development
based on three facets of software engineering:
architecture & interoperability, languages & pro-
gramming, and quality.

The second format allows us to drill down and com-
pare the support of broker platforms using a more
descriptive format. The aim is to judge the support
given by the platform to facilitate broker capabilities
such as aggregation, intermediation or arbitration.
This second, deeper and more descriptive classifica-
tion schema is based on three facets derived from
generic software engineering concerns – see Table 5.

4 APPLICATION AND EVALUATION

We applied the categorisation and comparison frame-
work to a number of cloud brokerage solutions. The
primary aim of this application was to evaluate the
framework regarding two concerns:

• Adequacy (fit for purpose): can it identify
strengths/limitations (compared to self-procla-
mation) by detecting the presence or absence of
common features using a unified terminology?

• Completeness: are major features of tools not
covered by the framework?

Compliance with specific definitions such as NIST
is not an objective. Neither is the comparison itself
meant to be comprehensive in terms of the solutions
covered, although we apply a rigorous approach to
the selection of the solutions.

4.1 Selection of Cloud Solutions
We selected only open-source solutions (to determine
the state-of-the-art) and research-oriented projects (to

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

TABLE 5
Descriptive Comparison – Broker Platform Properties.

Facet1 Sub-Facets Definition Source2
Architecture
and
Interoperability

- Architecture
Components

- Clouds Supported
/ Interoperability

The solution architecture is a key element in the definition of a broker. Of
practical relevance are the existing, typically lower-layer solutions that the
system supports. This is an interoperability concern.

Software
Design

Languages
and
Programming

- Service
Language

- Programming
Model

- Service
Engineering

Service description and implementation plays a key role for interoperability
[33]. For selected solutions, we look at the following three aspects:

• service language – the core notation, including the coverage of concerns
vertically (PaaS/IaaS integration) and horizontally (full lifecycle manage-
ment) and how this is manipulated (format and API).

• programming model – using the language to program brokerage
solutions, linking to SOA principles and other development paradigms.

• service engineering – covering wider design and architecture concerns,
including monitoring and mashups.

Software
Con-
struction

Service
and
Architecture
Quality

- Elasticity /
Scalability

- QoS / SLA
Monitoring

A wider range of non-functional software qualities (e.g., based on ISO9126)
would need to be considered here. These quality concerns also need to be
addressed by the service description notation. Scalability and elasticity are
two specific cloud quality concerns generally used to differentiate capabilities
of the cloud in comparison to on-premise architectures. Therefore, we mainly
focus on these. Load balancers are typically used to control elasticity based on
monitored key performance indicators (KPIs). Multi-tenancy, if available, can
alleviate elasticity problems. Wider quality/KPI concerns are equally important.
Based on specifications, these are looked after by configuration management
tools to set up probes and monitoring tools to collect and analyse data.

Software
Quality

Note 1: The descriptive elements and their sub-facets should be based on the Vocabulary introduced in the Generic
Capabilities and Generic Features in Tables 1 and 2.

Note 2: Based on the IEEE Software Engineering Body of Knowledge SWEBOK [42] and the Joint ACM/IEEE
Curriculum Guidelines for Graduate Degree Programs in Software Engineering [1].

detect maturing trends). Commercial solutions have
been considered in the analysis to determine the
framework in Section 2.2, but have been excluded here
to reduce threats arising from more biased and in-
complete available information. Sample open-source
solutions (OSS) can thus be categorised:

• IaaS: OpenStack, for instance, is a basic IaaS cloud
manager that transforms data-centres to become
IaaS clouds [31].

• PaaS: OpenShift and CloudFoundry are open
PaaS platforms assisting the cloud app developer
by commoditising the software stack [8], [30].

The Open IaaS/PaaS solutions can be differentiated
from respective IaaS/PaaS brokers. In the following,
we will try to point out the salient differences between
some cloud brokers that go beyond IaaS/PaaS man-
agement solutions. For instance, Optimis and Com-
patibleOne are IaaS-oriented, and only 4CaaSt targets
PaaS and to some extent also the SaaS domain. There
is, however, SaaS broker activity in the commercial
space – as reviewed in Section 2.2.

Solutions were selected based on key-word searches
using the Google search engine following standard
selection mechanisms used in systematic literature
reviews (SLRs) [24], [21], applied to cloud solutions. A
SLR reduces bias and follows a sequence of method-
ological steps. SLRs rely on well-defined and evalu-
ated review protocols to extract, analyse and docu-
ment results. We adopted a three-step review process
that includes planning (based on Section 3), con-
ducting (Section 4.1) and documenting (Section 4.2,

4.3). We use an explicit characterization framework
of the reviewed items. This is the foundation for a
comparative analysis based on our analysis dimen-
sions. Cloud and open-source were search terms
included, but IaaS and PaaS were distinguished:

• Terms "cloud paas open-source" resulted in
OpenShift, CloudFoundry, Cloudify,

Stratos, Pivotal, Tsuru, Paasmaker,

CloudBees, Cocaine

– from which we selected the first three.
• Terms "cloud iaas open-source" resulted in

Openstack, OpenNebula, jcloud, mOSAIC

– from which we selected the first three again.
Searching for "cloud paas open-source service

broker management" aimed at covering dedicated
brokerage solutions, but resulted only in
CompatibleOne as a new, not yet covered solution.

To select relevant research projects, we matched
"cloud project service broker

management"

against project summary information provided by the
EU (full documentation available), which resulted in

4CaaSt∗, Broker@Cloud, Cloud4SOA,

Modaclouds, mOSAIC∗, PaaSage, Ocean,

Optimis∗, Reservoir∗,
from which we selected those that were finished at
the time of this research (September 2014) – marked
with an asterisk ∗. We focussed on the EU context
as the reporting and documentation mechanism is

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

consistent for the selected projects. In [18], a more
global review of research projects is provided – which
has overlapping EU projects and similar results.

An observation is that the broker pattern receives
attention and that reusable solutions are in develop-
ment, starting with the IaaS layer, but including PaaS
and SaaS over time. The existence of marketplaces,
which are interesting for the diverse SaaS space, indi-
cates the existence of broker solutions. A wide range
of commoditised broker platforms can be expected in
the future to service the different broker types defined,
but also provide a fuller range of features.

4.2 Categorisation - Platform Dimension

In Tables 6 to 8, we categorise the solutions selected in
Section 4.1 [8], [9], [22], [29], [38], [30], [31], [16], [11]
according to the defined classification taxonomy. As
we review broker platforms, only the two platform di-
mensions are covered – although it needs to be noted
that some like CompatibleOne or 4CaaSt have ap-
plication features as well. Compatible One provides,
for instance, platform features like SLA management
(SLAM) and intermediation and integration features
(PROCCI), and also application functions for service
brokering (BROKER). Note that in Table 8, instead of a
detailed feature list, we only summarise this as ’Y’ if a
sufficient number of features is covered per category2.

4.3 Descriptive Facet-based Comparison

In the following, we review solutions with respect
to three facets defined in Table 5: architecture &
interoperability, languages & programming, and qual-
ity. We do not consider all selected solutions in the
comparison, but only select the most advanced ones
for each aspect as the objective here is framework
evaluation only. For this, a smaller number of feature-
rich, advanced cases are sufficient. A comprehensive
state-of-the-art review is not aimed at here. A detailed
presentation of the comparison results is presented in
Tables 9 to 11. Here, we single out key observations.

Architecture and Interoperability. In Table 9, a
number of PaaS-level solutions are summarised in
terms of these two aspects. Common are the utili-
sation of configuration management solutions, such
as Chef or Git. The deployment is managed through
consoles or APIs, mapping PaaS-level requests down
to IaaS operations. As many IaaS solutions are of-
ten supported, interoperability is a critical concern.
CompatibleOne is OCCI-compatible in its support for
VM management, i.e., it provides dynamic architec-
ture management and interoperability. For instance,
Mosaic assumes a Linux OS, which runs Mosaic App

2. A figure of 35% of features covered was considered as suffi-
cient. The figure was derived from the percentage of core features
that are on average covered by the selected tools.

Components (called CloudLets). A number of com-
mon commercial cloud solutions are supported by
Mosaic, including Amazon and Rackspace products.

Languages and Programming. Solutions are com-
pared in Table 10, e.g., Cloudify uses application
recipes and resource node templates (Groovy scripts)
as the programming model. A service recipe contains
LCM scripts, monitoring probes and IaaS resourcesre-
quirements. Mosaic uses an ontology as the notation
and a component-based application programming
model for portability of apps across compliant clouds.
Patterns emerge as solutions to compose, connect and
manage clouds in distributed contexts.

Quality. Table 11 covers quality. Common compo-
nents such as monitoring, load balancers and scalabil-
ity engines are the key capabilities required here.

4.4 Evaluation of the Framework
We have categorised broker platforms based on the
platform taxonomy aspects. Specifically, looking at the
perspective of the user types is now valuable. For
instance, developers are supported in three categories:
a) API library: jcloud, b) Devops: Cloudify and c) Full
PaaS: CloudFoundry, OpenShift. A trend goes from
provider-oriented solutions to developer-oriented so-
lutions to end user-oriented cloud management [3]
– 4Caast being an example of the latter. A deeper
discussion of trends and challenges emerging from
this discussion shall follow in the next section. We
now turn to the evaluation of the framework itself in
terms of adequacy and completeness.

Adequacy. The framework is adequate by provid-
ing a sufficiently complete framework.

• Broker Definition. This was achieved by using
the three most cited brokerage definitions as the
starting point. We define five types that subsume
each of the three literature sources.

• Capabilities and Features. We identified fine-
granular capabilities and features from the liter-
ature. Additionally, we used common categorisa-
tions from the cloud computing community (e.g.,
delivery models) and software engineering (spec-
ification and design) to add further dimensions.

While only 10 solutions have been used here for
validation, initially 13 open-source and 6 commercial
products were considered and documented in [15].

Completeness. The completeness has been empir-
ically validated through an application for a state-
of-the-art comparison. For this, the cases have been
systematically selected to reflect a broad range of
advanced systems. An investigation of the concrete
descriptions has not resulted in any relevant concepts
lacking in the framework. Some table parts (Tables 7
and 8) are sparsely populated, but still several tools
per feature can be identified, which means that the
respective feature is present in state-of-the-art systems
and, thus, the respective feature category is valid.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

TABLE 6
Broker Platform - Generic Category and Type.

LAYER and MAIN TYPES
Name Type Cloud Layer Multi Cloud

API Library
IaaS Fabric
Controller

Open PaaS
Solution

Open PaaS
Provider

OpenNebula Cloud Fabric Controller IaaS Y
OpenStack Cloud Fabric Controller IaaS Y
jclouds API Library PaaS Y
Cloudify Cloud Devops & LCM PaaS Y Y
CloudFoundry PaaS PaaS Y Y
OpenShift PaaS PaaS Y
CompatibleOne IaaS Broker PaaS Y
Mosaic PaaS PaaS Y Y
4Caast Service Broker PaaS
Optimis IaaS Broker PaaS Y

TABLE 7
Broker Platform - Generic Capabilities and Features/Components.

CORE CAPABILITES CORE FEATURES
Name Multi IaaS

Support
Multi
Language
/ Multi
Frame-
work

Multi
Stack

Service
De-
scription
Language

Native
Data Store

Native
Message
Queue

Program-
ming
Model

Elasticity
Scalability

QoS /
SLA Mon-
itoring

OpenNebula
OpenStack Y Y Y Y
jclouds Y
Cloudify Y Y Y Y Y Y Y
CloudFoundry Y Y Y Y Y Y
OpenShift Y Y Y Y Y
CompatibleOne Y Y Y Y Y
Mosaic Y Y Y Y Y Y
4Caast Y Y Y Y
Optimis Y Y Y Y Y

TABLE 8
Broker Platform - Broker-specific Capabilities and Features.

BROKER CAPABILITES BROKER FEATURES
Name Aggrega-

tion
Intermedi-
ation

Integra-
tion

Arbitrage Customi-
sation

Aggreg/
Integr/
Custom

Intermed/
Mgnt/
Arbitrage

Dynamic
Integra-
tion

Workload
Manage-
ment

OpenNebula
OpenStack
jclouds
Cloudify Y Y Y
CloudFoundry Y Y Y
OpenShift
CompatibleOne Y Y Y Y Y Y Y
Mosaic Y Y Y
4Caast Y Y Y Y Y Y
Optimis Y Y Y Y

As a result, the solution is adequately fit for pur-
pose. It allows a neutral classification along dimen-
sions originating from different fields. It is therefore
consistent with a common understanding of key con-
cepts. It also serves as an analysis tool. From the
results in Tables 9 to 11, e.g., the ongoing development
of scripting languages emerges as the focus in the pro-
gramming context, or work on scalability engines as
a quality concern, emerges as indicators of activities.

4.5 Discussion and Challenges
The need for management support and interoperabil-
ity becomes apparent in the context of cloud service
brokerage, where independent actors in the ecosystem
integrate, aggregate/compose and customise/adapt
existing services [17], [27]. End-to-end personalisation

becomes achievable. Prosumers may create mashups
from existing services.

From the above comparison between various cloud
solutions, we can note a difference between the needs
of cloud brokerage and cloud marketplaces. We did
already introduce them as different patterns above.
Service management is already a common solution,
often provided as a domain-independent platform.

• A brokerage solution needs to automate the pro-
cess of matching service requirements with re-
source capacity and capabilities [40]. The ideal
would be a total commoditisation of IaaS so that
any compute resource could be plugged into a
user’s compute capacity. Therefore, interoperabil-
ity is of importance. There are areas of com-
patibility that should be considered in match-

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

ing that are not handled by brokers currently.
For example, none of the solutions that were
assessed considered data integrity as a matching
criterion; however, they all included performance
in their criteria. Security is another aspect that
has a technical nature, but is also abstract insofar
as it can be implemented by a cloud provider.
Data integrity and security policy enforcement,
if considered as criteria when evaluating cloud
interoperability, may need to be formalised us-
ing a standardised language to describe common
aspects, similar to the languages that have been
created to model other cloud entities.

• A marketplace needs to additionally focus on the
possibly distributed architecture of the applica-
tions as well as the cloud. The appstore model
appears to be the de-facto model of choice for the
marketplace, but this seems more an admission of
the success of the Apple initiative rather than re-
search. There is a potential to explore other forms
of the online marketplace suitable to cloud apps
and their composition [26], [13]. This can also
be extended to an even more commodity-based
scenario where all services could be registered on
a wide-area multi-marketplace scale.

Table 7 shows that broker-specific core and advanced
features are not comprehensively supported in avail-
able tools. 4Caast and Optimis cover these, but are as
research projects not available as products. A wider
discussion, arising from the concrete comparisons
above, shall now follow in terms of commoditisation

The commoditisation of cloud services is an emerging
need arising from the discussion – specifically from
the language and programming facet. A trend is to
move from the lower IaaS layer to PaaS and onwards
to encompass SaaS, aiming to integrate lower layers
– 4CaaSt is an example. To make this work, services
at all layers need to be available for a uniform way
of processing in terms of selection, adaptation, inte-
gration and aggregation. Commoditisation is the con-
cept to capture this need. Some concrete observations
related to the reviewed open-source solutions are:
(i) fully functional image and vertical stack building
capabilities (CompatibleOne leadership), (ii) program-
ming and operational support of service composition
(4CaaSt leadership) and (iii) graphical manipulation
of service abstractions (Optimis leadership). Com-
moditisation can be supported through a uniform
representation based on description templates. The
programming model with its supporting program-
ming/scripting languages is crucial here. These need
to cover the architecture stack and meet language and
quality concerns discussed in Section 4.

Commoditisation is an enabler of functions on top
of a broker platform. Thus, additional challenges and
requirements, for marketplaces in particular, are:

• data integration and security enforcement as non-

functional requirements,
• social network functions allowing service ratings

by the communities,
• SLA management to be integrated, e.g., in terms

of monitoring results.
Commoditisation can be facilitated by an operational
development and deployment model to act as an
enabler. This ties in with another observation. A
proliferation of cloud capacity clearing-houses, which
operate similar to a spot market to allow clouds to
buy and sell spare cloud capacity on a very short-term
basis, has only started. It is less clear what is needed
to facilitate this from a construction perspective.

Federation is the second trend for brokerage solu-
tions [7], i.e., to work across independently managed
and provided cloud solutions of an often hetero-
geneous nature. Some challenges and requirements
arising from the architecture and interoperability dis-
cussion can be identified:

• Reference architectures – cf. NIST cloud broker-
age reference architecture [27].

• Scope of control – the management of configura-
tion and deployment based on integrated and/or
standards-based techniques [25].

• Federation and syndication – as two forms of
distributed cloud architectures [37].

5 CONCLUSIONS

We have introduced the main concepts of service
brokerage for clouds, using some concrete systems
and platforms to identify current trends and chal-
lenges and compare current, primarily open-source
solutions. Brokerage relies on interoperability, quality-
of-service and other architectural principles. Brokers
and marketplaces can play a central role for new
adopters migrating to the cloud or between providers
[21], [34]. Brokers will act as first points of call.

Our classification and comparison framework iden-
tifies three dimensions – two platform and one appli-
cation oriented. Taxonomy-based categorisation helps
to characterise solutions in terms of type, common
components and features. The second mechanism is
a more descriptive, layered taxonomy starting with
architecture and interoperability, languages and pro-
gramming, and quality as facets. Our objectives have
been to clarify the conceptualisation of cloud service
brokerage by taking more architectural concerns into
account, but also to provide a framework for industry
and academia to classify and compare solutions.

An observation of our comparison based on the
framework is the emergence of cloud broker solutions
on top of cloud management. A further separation
of marketplaces, often in the form of appstores, is
necessary. A number of activities work in this direc-
tion. Compatible One is an example showing how
OCCI is used as an infrastructure foundation and
built upon to provider PaaS-level brokerage. 4CaaSt

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

in a similar vein aims to integrate the layers and
move toward a marketplace solution. Commercial
broker applications, that have already supported the
framework construction here in Section 2.2, show
already existing brokerage and marketplace solutions
ranging from images to software services, essentially
commoditising the respective cloud resources.

Service description mechanisms discussed in [28],
[36], [32] (as manifests, recipes and blueprints), but
also in standards and languages like TOSCA and
CloudML, can serve to abstract, manipulate and com-
pose cloud service offerings in an effort to commodi-
tise the cloud. These description mechanisms, based
on an abstract model serve two purposes: Firstly,
to abstractly capture, present and manipulate cloud
resources. Secondly, to serve as a starting point to
link to configuration and other deployment concerns
in federated clouds. Thus, commoditisation and fed-
eration emerge as challenges from our discussion.

Future work includes trust as an equally important
concern that is more difficult to facilitate technically
than commoditisation. A mechanism is needed for not
only vetting individual providers, but also to allow
this to happen in layered, federated and brokered
cloud solutions. Furthermore, end-users, intermedi-
aries such as brokers and providers – the key roles we
identified – have different lifecycles that need to be in-
tegrated. Forrester Research [14] has already provided
basic ideas, but a deeper investigation into lifecycle
and workflow integration would be necessary.

ACKNOWLEDGMENTS

This research has been supported by the Irish Centre for
Cloud Computing and Commerce and the Royal Irish
Academy/Royal Society Intl Cost Share Grant IE131105.

REFERENCES
[1] ACM/IEEE. Area Definitions – Joint ACM/IEEE Curriculum

Guidelines for Graduate Degree Programs in Software Engi-
neering GSwE2009. http://www.gswe2009.org. 2009.

[2] R. Barrett, L. M. Patcas, C. Pahl, and J. Murphy. Model Driven
Distribution Pattern Design for Dynamic Web Service Compo-
sitions. International Conference on Web Engineering ICWE’06.
Pages 129-136. Palo Alto, US. ACM Press. 2006.

[3] T. Benson, A. Akella, S. Sahu, A. Shaikh. Peeking into the
Cloud: Toward User-Driven Cloud Management. CloudS 2010
Conference, Sydney, Australia. 2010.

[4] D. Benslimane, S. Dustdar, A. Sheth. Services Mashups: The
New Generation of Web Applications. Internet Computing,
vol.12, no.5, pp.13-15, 2008.

[5] D. Bernstein, E. Ludvigson, K.Sankar, S. Diamond, M. Morrow
Blueprint for the Inter-cloud: Protocols and Formats for Cloud
Computing Interoperability. Intl Conf Internet and Web Appl
and Services. 2009.

[6] R. Buyya. Compatibility-Aware Cloud Service Composition
under Fuzzy Preferences of Users. IEEE Transactions on Cloud
Computing, 2(1):1-13. 2014

[7] R. Buyya, R. Ranjan, R.N. Calheiros. Intercloud: Utility-
Oriented Federation of Cloud Computing Environments For
Scaling of Application Services. Intl Conf on Algorithms and
Architectures for Parallel Processing , LNCS 6081. 2010.

[8] Cloud Foundry. Open Source PaaS Cloud Provider Interface.
http://www.cloudfoundry.org/. 2015.

[9] Cloudify. Cloudify Open PaaS Stack.
http://www.cloudifysource.org/. 2015.

[10] Cloud Standards. http://cloud-standards.org/. 2015.
[11] CompatibleOne. Open Source Cloud Broker.

http://www.compatibleone.org/. 2015.
[12] ETSI Cloud Standards. http://www.etsi.org/news-

events/news/734-2013-12-press-release-report-on-cloud-
computing-standards. 2015.

[13] C. Fehling, R. Mietzner. Composite as a Service: Cloud Appli-
cation Structures, Provisioning, and Management. Information
Technology 53:4, pp. 188-194. 2011.

[14] Forrester Research. Cloud Bro-
kers Will Reshape The Cloud. 2012.
http://www.cordys.com/ufc/file2/cordyscms sites/download/
09b57cd3eb6474f1fda 1cfd62ddf094d/pu/

[15] F. Fowley, C. Pahl, L. Zhang. A Comparison Framework and
Review of Service Brokerage Solutions for Cloud Architectures.
1st International Workshop on Cloud Service Brokerage (CSB
2013). Springer. 2013

[16] S. Garcia-Gomez et al. Challenges for the comprehensive
management of Cloud Services in a PaaS framework. Scalable
Computing: Practice and Experience 13(3). 2012.

[17] Gartner - Cloud Services Brokerage. Gartner Research,
2013. http://www.gartner.com/it-glossary/cloud-services-
brokerage-csb

[18] N. Grozev, R. Buyya. InterCloud architectures and application
brokering: taxonomy and survey. Software: Practice and Expe-
rience. 2012.

[19] C.N. Höfer, G. Karagiannis. Cloud computing services: taxon-
omy and comparison. Journal of Internet Services and Appli-
cations, 2(2), 81-94. 2011.

[20] IEEE Cloud Standards. http://cloudcomputing.ieee.org/standards.
2015.

[21] P. Jamshidi, A. Ahmad, C. Pahl. Cloud Migration Research: A
Systematic Review. IEEE Transactions Cloud Computing. 2013.

[22] Jclouds. jclouds Java and Clojure Cloud API.
http://www.jclouds.org/. 2015.

[23] A. Juan Ferrer et al. OPTIMIS: A holistic approach to cloud
service provisioning. Future Generation Computer Systems,
28(1):66-77. 2012.

[24] B. Kitchenham and S. Charters. Guideline for Performing
Systematic Literature Reviews in Software engineering. Keele
University and University of Durham, 2007.

[25] A.V. Konstantinou, T. Eilam, M. Kalantar, A.A. Totok, W.
Arnold, E. Sniblel. An Architecture for Virtual Solution Compo-
sition and Deployment in Infrastructure Clouds. Intl Workshop
on Virtualization Technologies in Distr Computing. 2009.

[26] R. Mietzner, F. Leymann, M. Papazoglou. Defining Composite
Configurable SaaS Application Packages Using SCA, Variability
Descriptors and Multi-tenancy Patterns. Intl Conf on Internet
and Web Applications and Services. 2008.

[27] NIST. Cloud Computing Reference Architecture.
http://dl.acm.org/citation.cfm?id=2385915. 2012.

[28] D.K. Nguyen, F. Lelli, Y. Taher, M. Parkin, M.P. Papazoglou,
W.-J. van den Heuvel. Blueprint Template Support for Cloud-
Based Service Engineering. Proceedings ServiceWave11, Poz-
nan, Poland, October 2011.

[29] OpenNebula. OpenNebula - Open Source Data Center Virtu-
alization. http://opennebula.org/. 2015.

[30] OpenShift. Cloud computing platform.
https://openshift.redhat.com/. 2015.

[31] OpenStack. OpenStack Open Source Cloud Computing Soft-
ware. http://www.openstack.org/. 2015.

[32] C. Pahl. Layered Ontological Modelling for Web Service-
oriented Model-Driven Architecture. European Conf on Model-
Driven Architecture ECMDA2005. 2005.

[33] C. Pahl, S. Giesecke and W. Hasselbring. Ontology-based
Modelling of Architectural Styles. Information and Software
Technology (IST). 51(12): 1739-1749. 2009.

[34] C. Pahl, H. Xiong. Migration to PaaS Clouds - Migration
Process and Architectural Concerns. IEEE 7th International
Symposium on the Maintenance and Evolution of Service-
Oriented and Cloud-Based Systems MESOCA 2013. 2013.

[35] C. Pahl, H. Xiong, R. Walshe. A Comparison of On-premise to
Cloud Migration Approaches. Europ Conf on Service-Oriented
and Cloud Computing ESOCC. 2013.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

TABLE 9
Architecture and Interoperability.

Cloudify CloudFoundry OpenShift CompatibleOne 4Caast

Architecture /
Components

- Console for plat-
form commands.
Web management
console for
monitoring.
- Service Manager
uses scripting
(recipe) to cater for
middleware stack
- Cloud Controller
is REST endpoint
to manage app
deployment &
control; injects
agent on VM to
install & orchestrate
app deploy /
monitor/ scale
- Cloud Driver:
VM templates
for different
IaaS clouds in
configuration.
Triggers host
provisioning

- Console pushes
app to cloud;
deployment
management
/ configuration
through console.
- Controller
runs as a VM
on the target
IaaS; controls all
Cloudfoundry
(CF) spawned
cloud VMs. Does
not manage
any IaaS layer
functions.
- IaaS provider
must support
CF. Apps created
using CF are
deployed to CF
VMs controlled by
a Cloud Controller
on CF-compliant
IaaS clouds.

- Divided into
control plane
(Broker) and
msg / hosting
infrastructure
(nodes).
- Controller is
command CLI
shell, used to
create apps.
GIT for app
management /
deployment.
- Gear is appli-
cation container
and a virtual
server/node
accessed via ssh.
Cartridge service
runs on a Gear.
App LCM scripts
allow for post-
deployment action
hooks to run on
VMs.

- ACCORDS
exposes features
through REST API.
- Parser validates
Manifest against
CORDS schema
and maps
elements to valid
OCCI categories
which are then
instantiated.
- Publisher
provides which
endpoint serves
which categories.
Parser runs and
produces a plan of
OCCI instances for
resolution (instance
can receive/send
data).
- Broker processes
plan and invokes
instances.

- Exec Container
REC runs
instances.
- Deployment
Manager maps
deployment model
(service template,
QoS constraints)
to OVF. Service
Manager deploys
images using
Claudia.
- REC includes an
agent (application
LCM, control)
and a server
(storage, config
data). Deployment
Server (Chef) talks
to Service & REC
Manager. OVF
Manager creates
extended OVFs
from resolved
BluePrints.

Clouds
Supported
/ Interoper-
ability

Supports Azure,
OpenStack,
CloudStack, EC2,
Rackspace, Terra-
mark (buildable for
any of the jclouds
above)

Supports AWS,
Openstack,
Rackspace,
vCloud, vSphere.
Hosted as public
PaaS.

Uses DeltaCloud;
app runs on
RedHat certified
public cloud
(needs deltacloud
support).

OCCI provider
interfaces (PROC-
CIs) for OpenStack,
OpenNebula and
Azure (also SlapOS
and SlapGrid).

FlexiScale driver
provided.
OpenNebula
supported.
Generic IaaS
Cloud API
through Tcloud.

[36] M.P. Papazoglou, W.J. van den Heuvel. Blueprinting the
Cloud. IEEE Internet Computing, November 2011.

[37] A. Paya, D.C. Marinescu. Clustering Algorithms for Scale-free
Networks and Applications to Cloud Resource Management.
2013.

[38] D. Petcu et al. Portable cloud applications - from theory to
practice. Fut. Gen. Computer Systems 29(6):1417-1430. 2013.

[39] S. Ried. Cloud Broker A New Business Model Paradigm.
Forrester. 2011.

[40] L. Rodero-Merino, L.M. Vaquero, V. Gil, F. Galan, J. Fontan,
R.S. Montero, I.M. Llorente. From Infrastructure Delivery to
Service Management in Clouds. Future Generation Computer
Systems, vol. 26, pp. 226-240. 2010.

[41] L. Sun, H. Dong, and J. Ashraf. Survey of Service Description
Languages and Their Issues in Cloud Computing . Eighth
International Conference on Semantics, Knowledge and Grids
(SKG) 2012. pp. 128-135. IEEE. 2012.

[42] IEEE. Software Engineering Body of Knowledge SWEBOK.
http://www.computer.org/portal/web/swebok. 2004.

[43] Wikipedia - Cloud API,Wikipedia. 2015.

Frank Fowley is a Senior Research Engi-
neer at the Irish Centre for Cloud Computing
and Commerce IC4. His research interests
include cloud computing and security. Frank
holds an M.Sc. from Dublin City University in
Forensics and Secure Computing.

Claus Pahl is a Senior Lecturer at Dublin
City University, where he is a principal inves-
tigator of the Irish Centre for Cloud Comput-
ing and Commerce IC4. His research inter-
ests include software engineering in service
and cloud computing. He holds a Ph.D. in
computing from the University of Dortmund
and an M.Sc from the University of Technol-
ogy in Braunschweig.

Pooyan Jamshidi is a research associate
at Imperial College Dublin. He holds a PhD
from Dublin City University. He received the
BS and MS degrees in computing from
Amirkabir University of Technology. His gen-
eral research interests are in software engi-
neering and his focus lies predominantly in
the areas of self-adaptive software, software
architecture and cloud computing.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

TABLE 10
Service Language, Programming Model and Service Engineering.

Reservoir CompatibleOne 4Caast Optimis

Service
Language

Service Definition
Manifest for metadata;
software stack (OS,
middleware, app,
config, data) in
virtual image; service
descriptions for
contracts between
service provider SP
and infrastructure
provider IP.
Manifests (OVF) relate
abstract entities and
LCM of services.
Feedback between
SP and IP allows IP to
scale and monitor.

Units of Service
Manifest: Image &
Infrastructure. Image:
System (base OS) &
Package (stack config);
Infrastructure: Storage,
Compute & Network.
Image is description
of manual app build.
Image has agent that
is embedded in VM
& runs on startup.
Agent is script to run
required configuration,
set up monitoring
probes, or download
components.

Resources and Services
are described in a
Blueprint BP, which is
an abstract description
of what needs to
be resolved into
infrastructure entities.
BPs are stored and
managed in a BP
repository via a REST
API. A BP is resolved
when all requirements
are fulfilled by another
BP, via the Resolution
Engine (is service
orchestration feature).

Service Manifest
includes sections
per component per
VM. Service Register
has sections for SP
requirements and
IP capabilities, VM
abstract description,
TREC (trust, risk,
eco-efficiency, cost),
elasticity, data
protection. Has
provider description
schema for a SP to
provide its capabilities
in an XML Optimis-
compliant format.

Program-
ming Model

Elasticity is defined
using ECA rules to
scale infrastructure
dynamically based
on application KPI
metrics. Rules in OCL.

PaaS4Dev: Java EE
services (EE5/6 web
profile) & Enterprise
OSGi services (http,
jndi, transaction) for
development

Uses Active MQ,
postgresql, jonas,
ow2orchestra, apache
serv bus. Ontology-
based BP schema using
Jena, SPARQL.

Java schemas, jaxb,
xmlbeans, REST,
monitor; also jax-ws,
cxf, javagat. IDE is
Eclipse with plugin for
Optimis core classes.

Service
Engineering

Service provisioning
described in De-
ployment Descriptor.
Service configuration
automation based on
Xen configuration.
Service Elasticity is
achieved through
mapping Manifest
KPIs with run-time
metrics gathered by
app monitoring agents.

- Nested manifests
support service
composition.
- COSACS module
embeds in VM image
mechanisms to manage
lifecycle, e.g., post-
creation monitoring
setup and appliance
config, in conjunction
with image production
module.

- Request Language
BRL & request patterns
create Blueprint BP
service specification -
mapped to operations
and mgmt API
calls. Mashup for
composition.
- BP consists of BP
images, contains
functional, KPI &
policy parameters.

Toolkit provides
image mgmt, context
manager injects
context information
to VMs and Elasticity
Engine to add/remove
resources. Service
Deployment Optimiser
optimises placement of
services. Configuration
using the Toolkit IDE.

TABLE 11
Quality: Scalability/Elasticity and SLAs.

CloudFoundry OpenShift CompatibleOne 4Caast Optimis

Elasticity /
Scalability

Can add/remove
instances for
scalability and
change CPU &
memory limits on
VMs

Automatic gears
add/remove as
load changes.
Multi-tenancy
using multi-gears
on VMs

Elasticity is
provided by
the load balancer
module for the
IaaS resources.

Not in current
release.

The toolkit
includes an
Elasticity Engine
to add / remove
resources.

QoS / SLA
Monitoring

There is only a
basic logging
facility with
Cloud foundry
but there are
many third-party
Cloud Foundry
monitoring
plug-ins can be
used to provide
application
monitoring, such
as Hyperic.

The application
scaling, when
automatic,
is based on
concurrent ap-
plication request
thresholds.
The resources
consumed by an
application can
be monitored and
viewed from the
Console.

via COMONS
Monitoring
module.

Monitoring based
on probe injection
on PICs via
REST. Modified
JASMINe provides
dynamic probe
deployment &
config. Chef recipe
configs VM probes
for REC manager.
Monitoring based
on collectd stats
for forecasting.

Framework uses
REST to get
CPU/disk usage
from monitoring
which resides on
nodes and run
as scripts to feed
data to monitor
store. SLA
Manager built
using WSAG4J
based on OGF
WS-Agreement.

Daren Fang Daren Fang is a Research As-
sociate at Edinburgh Napier University, UK.
His research interests include cloud service
modelling, green service optimization, ser-
vice adaptation, and service evolution.

Xiaodong Liu Xiaodong Liu is a Reader and
the Director of Centre for Information & Soft-
ware Systems at Edinburgh Napier Univer-
sity. His research interests include context-
aware adaptive services, cloud service evo-
lution, pervasive computing. He holds a PhD
in software engineering from De Montfort
University, a MSc and BEng from Renmin
University and Xi’an Jiaotong University.

