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Abstract — Pay-as-you-consume, as a new type of cloud 

computing paradigm, has become increasingly popular since 
a large number of cloud services are gradually opening up to 
consumers. It gives consumers a great convenience, where 
users no longer need to buy their hardware resources, but are 
confronted with how to deal effectively with data from the 
cloud. How to improve the performance of the cloud platform 
as a consumer-centric cloud computing model becomes a 
critical issue. Existing heterogeneous distributed computing 
systems provide efficient parallel and high fault tolerant and 
reliable services, due to its characteristics of managing large-
scale clusters. Though the latest cloud computing cluster 
meets the need for faster job execution, more effective use of 
computing resources is still a challenge. Presently proposed 
methods concentrated on improving the execution time of 
incoming jobs, e.g., shortening the MapReduce (MR) time. In 
this paper, an adaptive scheme is offered to achieve time and 
space efficiency in a heterogeneous cloud environment. A 
dynamic speculative execution strategy on real-time 
management of cluster resources is presented to optimize the 
execution time of Map phase, and a prediction model is used 
for fast prediction of task execution time. Combing the 
prediction model with a multi-objective optimization 
algorithm, an adaptive solution to optimize the performance of 
space-time is obtained. Experimental results depict that the 
proposed scheme can allocate tasks evenly and improve work 
efficiency in a heterogeneous cluster1. 
 

Index Terms —Pay-as-you-consume; MapReduce; Load 
balancing; Prediction model; K-ELM 
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I. INTRODUCTION 
Pay-as-you-consume, as one of the cloud consuming 

models, is becoming more popular for its benefits, e.g. a large 
number of convenient services, reducing the burden of storage 
and flexible data access, and minimizing the cost of the 
hardware and software [1-2]. Industrial consumers have 
already set up various cloud computing services. Cloud 
computing that has been seen as a successful commercial 
distributed system provides users with on-demand services by 
the reasonable allocation of resources [3-10].  

MapReduce (MR) is a distributed programming model 
proposed by Google. Currently, more and more enterprises 
have applied MapReduce to process data. Apache provides an 
open source implementation version of the MR, which enables 
convenient and efficient big data processing, but also brings 
differences and complexity on resource requirements, data 
delivery deadlines, etc. Such diversity brings new challenges 
to job scheduling and workload management. 

Irrational allocation of resources using current load 
scheduling strategies in cloud systems can lead to inefficient 
job execution and may waste more storage space. Therefore, 
optimization schemes have been proposed [10-19], but most of 
them are only focused on task execution time, whereas storage 
space is often neglected. 

This paper proposes an approach in a cloud system to 
achieve load balancing on both space and time. A dynamic 
speculative execution policy is designed to reduce the running 
time at the map phase. Then, a prediction model set up on the 
kernel-based extreme learning machine (K-ELM) [20-23], 
called PMK-ELM, is proposed to estimate the possible 
execution duration and storage space of new tasks. Depending 
on the characteristics of the data, a modified algorithm called 
DNSGA-II is presented adapting to disperse variables based 
on NSGA-II [24]. A new algorithm combined with the K-ELM 
and DNSGA-II keeps all the nodes complete the task in a 
similar time and maintains a comparable ratio of hard disk 
space usage. Feasibility and performance of the scheme are 
verified in a practical Hadoop environment. As it is applied in 
a consumer-centric cloud computing platform, both consumers 
and service providers can benefit from the platform. 

This paper combines five sections. Related work on load 
balancing is reviewed in Section II. The adaptive method to 
achieve load balancing at map and reduce phases is discussed 
in Section III. Results are presented and evaluated in Section 
IV with comparison of corresponding algorithms. Finally, 
Section V concludes the paper. 



 

II. RELATED WORK 
A. Consumer-centric Cloud Services  

A useful search service is presented in [3], in which 
encrypted cloud data is supported by multi-keyword ranked 
search. An IdM architecture was presented to enhance privacy 
and dynamic federation in a cloud [4]. Abolfazli et al. 
investigated the influence of different parameters to optimize 
the performance Mobile Argumentation based on cloud [5]. 
Based on cloud providers, a new middleware architecture was 
proposed to allow sessions to be transferred to another device 
[6]. A Program Recommendation system called PDPR system 
was implemented under a cloud environment. The proposed 
system can recommend the program to consumers by 
analyzing the viewing pattern [7]. Eom et al. presented an 
integrated smart home management system with community 
hierarchy based on cloud system [8]. A sharing cloud service 
was proposed [9], which provided an enhanced user 
authentication for home networking. 

B. Load Balancing 
In a heterogeneous environment, due to the different 

performance of each node, the node data are difficult to obtain 
a balanced load. [11] proposed a method to allocate more data 
to a node that has better performance. By monitoring running 
map tasks and reduce tasks, Hadoop ensures that all tasks 
running on each node can substantially complete. This method 
can detect a variety of load skew. However, complex 
implementation considerably changed Hadoop. In cloud 
systems, a general method for performance measurement and 
load efficiency has been tested and presented. For example, a 
prediction model based on SVM has been proposed in [12] to 
optimize the performance of a heterogeneous cluster. HAP is 
designed to control the distribution of the results produced by 
map tasks. SVM is then used for calculating the estimated data 
threshold. However, various division and merging would lead 
to extra time. Also, training phase of HAP consumes a lot of 
time. Matsunaga et al. proposed a novel method that can 
provide an accurate performance evaluation of cloud 
environments for distributed applications. Jing et al. proposed 
a prediction model based on classification and regression trees 
for forecasting the resource consumption of a MapReduce 
application [14]. 

Deployment efficiency on visualization has also been 
investigated. A general approach was introduced to estimate 
the resource requirements of applications running in a 
virtualized environment [15]. Dynamic resource demands have 
been studied. When starting a new VM instance, model based 
on adaptive resource provision was then presented for resource 
allocation in a cloud system [16]. 

Besides above methods, optimizing the speculative 
execution strategy in MapReduce has raised researchers’ 
attention. A speculative execution strategy called Longest 
Approximate Time to End (LATE) algorithm was proposed 
[17]. But the running time of every stage is not stable, and the 
standard error used in LATE cannot represent all cases. MCP 

[18] was therefore proposed to solve the problems of LATE. 
Though it has optimized LATE a lot, average running time of 
nodes that utilized in MCP is unreasonable, due to the fact that 
the running time is largely dependent on the performance of 
some node.  

Although many schemes have been put forward, achieving 
load balancing in a cloud system is still not well solved, 
especially in a heterogeneous one. Our previous work [19] has 
been issued in ICCE, however, in this paper, a novel 
speculative execution strategy, called dynamic strategy, is 
newly presented. 

III. APPROACH TO LOAD BALANCING 

A. Dynamic Speculative Execution Strategy 
Speculative execution strategy is initially proposed by 

Google, which can be employed to backup tasks running at 
slow speed. However, the native strategy [18] in MRV2 
suffers from low efficiency, an optimized strategy is, therefore, 
necessary. In dynamic strategy, real-time resources in the 
cluster are well considered before a backup task is launched. 
Resource in MRV2 is call container. The number of left tasks 
is marked as N, currently available containers as C. 

Three states are defined, as follow: 
(1) N>C 
(2) N=C 
(3) N<C  
A speculator continuously detects which case current state 

is. As it is activated, dynamic strategy would be adopted 
according to different cases. 

When there are not enough resources existing now, the 
speculator would kill the native task and starts a new task 
when the time saved by the new task reaches a half of the 
original remaining time. Because of the higher priority, the 
backup task would immediately start on the original node. 

As case (2) that indicates resources on every node are 
equals the resource required. Following steps are taken: 

1) Estimate remaining time of all running tasks based on 
the average consuming time of each node; 

2) Select the task which has the longest remaining time, 
mark as A1 and remaining time of it remT  ; 

3) Find the task that has the shortest remaining time 
'remT  and mark it as B1; 

4) Try to speculate on the running time if A1 runs on the 
node that has the shortest remaining time, mark it as 

newT . When meeting '+rem new remT T T< , the current 
task would be backed up to another node; 

State (3) represents that enough resources can be assigned to 
backup tasks in the cluster. Under this circumstance, due to the 
data locality, the backed-up task has higher priority during the 
scheduling procedure. Every node has a similar volume of 
tasks, however, tasks on the low-performance node (e.g. Node 
A) will not finish on time in a heterogeneous environment. The 



 

finishing timestamp of the current task is calculated by the 
latest five groups of data according to the linear regression. It 
is remT   while that of a backup task is recorded as 'remT  . It is 
calculated based on the mean value of a node or the mean 
value of the cluster when no tasks running on the same node 
have finished. The mean values of each node are stored in set 
MVS. The profit of starting the backup task is calculated 
according to the difference between remT  and 'remT , and it is 
defined as a function, called GetProfit. Detailed flow is 
illustrated in Algorithm 1.  
Algorithm 1. Finding the task when there are enough resources 
Input: Mean value set (MVS), Nodes set(NS), Currently running 
tasks set (CRTS), HostName having the longest average time (HN), 
Speculation Set (SS) 
1    bestProfit=0; bestId=null; 
2    For each task in CRTS 
3   If AllowedSpeculativeTasks > SpeculationsAlready 
4              If GetProfit(taskID)>bestProfit 
5                   bestProfit= GetProfit(taskID); 
6                   bestId=taskID; 
7              EndIf 
8      If |MVS|>|NS| and current task’ host name is HN 
9       addSpeculativeAttempt(taskID); //start backup 
                               Add (taskID, hostname) to SS; 
10       continue; 
11      ElseIf |MVS|=|NS|-1 and progress < 0.2 
12       addSpeculativeAttempt(taskID); 
13       continue; 
14      EndIf 
15          EndIf 
16      EndFor 
17     If bestProfit>0, saved time>20% and progress<0.2  
18         addSpeculativeAttempt(bestId); 
19    EndIf 

 
Then, the following tasks would be transferred to those 

nodes that have enough resources. However, it is not 
reasonable to start a backup task immediately for the purpose 
of saving resources. A backup task would be launched only 
when 20% of the time can be saved, or it is currently running 
on the slowest node (the node has the longest mean running 
time). If the condition is fulfilled, the task A1 would be backed 
up. 

B. Execution time prediction based on K-ELM 
Extreme learning machine based on kernel function (K-

ELM) that proposed by Huang, has been proved to be one of 
most famous algorithms in the machine learning scope.  In this 
section, a prediction model based on K-ELM (PMK-ELM) is 
presented to estimate the running time of reduce tasks when 
they are allocated to different nodes.  

Following steps indicate the progress of establishing a 
prediction model for execution time based on K-ELM in 

detail. 
Step 1: Data Acquisition. Historical data of applications are 

provided by a log analysis tool. The data format is as {Time, 
Reducer Id, Node Id, Input size}. 

Step 2: Data Preprocessing. Samples containing high 
network latency are firstly filtered. Then, the datasets are then 
divided into training samples and test samples. The former 
samples are used for training the prediction model using K-
ELM, whereas the latter is for examining whether prediction 
model has been well trained. 

Step 3: Model Training. To build PMK-ELM, training 
parameters of the model are obtained by using the training 
samples. The specific processes are as follows: 

(1) Set weights and the threshold value;  
(2) Use activation function to work out the hidden layer 

output matrix; 
(3) Calculate output layer weights. 
Step 4: Data validation. Test samples generated by Step 2 

are then used for evaluation the performance of the PMK-
ELM. According to the parameters retrieved in Step 3, the 
predictive values are then compared with the actual values to 
verify the prediction performance. 

C. DNSGA-II 
1) Mathematical model 
When map phase finishes, the intermediate data will be 

assigned to different reducers; however, the amount of data 
allocated to each reducer is not consistent with the 
performance, which consequently causes uneven allocation of 
reducers to nodes. For the sake of making reduce phase 
consumes less time and hard disk space occupation more 
balanced, following conditions should be met:  

a)  Disk usage of a data node should be more than the 
data amount to be assigned to itself; 

b) A reducer can only be allocated to a node (if 
speculation is disabled), but a data node can deal with multiple 
reducers, as shown in Fig. 1. 

Intermediate data generated by map tasks can be divided 
into m splits while there are n data nodes in the clusters. If the 
execution time that each reducer needs is described as tmn, then 
a matrix T can be used to represent the execution time, as 
shown below: 
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In order to evaluate the usage of storage space, the 
percentage of input size srmn from total available size slmn is 
calculated and noted as smn. 

 /mn mn mns sr sl=   (2) 
Then, the hard disk space ratio of each split can be described 

as (3). Finally, the elements of T and S are combined into a 
new matrixTS , and the new elements are expressed as (t, s)mn. 
The real execution time of data node i can be described as ti, 



 

whereas the split size percentage can be represented as si.  
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Fig. 1. Relationship between data nodes and reducers 
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Actually, every row in TS  is a group of feasible solutions 
and it is expressed as iL  

and 1 2{( , ) , ( , ) ,..., ( , ) }i n iL t s t s t s= . 
Finally, two objective functions are given in (5) and (6). The 

purpose of the algorithm is to find the minimum value of them. 
Two constraints of the algorithm are given in (7) and (8), in 
which Sums represents the amount of the data input size 
generated by the Reduce phase. 
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2) Design of DNSGA-II 
Original NSGA-II can solve multi-object problems. 

However, it cannot fit into disperse variables. NSGA-II 
include six aspects. In this paper, the core part of NSGA-II, 

havs been altered to make it suitable for disperse variable, and 
this new algorithm is called DNSGA-II. The original NSGA-II 
algorithm uses Simulated Binary Crossover [23]. However, in 
the proposed scenario, the Crossover probability pc is used for 
a better grouping after being selected. The Crossover stage in 
this scheme consists of two steps:  

Step 1: Randomly match a group of chromosomes; 
Step 2: During matching chromosomes, randomly set 

intersections to make matched individual chromosomes 
exchange their information. 

After randomly selecting paired chromosomes, two 
crossover positions are randomly generated; the cross section 
of elements on the other side of the parent is also removed. 
Then, the new cross section is added to the sequence of the 
parent that has cut out some of the elements.  

Taking two pairs of chromosomes as an example, where 
chromosome X= 143|875|62 and chromosome Y = 123|645|78. 
The cross section is divided by a vertical bar. First, the 
element corresponding to |875| of X is removed from Y, so Y’ 
= 12378; then a gene fragment of A is added to Y’, so 
offspring Y’’ is 123|788|75. Similarly, the offspring X’’ is 
143|626|45. For newly produced offspring X’’ and Y’’, it 
needs to be decided whether the total data size is bigger than 
the storage quota. If it does not satisfies the above condition, 
and it contains any number from 1 to 8, it is regarded as 
applicable; otherwise, iteration will be operated. Under a 
special condition that there are not any feasible solutions after 
the final iteration, the repeated number is replaced by another 
number to format a sequence. Finally, the first group of the 
output results will be chosen to provide a sequence for 
reducers. Take Y as an example, it represents that reducer1, 
reducr2 and reducer are assigned to the Node1. Similarly, 
reducer6, reducer4 and reducer5 are assigned to the Node2. 

IV. EXPERIMENT AND ANALYSIS 
 

A real heterogeneous cloud environment has been set up in 
our laboratory to test the performance and benefits of the 
proposed scheme. The server is equipped with 288 GB of 
memory and a 10 TB hard driver. Eight virtual machines 
configured with different amounts of memory and processors 
are established on the server, and they are connected to a 
physical switch through the bridge mode. Table I has given the 
detailed configuration.  

TABLE I 
THE DETAILED INFORMATION OF EACH VIRTUAL MACHINE 

Node Id Memory(GB) Core Processors 

     Node1 10 8 
     Node2 8 4 
     Node3 8 1 
     Node4 8 8 
     Node5 4 8 
     Node6 4 4 
     Node7 18 4 
     Node8 12 8 



 

 
   (a)                                                                                              (b) 

Fig. 2. Running time comparison of Map phase under three speculative execution strategy. (a) Running time comparison for Sort algorithm under the 
best condition, the worst condition, and average value of most conditions; (b) Running time comparison for WordCount algorithm under the best 
condition, the worst condition, and average value of most conditions. 
 

TABLE II 
 BACKUP TASK INFORMATION OF SORT ALGORITHM 

Strategy Sum of Backup Success of Backup Backup Success 
Rate (%) 

Average Running Time of 
Per Map Task (Minutes) 

Running Time of Map Phase 
(Minutes) 

     Strategy disabled - - - 9.18 20.16 
     Native strategy 54 79 68.36 6.58 20.86 
     Dynamic strategy 19 22 86.36 7.58 18.25 

 
TABLE III 

 BACKUP TASK INFORMATION OF WORDCOUNT ALGORITHM 

Strategy Sum of Backup Success of Backup Backup Success 
Rate (%) 

Average Running Time of 
Per Map Task (Minutes) 

Running Time of Map Phase 
(Minutes) 

     Strategy disabled - - - 6.96 18.32 
     Native strategy 52 22 65.53 6.34 16.23 
     Dynamic strategy 43 35 81.40 6.12 15.32 

In the experiment, dynamic speculative execution strategy 
work only in the Map stage, while in the Reduce stage, it is 
disabled to avoid adverse impacts on the backup task load 
balancing. In addition, only when all the Map tasks have been 
completed, reduce tasks will start. 

Sort and WordCount algorithms were used in the 
experiments to evaluate the performance of the proposed load 
balancing scheme. Purdue MapReduce benchmark test suite 
[25] provided us with free data sets. For Sort algorithm, a data 
set with 30 GB data was provided while for WordCount 
algorithm, a cluster workload containing 50GB data was 
selected as the input. All of the test applications were based on 
Hadoop 2.6.0. 

Overall, the testing process was divided into three steps. 
Stage 1: Dataset Collecting. To get historical data on 

different input data, a Hadoop data collection tool was 
developed in the lab to collect the data. 

Stage 2: Execution Time Prediction. PMK-ELM was then 
activated and used to predict execution time for current 
Reduce tasks.  

Stage 3: Load balancing. Core resource allocation module in 
Hadoop allocate resources based on the results of DNSGA-II. 

A. Evaluation of Dynamic Speculative Execution Strategy 
In this part, the performance of the proposed strategy is 

compared with the native strategy of MapReduce. 
Fig. 2(a) shows the job execution time of three strategies for 

Sort algorithm. On average, dynamic strategy finishes job 
12.5% faster than the native policy and 9.5% faster than 
strategy disabled. 

Fig. 2(b) shows the job execution time of three strategies for 
WordCount algorithm. On average, dynamic strategy finishes 
job 16.4% faster than the native policy and 5% faster than 
strategy disabled. 

It is obvious that dynamic strategy can improve the 
performance for Sort algorithm while the native one cannot 
provide. To find the reasons, further analysis is given in Table 
II and Table III. The backup success rate of dynamic strategy 
is 18.01% higher than the native one for Sort algorithm while 
it has 19.81% improvement over the initial strategy for 
WordCount algorithm. Moreover, since Sort algorithm is an 
I/O-intensive application and unreasonable backup strategy 
could lead to more severe I/O bottlenecks, so the proposed 
strategy has achieved more evident results. However, 
WordCount algorithm is a CPU-intensive application, and 
usually, it would not reach the CPU bottleneck. In this case, 
though the accuracy of the native strategy is not high enough, a 
certain effect still can be obtained. Thus, a dynamic policy that 
has higher accuracy can further improve the performance. 



 

 
Fig. 3. Performance comparison between PMK-ELM and PM-SVM. (a) Evaluation on data fitting of PMK-ELM and PM-SVM for Sort algorithm; (b) 
Evaluation on data fitting of PMK-ELM and PM-SVM for WordCount algorithm; (c) Evaluation on estimation difference for Sort algorithm; (d) 
Evaluation on estimation difference for WordCount algorithm. 
 

TABLE IV 
DIFFERENT EXPERIMENT PARAMETERS 

 Memory(GB) 
Training 
Datasets 

Size(Pieces) 

Test Dataset 
Size(Pieces) 

     Sort 640 560 80 
      WordCount 800 700 100 
 

B. Evaluation of PMK-ELM 
To evaluate the performance of PMK-ELM, during the 

experiment, different input sizes and different numbers of 
input Reducer were also tested, as illustrated in Table IV. For 
the comparison purposes, the proposed prediction model based 
on support vector machine (PM-SVM) was replicated in the 
test environment. A log analysis tool was developed to collect 
the training and test sets. 

PMK-ELM and PM-SVM use RBF function as their kernel 
function, and its description is shown in Eq. (9). Moreover, 
PMK-ELM needs another parameter C and its definition have 
been given in [23]. A parameter b should be obtained for PM-
SVM, whose definition has shown in [12]. 

 ( ) 2
, ( ), 0i j i jK x x exp x xσ σ− − >=   (9) 

A Genetic Algorithm (GA) is applied to generate the best 
parameters of PM-SVM and PMK-ELM. In the experiment, 
max_gen was set 200, C, b and σ  varied from 0 to 100 and 
the size of the population was 50. Experiment results have 
been presented in Table V. MAPE, the same metric as [12], is 
then used to evaluate the results. 

TABLE V 
THE BEST PARAMETERS FOR SORT ALGORITHM GENERATED BY GA 

 
Sort WordCount 

PMK-
ELM 

PM- 
SVM 

PMK-
ELM 

PM- 
SVM 

     C 88.529 - 20.521 - 
     b - 27.453 - 6.914 
    σ  0.052 5.115 0.867 16.583 
     MAPE 14.641% 14.930% 12.647% 13.420% 
     Training Time(s) 0.024 19.965 0.043 3.2314 
     Test Time(s) 0.002 0.148 0.003 0.307 
     Time of finding 

best parameters(s) 57.643 14429.849 58.476 16861.249 

 
The values shown in Table V are the average results of 

running the applications for 50 times. PMK-ELM trained more 
than 100 times faster than PM-SVM for Sort algorithm and 
about 80 times faster than PM-SVM for WordCount 
algorithm. Although the test time of each group and each 
application is very short, PMK-ELM still needs shorter time 
than the PM-SVM. In addition, the accuracy of PMK-ELM is 
also higher than the PM-SVM.  

Fig. 3(a) and Fig. 3(b) depict the prediction values of PMK-
ELM and PM-SVM results and their comparison. In Fig. 3(a), 
values generated by PMK-ELM fit closer to the real values 
compared with those produced by PM-SVM. In Fig. 3(b), a 
similar trend can be discovered. If the training time and testing 
time is taken into account, PMK-ELM is a better choice. 

C. The performance of the proposed load balancing scheme 
(Hadoop-LB) 

In this section, the Sort experiment is firstly run once with 



 

  

 
                   (a)                                                                                                                              (b) 

Fig. 4. Comparison between Hadoop-Original and Hadoop-LB in execution time. (a) Final data placement condition under Hadoop-Original; (b) Final 
data placement condition under Hadoop-LB.  
 
its execution time and hard disk space recorded. Input data 
volume in the part is 16GB. Corresponding results are shown 
in Table VI. From Table VI, it can be seen that Node5 and 
Node6 consumed the most time when executing more tasks. 
However, the overall job execution time is decided by them. In 
Table VI, more tasks were assigned to the Node7, which led to 
its heaviest load. It obvious that data volume is not the only 
factor that affects the execution time, and node performance is 
also significant. Then, the results generated by the application 
were deleted not to affect the performance evaluation while 
PMK-ELM and DNSGA-II are applied. 
 

TABLE VI 
EXECUTION TIME OF DIFFERENT NODES 

Node Id Reducer ID Execution Time(s) 

     Node1 1,9 134,132 
     Node2 5,12 131,152 
     Node3 2,10 210,219 
     Node4 0,8 134,127 
     Node5 6,15 382,374 
     Node6 3,11 379,279 
     Node7 7,13,6,17 125,111,136,110 
     Node8 4,14 130,120 

 
TABLE VII 

LEFT HARD DISK SPACE CHANGE WITH PMK-ELM AND DNSGA-II 

Node Id Before 
Execution(GB) Hadoop-Original Hadoop-LB 

     Node1 271.16 269.36 268.37 
     Node2 276.03 274.22 274.15 
     Node3 288.13 286.34 286.26 
     Node4 289.85 288.08 287.96 
     Node5 268.98 267.19 267.09 
     Node6 204.33 202.44 202.37 
     Node7 286.73 283.05 283.90 
     Node8 301.04 299.22 299.15 
 

As a result, better performance was obtained. DNSGA-II 
randomly chooses a group of solutions to form each group, one  
is group A={{1,0,17},{1,9},{10,2},{11,3},{4,12},{13,5},…}.  
{1,0,17} represents that reducer0, reducer1 and reducer 17 
were assigned to the Node1 while {1,9} represents reducer1  
and reducer9 were processed on the Node2, and so on. The 
benefits are shown in Fig. 4, Table VI, Table VII and Table 

VIII. 
TABLE VIII 

COMPARISON BETWEEN ORIGINAL AND OPTIMIZED SCHEME IN 
DIFFERENCE OF DISTRIBUTION 

Node Id Hadoop-Original Hadoop-LB 

    Difference of Distribution (%) 1.160 1.075 
    Job Execution Time(s) 744 663 

 
As shown in Fig. 4, the maximum reducer execution time of 

Fig. 4(b) is shorter than the original Group in Fig. 4(a), which 
determines the Hadoop-LB finish the reduce stage faster than 
the original. The results shown in Table VIII also prove it. Not 
only does the load balancing scheme make the application run 
faster, but also help the hard disk occupation more reasonable. 
Table VII shows the hard disk occupation when PMK-ELM 
and DNSGA-II are applied. The difference in distribution 
calculated by Eq. (6) in Section IV has been given in Table 
VIII, in which the proposed scheme also shows a better 
performance in job execution time. 

V. CONCLUSION 
In this paper, a new dynamic speculative execution strategy 

is proposed to improve the performance of the Map phase. A 
prediction model called PMK-ELM is presented to predict the 
execution time of each reducer. Combined with the DNSGA-
II, which is designed to facilitate the selection of a suitable 
sequence for disperse variables, better load balancing is 
achieved. According to the experiment, 10.9% of the time is 
saved while difference of distribution is also decreased.  
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