

An Adaptive Approach to Better Load Balancing in a
Consumer-centric Cloud Environment

Qi Liu, Member, IEEE, Weidong Cai, Jian Shen, Xiaodong Liu, Nigel Linge, Member, IEEE

Abstract — Pay-as-you-consume, as a new type of cloud

computing paradigm, has become increasingly popular since
a large number of cloud services are gradually opening up to
consumers. It gives consumers a great convenience, where
users no longer need to buy their hardware resources, but are
confronted with how to deal effectively with data from the
cloud. How to improve the performance of the cloud platform
as a consumer-centric cloud computing model becomes a
critical issue. Existing heterogeneous distributed computing
systems provide efficient parallel and high fault tolerant and
reliable services, due to its characteristics of managing large-
scale clusters. Though the latest cloud computing cluster
meets the need for faster job execution, more effective use of
computing resources is still a challenge. Presently proposed
methods concentrated on improving the execution time of
incoming jobs, e.g., shortening the MapReduce (MR) time. In
this paper, an adaptive scheme is offered to achieve time and
space efficiency in a heterogeneous cloud environment. A
dynamic speculative execution strategy on real-time
management of cluster resources is presented to optimize the
execution time of Map phase, and a prediction model is used
for fast prediction of task execution time. Combing the
prediction model with a multi-objective optimization
algorithm, an adaptive solution to optimize the performance of
space-time is obtained. Experimental results depict that the
proposed scheme can allocate tasks evenly and improve work
efficiency in a heterogeneous cluster1.

Index Terms —Pay-as-you-consume; MapReduce; Load
balancing; Prediction model; K-ELM

1 This work is supported by the NSFC (61300238, 61300237), Marie

Currie Fellowship (701697-CAR-MSCA-IFEF-ST), Basic Research Programs
(Natural Science Foundation) of Jiangsu Province (BK20131004), the 2014
Project of six personnel in Jiangsu Province under Grant No. 2014-WLW-
013, the 2015 Project of six personnel in Jiangsu Province under Grant No.
R2015L06 and the PAPD fund.

Q. Liu is with the College of Computer and Software, Nanjing University
of Information Science and Technology, Nanjing, 210044, CHINA (e-mail:
qi.liu@nuist.edu.cn).

W. Cai is with the Jiangsu Engineering Centre for Network Monitoring,
Nanjing University of Information Science and Technology, Nanjing,
210044, CHINA (e-mail: caiweidongsuzhou@163.com).

S. Jian is with the Jiangsu Collaborative Innovation Center of Atmospheric
Environment and Equipment Technology (CICAEET), Nanjing University of
Information Science and Technology, Nanjing, 210044, CHINA (e-mail:
s_shenjian@126.com).

X. Liu is with School of Computing, Edinburgh Napier University, 10
Colinton Road, Edinburgh EH10 5DT, UK (E-mail: x.liu@napier.ac.uk).

N. Linge is with the School of Computing, Science and Engineering,
University of Salford, Salford, M5 4WT, UK (E-mail: n.linge@salford.ac.uk).

I. INTRODUCTION
Pay-as-you-consume, as one of the cloud consuming

models, is becoming more popular for its benefits, e.g. a large
number of convenient services, reducing the burden of storage
and flexible data access, and minimizing the cost of the
hardware and software [1-2]. Industrial consumers have
already set up various cloud computing services. Cloud
computing that has been seen as a successful commercial
distributed system provides users with on-demand services by
the reasonable allocation of resources [3-10].

MapReduce (MR) is a distributed programming model
proposed by Google. Currently, more and more enterprises
have applied MapReduce to process data. Apache provides an
open source implementation version of the MR, which enables
convenient and efficient big data processing, but also brings
differences and complexity on resource requirements, data
delivery deadlines, etc. Such diversity brings new challenges
to job scheduling and workload management.

Irrational allocation of resources using current load
scheduling strategies in cloud systems can lead to inefficient
job execution and may waste more storage space. Therefore,
optimization schemes have been proposed [10-19], but most of
them are only focused on task execution time, whereas storage
space is often neglected.

This paper proposes an approach in a cloud system to
achieve load balancing on both space and time. A dynamic
speculative execution policy is designed to reduce the running
time at the map phase. Then, a prediction model set up on the
kernel-based extreme learning machine (K-ELM) [20-23],
called PMK-ELM, is proposed to estimate the possible
execution duration and storage space of new tasks. Depending
on the characteristics of the data, a modified algorithm called
DNSGA-II is presented adapting to disperse variables based
on NSGA-II [24]. A new algorithm combined with the K-ELM
and DNSGA-II keeps all the nodes complete the task in a
similar time and maintains a comparable ratio of hard disk
space usage. Feasibility and performance of the scheme are
verified in a practical Hadoop environment. As it is applied in
a consumer-centric cloud computing platform, both consumers
and service providers can benefit from the platform.

This paper combines five sections. Related work on load
balancing is reviewed in Section II. The adaptive method to
achieve load balancing at map and reduce phases is discussed
in Section III. Results are presented and evaluated in Section
IV with comparison of corresponding algorithms. Finally,
Section V concludes the paper.

II. RELATED WORK
A. Consumer-centric Cloud Services

A useful search service is presented in [3], in which
encrypted cloud data is supported by multi-keyword ranked
search. An IdM architecture was presented to enhance privacy
and dynamic federation in a cloud [4]. Abolfazli et al.
investigated the influence of different parameters to optimize
the performance Mobile Argumentation based on cloud [5].
Based on cloud providers, a new middleware architecture was
proposed to allow sessions to be transferred to another device
[6]. A Program Recommendation system called PDPR system
was implemented under a cloud environment. The proposed
system can recommend the program to consumers by
analyzing the viewing pattern [7]. Eom et al. presented an
integrated smart home management system with community
hierarchy based on cloud system [8]. A sharing cloud service
was proposed [9], which provided an enhanced user
authentication for home networking.

B. Load Balancing
In a heterogeneous environment, due to the different

performance of each node, the node data are difficult to obtain
a balanced load. [11] proposed a method to allocate more data
to a node that has better performance. By monitoring running
map tasks and reduce tasks, Hadoop ensures that all tasks
running on each node can substantially complete. This method
can detect a variety of load skew. However, complex
implementation considerably changed Hadoop. In cloud
systems, a general method for performance measurement and
load efficiency has been tested and presented. For example, a
prediction model based on SVM has been proposed in [12] to
optimize the performance of a heterogeneous cluster. HAP is
designed to control the distribution of the results produced by
map tasks. SVM is then used for calculating the estimated data
threshold. However, various division and merging would lead
to extra time. Also, training phase of HAP consumes a lot of
time. Matsunaga et al. proposed a novel method that can
provide an accurate performance evaluation of cloud
environments for distributed applications. Jing et al. proposed
a prediction model based on classification and regression trees
for forecasting the resource consumption of a MapReduce
application [14].

Deployment efficiency on visualization has also been
investigated. A general approach was introduced to estimate
the resource requirements of applications running in a
virtualized environment [15]. Dynamic resource demands have
been studied. When starting a new VM instance, model based
on adaptive resource provision was then presented for resource
allocation in a cloud system [16].

Besides above methods, optimizing the speculative
execution strategy in MapReduce has raised researchers’
attention. A speculative execution strategy called Longest
Approximate Time to End (LATE) algorithm was proposed
[17]. But the running time of every stage is not stable, and the
standard error used in LATE cannot represent all cases. MCP

[18] was therefore proposed to solve the problems of LATE.
Though it has optimized LATE a lot, average running time of
nodes that utilized in MCP is unreasonable, due to the fact that
the running time is largely dependent on the performance of
some node.

Although many schemes have been put forward, achieving
load balancing in a cloud system is still not well solved,
especially in a heterogeneous one. Our previous work [19] has
been issued in ICCE, however, in this paper, a novel
speculative execution strategy, called dynamic strategy, is
newly presented.

III. APPROACH TO LOAD BALANCING

A. Dynamic Speculative Execution Strategy
Speculative execution strategy is initially proposed by

Google, which can be employed to backup tasks running at
slow speed. However, the native strategy [18] in MRV2
suffers from low efficiency, an optimized strategy is, therefore,
necessary. In dynamic strategy, real-time resources in the
cluster are well considered before a backup task is launched.
Resource in MRV2 is call container. The number of left tasks
is marked as N, currently available containers as C.

Three states are defined, as follow:
(1) N>C
(2) N=C
(3) N<C
A speculator continuously detects which case current state

is. As it is activated, dynamic strategy would be adopted
according to different cases.

When there are not enough resources existing now, the
speculator would kill the native task and starts a new task
when the time saved by the new task reaches a half of the
original remaining time. Because of the higher priority, the
backup task would immediately start on the original node.

As case (2) that indicates resources on every node are
equals the resource required. Following steps are taken:

1) Estimate remaining time of all running tasks based on
the average consuming time of each node;

2) Select the task which has the longest remaining time,
mark as A1 and remaining time of it remT ;

3) Find the task that has the shortest remaining time
'remT and mark it as B1;

4) Try to speculate on the running time if A1 runs on the
node that has the shortest remaining time, mark it as

newT . When meeting '+rem new remT T T< , the current
task would be backed up to another node;

State (3) represents that enough resources can be assigned to
backup tasks in the cluster. Under this circumstance, due to the
data locality, the backed-up task has higher priority during the
scheduling procedure. Every node has a similar volume of
tasks, however, tasks on the low-performance node (e.g. Node
A) will not finish on time in a heterogeneous environment. The

finishing timestamp of the current task is calculated by the
latest five groups of data according to the linear regression. It
is remT while that of a backup task is recorded as 'remT . It is
calculated based on the mean value of a node or the mean
value of the cluster when no tasks running on the same node
have finished. The mean values of each node are stored in set
MVS. The profit of starting the backup task is calculated
according to the difference between remT and 'remT , and it is
defined as a function, called GetProfit. Detailed flow is
illustrated in Algorithm 1.
Algorithm 1. Finding the task when there are enough resources
Input: Mean value set (MVS), Nodes set(NS), Currently running
tasks set (CRTS), HostName having the longest average time (HN),
Speculation Set (SS)
1 bestProfit=0; bestId=null;
2 For each task in CRTS
3 If AllowedSpeculativeTasks > SpeculationsAlready
4 If GetProfit(taskID)>bestProfit
5 bestProfit= GetProfit(taskID);
6 bestId=taskID;
7 EndIf
8 If |MVS|>|NS| and current task’ host name is HN
9 addSpeculativeAttempt(taskID); //start backup
 Add (taskID, hostname) to SS;
10 continue;
11 ElseIf |MVS|=|NS|-1 and progress < 0.2
12 addSpeculativeAttempt(taskID);
13 continue;
14 EndIf
15 EndIf
16 EndFor
17 If bestProfit>0, saved time>20% and progress<0.2
18 addSpeculativeAttempt(bestId);
19 EndIf

Then, the following tasks would be transferred to those

nodes that have enough resources. However, it is not
reasonable to start a backup task immediately for the purpose
of saving resources. A backup task would be launched only
when 20% of the time can be saved, or it is currently running
on the slowest node (the node has the longest mean running
time). If the condition is fulfilled, the task A1 would be backed
up.

B. Execution time prediction based on K-ELM
Extreme learning machine based on kernel function (K-

ELM) that proposed by Huang, has been proved to be one of
most famous algorithms in the machine learning scope. In this
section, a prediction model based on K-ELM (PMK-ELM) is
presented to estimate the running time of reduce tasks when
they are allocated to different nodes.

Following steps indicate the progress of establishing a
prediction model for execution time based on K-ELM in

detail.
Step 1: Data Acquisition. Historical data of applications are

provided by a log analysis tool. The data format is as {Time,
Reducer Id, Node Id, Input size}.

Step 2: Data Preprocessing. Samples containing high
network latency are firstly filtered. Then, the datasets are then
divided into training samples and test samples. The former
samples are used for training the prediction model using K-
ELM, whereas the latter is for examining whether prediction
model has been well trained.

Step 3: Model Training. To build PMK-ELM, training
parameters of the model are obtained by using the training
samples. The specific processes are as follows:

(1) Set weights and the threshold value;
(2) Use activation function to work out the hidden layer

output matrix;
(3) Calculate output layer weights.
Step 4: Data validation. Test samples generated by Step 2

are then used for evaluation the performance of the PMK-
ELM. According to the parameters retrieved in Step 3, the
predictive values are then compared with the actual values to
verify the prediction performance.

C. DNSGA-II
1) Mathematical model
When map phase finishes, the intermediate data will be

assigned to different reducers; however, the amount of data
allocated to each reducer is not consistent with the
performance, which consequently causes uneven allocation of
reducers to nodes. For the sake of making reduce phase
consumes less time and hard disk space occupation more
balanced, following conditions should be met:

a) Disk usage of a data node should be more than the
data amount to be assigned to itself;

b) A reducer can only be allocated to a node (if
speculation is disabled), but a data node can deal with multiple
reducers, as shown in Fig. 1.

Intermediate data generated by map tasks can be divided
into m splits while there are n data nodes in the clusters. If the
execution time that each reducer needs is described as tmn, then
a matrix T can be used to represent the execution time, as
shown below:

11 1

1

n

m mn

t t
T

t t

 
 =  
 
 



  



 (1)

In order to evaluate the usage of storage space, the
percentage of input size srmn from total available size slmn is
calculated and noted as smn.

 /mn mn mns sr sl= (2)
Then, the hard disk space ratio of each split can be described

as (3). Finally, the elements of T and S are combined into a
new matrixTS , and the new elements are expressed as (t, s)mn.
The real execution time of data node i can be described as ti,

whereas the split size percentage can be represented as si.

Datanodes

Node1 Node2 Node3 NnodeN

Reducers

Reducer0 Reducer1 Reducer2 ReducerM-1

...

...

Fig. 1. Relationship between data nodes and reducers

11 1

1

n

m mn

s s
S

s s

 
 =  
 
 



  



. (3)

1

2

...

m

L
L

TS

L

 
 
 =
 
 
 

 (4)

Actually, every row in TS is a group of feasible solutions
and it is expressed as iL

and 1 2{(,) , (,) ,..., (,) }i n iL t s t s t s= .
Finally, two objective functions are given in (5) and (6). The

purpose of the algorithm is to find the minimum value of them.
Two constraints of the algorithm are given in (7) and (8), in
which Sums represents the amount of the data input size
generated by the Reduce phase.

1

n
i

i

t tT
t=

−
=∑ (5)

1

n
i

i

s sS
s=

−
=∑ (6)

1

n

s i
i

Sum sr
=

=∑ (7)

 0, 0.i it s> > (8)

2) Design of DNSGA-II
Original NSGA-II can solve multi-object problems.

However, it cannot fit into disperse variables. NSGA-II
include six aspects. In this paper, the core part of NSGA-II,

havs been altered to make it suitable for disperse variable, and
this new algorithm is called DNSGA-II. The original NSGA-II
algorithm uses Simulated Binary Crossover [23]. However, in
the proposed scenario, the Crossover probability pc is used for
a better grouping after being selected. The Crossover stage in
this scheme consists of two steps:

Step 1: Randomly match a group of chromosomes;
Step 2: During matching chromosomes, randomly set

intersections to make matched individual chromosomes
exchange their information.

After randomly selecting paired chromosomes, two
crossover positions are randomly generated; the cross section
of elements on the other side of the parent is also removed.
Then, the new cross section is added to the sequence of the
parent that has cut out some of the elements.

Taking two pairs of chromosomes as an example, where
chromosome X= 143|875|62 and chromosome Y = 123|645|78.
The cross section is divided by a vertical bar. First, the
element corresponding to |875| of X is removed from Y, so Y’
= 12378; then a gene fragment of A is added to Y’, so
offspring Y’’ is 123|788|75. Similarly, the offspring X’’ is
143|626|45. For newly produced offspring X’’ and Y’’, it
needs to be decided whether the total data size is bigger than
the storage quota. If it does not satisfies the above condition,
and it contains any number from 1 to 8, it is regarded as
applicable; otherwise, iteration will be operated. Under a
special condition that there are not any feasible solutions after
the final iteration, the repeated number is replaced by another
number to format a sequence. Finally, the first group of the
output results will be chosen to provide a sequence for
reducers. Take Y as an example, it represents that reducer1,
reducr2 and reducer are assigned to the Node1. Similarly,
reducer6, reducer4 and reducer5 are assigned to the Node2.

IV. EXPERIMENT AND ANALYSIS

A real heterogeneous cloud environment has been set up in
our laboratory to test the performance and benefits of the
proposed scheme. The server is equipped with 288 GB of
memory and a 10 TB hard driver. Eight virtual machines
configured with different amounts of memory and processors
are established on the server, and they are connected to a
physical switch through the bridge mode. Table I has given the
detailed configuration.

TABLE I
THE DETAILED INFORMATION OF EACH VIRTUAL MACHINE

Node Id Memory(GB) Core Processors

 Node1 10 8
 Node2 8 4
 Node3 8 1
 Node4 8 8
 Node5 4 8
 Node6 4 4
 Node7 18 4
 Node8 12 8

 (a) (b)

Fig. 2. Running time comparison of Map phase under three speculative execution strategy. (a) Running time comparison for Sort algorithm under the
best condition, the worst condition, and average value of most conditions; (b) Running time comparison for WordCount algorithm under the best
condition, the worst condition, and average value of most conditions.

TABLE II
 BACKUP TASK INFORMATION OF SORT ALGORITHM

Strategy Sum of Backup Success of Backup Backup Success
Rate (%)

Average Running Time of
Per Map Task (Minutes)

Running Time of Map Phase
(Minutes)

 Strategy disabled - - - 9.18 20.16
 Native strategy 54 79 68.36 6.58 20.86
 Dynamic strategy 19 22 86.36 7.58 18.25

TABLE III

 BACKUP TASK INFORMATION OF WORDCOUNT ALGORITHM

Strategy Sum of Backup Success of Backup Backup Success
Rate (%)

Average Running Time of
Per Map Task (Minutes)

Running Time of Map Phase
(Minutes)

 Strategy disabled - - - 6.96 18.32
 Native strategy 52 22 65.53 6.34 16.23
 Dynamic strategy 43 35 81.40 6.12 15.32

In the experiment, dynamic speculative execution strategy
work only in the Map stage, while in the Reduce stage, it is
disabled to avoid adverse impacts on the backup task load
balancing. In addition, only when all the Map tasks have been
completed, reduce tasks will start.

Sort and WordCount algorithms were used in the
experiments to evaluate the performance of the proposed load
balancing scheme. Purdue MapReduce benchmark test suite
[25] provided us with free data sets. For Sort algorithm, a data
set with 30 GB data was provided while for WordCount
algorithm, a cluster workload containing 50GB data was
selected as the input. All of the test applications were based on
Hadoop 2.6.0.

Overall, the testing process was divided into three steps.
Stage 1: Dataset Collecting. To get historical data on

different input data, a Hadoop data collection tool was
developed in the lab to collect the data.

Stage 2: Execution Time Prediction. PMK-ELM was then
activated and used to predict execution time for current
Reduce tasks.

Stage 3: Load balancing. Core resource allocation module in
Hadoop allocate resources based on the results of DNSGA-II.

A. Evaluation of Dynamic Speculative Execution Strategy
In this part, the performance of the proposed strategy is

compared with the native strategy of MapReduce.
Fig. 2(a) shows the job execution time of three strategies for

Sort algorithm. On average, dynamic strategy finishes job
12.5% faster than the native policy and 9.5% faster than
strategy disabled.

Fig. 2(b) shows the job execution time of three strategies for
WordCount algorithm. On average, dynamic strategy finishes
job 16.4% faster than the native policy and 5% faster than
strategy disabled.

It is obvious that dynamic strategy can improve the
performance for Sort algorithm while the native one cannot
provide. To find the reasons, further analysis is given in Table
II and Table III. The backup success rate of dynamic strategy
is 18.01% higher than the native one for Sort algorithm while
it has 19.81% improvement over the initial strategy for
WordCount algorithm. Moreover, since Sort algorithm is an
I/O-intensive application and unreasonable backup strategy
could lead to more severe I/O bottlenecks, so the proposed
strategy has achieved more evident results. However,
WordCount algorithm is a CPU-intensive application, and
usually, it would not reach the CPU bottleneck. In this case,
though the accuracy of the native strategy is not high enough, a
certain effect still can be obtained. Thus, a dynamic policy that
has higher accuracy can further improve the performance.

Fig. 3. Performance comparison between PMK-ELM and PM-SVM. (a) Evaluation on data fitting of PMK-ELM and PM-SVM for Sort algorithm; (b)
Evaluation on data fitting of PMK-ELM and PM-SVM for WordCount algorithm; (c) Evaluation on estimation difference for Sort algorithm; (d)
Evaluation on estimation difference for WordCount algorithm.

TABLE IV
DIFFERENT EXPERIMENT PARAMETERS

 Memory(GB)
Training
Datasets

Size(Pieces)

Test Dataset
Size(Pieces)

 Sort 640 560 80
 WordCount 800 700 100

B. Evaluation of PMK-ELM
To evaluate the performance of PMK-ELM, during the

experiment, different input sizes and different numbers of
input Reducer were also tested, as illustrated in Table IV. For
the comparison purposes, the proposed prediction model based
on support vector machine (PM-SVM) was replicated in the
test environment. A log analysis tool was developed to collect
the training and test sets.

PMK-ELM and PM-SVM use RBF function as their kernel
function, and its description is shown in Eq. (9). Moreover,
PMK-ELM needs another parameter C and its definition have
been given in [23]. A parameter b should be obtained for PM-
SVM, whose definition has shown in [12].

 () 2
, (), 0i j i jK x x exp x xσ σ− − >= (9)

A Genetic Algorithm (GA) is applied to generate the best
parameters of PM-SVM and PMK-ELM. In the experiment,
max_gen was set 200, C, b and σ varied from 0 to 100 and
the size of the population was 50. Experiment results have
been presented in Table V. MAPE, the same metric as [12], is
then used to evaluate the results.

TABLE V
THE BEST PARAMETERS FOR SORT ALGORITHM GENERATED BY GA

Sort WordCount

PMK-
ELM

PM-
SVM

PMK-
ELM

PM-
SVM

 C 88.529 - 20.521 -
 b - 27.453 - 6.914
 σ 0.052 5.115 0.867 16.583
 MAPE 14.641% 14.930% 12.647% 13.420%
 Training Time(s) 0.024 19.965 0.043 3.2314
 Test Time(s) 0.002 0.148 0.003 0.307
 Time of finding

best parameters(s) 57.643 14429.849 58.476 16861.249

The values shown in Table V are the average results of

running the applications for 50 times. PMK-ELM trained more
than 100 times faster than PM-SVM for Sort algorithm and
about 80 times faster than PM-SVM for WordCount
algorithm. Although the test time of each group and each
application is very short, PMK-ELM still needs shorter time
than the PM-SVM. In addition, the accuracy of PMK-ELM is
also higher than the PM-SVM.

Fig. 3(a) and Fig. 3(b) depict the prediction values of PMK-
ELM and PM-SVM results and their comparison. In Fig. 3(a),
values generated by PMK-ELM fit closer to the real values
compared with those produced by PM-SVM. In Fig. 3(b), a
similar trend can be discovered. If the training time and testing
time is taken into account, PMK-ELM is a better choice.

C. The performance of the proposed load balancing scheme
(Hadoop-LB)

In this section, the Sort experiment is firstly run once with

 (a) (b)

Fig. 4. Comparison between Hadoop-Original and Hadoop-LB in execution time. (a) Final data placement condition under Hadoop-Original; (b) Final
data placement condition under Hadoop-LB.

its execution time and hard disk space recorded. Input data
volume in the part is 16GB. Corresponding results are shown
in Table VI. From Table VI, it can be seen that Node5 and
Node6 consumed the most time when executing more tasks.
However, the overall job execution time is decided by them. In
Table VI, more tasks were assigned to the Node7, which led to
its heaviest load. It obvious that data volume is not the only
factor that affects the execution time, and node performance is
also significant. Then, the results generated by the application
were deleted not to affect the performance evaluation while
PMK-ELM and DNSGA-II are applied.

TABLE VI
EXECUTION TIME OF DIFFERENT NODES

Node Id Reducer ID Execution Time(s)

 Node1 1,9 134,132
 Node2 5,12 131,152
 Node3 2,10 210,219
 Node4 0,8 134,127
 Node5 6,15 382,374
 Node6 3,11 379,279
 Node7 7,13,6,17 125,111,136,110
 Node8 4,14 130,120

TABLE VII

LEFT HARD DISK SPACE CHANGE WITH PMK-ELM AND DNSGA-II

Node Id Before
Execution(GB) Hadoop-Original Hadoop-LB

 Node1 271.16 269.36 268.37
 Node2 276.03 274.22 274.15
 Node3 288.13 286.34 286.26
 Node4 289.85 288.08 287.96
 Node5 268.98 267.19 267.09
 Node6 204.33 202.44 202.37
 Node7 286.73 283.05 283.90
 Node8 301.04 299.22 299.15

As a result, better performance was obtained. DNSGA-II
randomly chooses a group of solutions to form each group, one
is group A={{1,0,17},{1,9},{10,2},{11,3},{4,12},{13,5},…}.
{1,0,17} represents that reducer0, reducer1 and reducer 17
were assigned to the Node1 while {1,9} represents reducer1
and reducer9 were processed on the Node2, and so on. The
benefits are shown in Fig. 4, Table VI, Table VII and Table

VIII.
TABLE VIII

COMPARISON BETWEEN ORIGINAL AND OPTIMIZED SCHEME IN
DIFFERENCE OF DISTRIBUTION

Node Id Hadoop-Original Hadoop-LB

 Difference of Distribution (%) 1.160 1.075
 Job Execution Time(s) 744 663

As shown in Fig. 4, the maximum reducer execution time of

Fig. 4(b) is shorter than the original Group in Fig. 4(a), which
determines the Hadoop-LB finish the reduce stage faster than
the original. The results shown in Table VIII also prove it. Not
only does the load balancing scheme make the application run
faster, but also help the hard disk occupation more reasonable.
Table VII shows the hard disk occupation when PMK-ELM
and DNSGA-II are applied. The difference in distribution
calculated by Eq. (6) in Section IV has been given in Table
VIII, in which the proposed scheme also shows a better
performance in job execution time.

V. CONCLUSION
In this paper, a new dynamic speculative execution strategy

is proposed to improve the performance of the Map phase. A
prediction model called PMK-ELM is presented to predict the
execution time of each reducer. Combined with the DNSGA-
II, which is designed to facilitate the selection of a suitable
sequence for disperse variables, better load balancing is
achieved. According to the experiment, 10.9% of the time is
saved while difference of distribution is also decreased.

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,

and M. Zaharia, “A view of cloud computing,” Communications of the
ACM, vol. 53, no. 4, pp.50-58, 2010.

[2] Z. Fu, X. Sun, Q. Liu, L. Zhou, and J. Shu, “Achieving Efficient Cloud
Search Services: Multi-keyword Ranked Search over Encrypted Cloud
Data Supporting Parallel Computing,” IEICE Trans. Commun., vol.
E98-B, no. 1, pp.190-200, 2015.

[3] Z. Fu, X. Sun, N. Linge, and L. Zhou, “Achieving effective cloud search
services: multi-keyword ranked search over encrypted cloud data
supporting synonym query,” IEEE Trans. Consumer Electron., vol. 60,
no. 1, pp. 164-172, 2014.

[4] R. Sánchez, F. Almenares, P. Arias, D. Díaz-Sánchez, and A. Marín,

“Enhancing privacy and dynamic federation in IdM for consumer cloud
computing,” IEEE Trans. Consumer Electron., vol. 58, no. 1, pp. 95-
103, 2012

[5] S. Abolfazli, Z. Sanaei, M. Alizadeh, A. Gani, and F. Xia, “An
experimental analysis on cloud-based mobile augmentation in mobile
cloud computing,” IEEE Trans. Consumer Electron., vol. 58, no. 1, pp.
146-154, 2014.

[6] P. A. Cabarcos, F. A. Mendoza, R. S., Guerrero, A. M. Lopez, and D.
Diaz-Sanchez, “SuSSo: seamless and ubiquitous single sign-on for
cloud service continuity across devices,” IEEE Trans. Consumer
Electron., vol. 58, no. 4, pp. 1425-1433, 2012.

[7] S. Lee and D. Lee, and S. Lee, “Personalized DTV program
recommendation system under a cloud computing environment,” IEEE
Trans. Consumer Electron., vol. 56, no. 2, pp. 1034-1042, 2010.

[8] Y. Lee, “An integrated cloud-based smart home management system
with community hierarchy,” IEEE Trans. Consumer Electron., vol. 62,
no. 1, pp.1-9, 2016.

[9] B. Eom, C. Lee, H. Lee, and W. Ryu, “An adaptive remote display
scheme to deliver mobile cloud services, IEEE Trans. Consumer
Electron., vol. 60, no. 3, pp. 540-547, 2014.

[10] S. Grzonkowski, and P. M. Corcoran, “Sharing cloud services: user
authentication for social enhancement of home networking,” IEEE
Trans. Consumer Electron., vol. 57, no. 3, pp. 1424-1432, 2011.

[11] B. Palanisamy, A. Singh, and L. Liu, “Cost-effective resource
provisioning for mapreduce in a cloud,” IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 5, pp. 1265-1279, 2015.

[12] Y. Fan, W. Wu, Y. Xu, and H. Chen, “Improving MapReduce
Performance by Balancing Skewed Loads,” China Communications,
vol. 11, no. 8, pp. 85-108, 2014.

[13] A. Matsunaga, and J. A. B. Fortes, “On the use of machine learning to
predict the time and resources consumed by applications,” Proceedings
of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, pp. 495-504, 2010.

[14] T. P. Jing, and J. Yan, “Computing resource prediction for mapreduce
applications using decision tree,” Web Technologies and Applications,
pp. 570-577, 2012.

[15] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, “Profiling and
modeling resource usage of virtualized applications,” Proceedings of
the 9th ACM/IFIP/USENIX International Conference on Middleware,
pp. 366-387, 2008.

[16] S. Islam, J. Keung, K. Lee, and A. Liu, “Empirical prediction models for
adaptive resource provisioning in the cloud,” Future Generation
Computer Systems, vol. 28, no. 1 pp. 155-162, 2012.

[17] M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz, and I. Stoica,
“Improving Mapreduce Performance in Heterogeneous Environments,”
OSDI, pp. 29-42, 2008.

[18] Q. Chen, L. Cheng, and X. Zhen, “Improving MapReduce performance
using smart speculative execution strategy,” IEEE Trans. Comput., vol.
63, no. 4, pp. 954-967, 2014.

[19] Q. Liu, W. Cai, J. Shen, D. Jin, and N. Linge, “A load-balancing
approach based on modified K-ELM and NSGA-II in a heterogeneous
cloud environment,” Proceedings of 2016 IEEE International
Conference on Consumer Electronics (ICCE), pp. 411-412, 2016.

[20] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489-501,
2006.

[21] A. Samat, P. Du, S. Liu, J. Li, and L. Cheng, “Ensemble Extreme
Learning Machines for Hyperspectral Image Classification,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 7, no. 4, pp. 1060-1069, 2014.

[22] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Trans. Syst.
Man Cybern. B, Cybern., vol. 42, no. 2, pp. 513-529, 2012.

[23] G. B. Huang, and C. K. Siew, “Extreme learning machine with
randomly assigned RBF kernels,” International Journal of Information
Technology, vol. 11, no. 1, pp. 16-24, 2005.

[24] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans on Evol.
Comput., vol. 6, no. 2, pp. 182-197, 2002.

[25] Farz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N.
Vijaykumar, “Tarazu: optimizing MapReduce on heterogeneous
clusters,” Proceeding of ACM SIGARCH Computer Architecture News,
pp. 61-74, 2012.

BIOGRAPHIES

Qi Liu (M’11) received his BSc degree in Computer
Science and Technology from Zhuzhou Institute of
Technology, China in 2003, and his MSc and Ph.D. in
Data Telecommunications and Networks from the
University of Salford, UK in 2006 and 2010. His research
interests include context awareness, data communication
in MANET and WSN, and smart grid. His recent
research work focuses on intelligent agriculture and
meteorological observation systems based on WSN.

Weidong Cai received his bachelor's degree in Software
Engineering from Nanjing University of Information
Science and Technology in 2014, and he is pursuing a
master's degree in software engineering at the Nanjing
University of Information Science and Technology. His
research interests include Cloud Computing, Distributed
Computing and Data Mining.

Jian Shen received his bachelor's degree in Electronic
Science and Technology Specialty from Nanjing
University of Information, Science and Technology in
2007, and he received his masters and PhD in Information
and communication from CHOSUN University, South
Korean in 2009 and 2012. His research interests includes
Computer network security, information security, mobile
computing and network, wireless ad hoc network.

Xiaodong Liu received his PhD in Computer Science
from De Montfort University and joined Napier in 1999.
He is a Reader and is currently leading the Software
Systems research group in the IIDI, Edinburgh Napier
University. He was the director of Centre for Information
& Software Systems. He is an active researcher in
software engineering with internationally excellent
reputation and leading expertise in context-aware
adaptive services, service evolution, mobile clouds,

pervasive computing, software reuse, and green software engineering. He has
meanwhile a successful track record of teaching in a number of software
engineering courses which are widely informed by his research activities.

Nigel Linge received his BSc degree in Electronics from
the University of Salford, UK in 1983, and his PhD in
Computer Networks from the University of Salford, UK,
in 1987. He was promoted to Professor of
Telecommunications at the University of Salford, UK in
1997. His research interests include location based and
context aware information systems, protocols, mobile
systems and applications of networking technology in
areas such as energy and building monitoring.

http://xueshu.baidu.com/s?wd=author%3A%28Timothy%20Wood%29%20University%20of%20Massachusetts&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Ludmila%20Cherkasova%29%20HP%20Labs&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Kivanc%20Ozonat%29%20HP%20Labs&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Prashant%20Shenoy%29%20University%20of%20Massachusetts&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Sadeka%20Islam%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Jacky%20Keung%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Kevin%20Lee%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
http://xueshu.baidu.com/s?wd=author%3A%28Anna%20Liu%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson

	I. Introduction
	II. Related Work
	B. Load Balancing

	III. Approach to Load Balancing
	A. Dynamic Speculative Execution Strategy
	B. Execution time prediction based on K-ELM
	C. DNSGA-II

	IV. Experiment and Analysis
	A. Evaluation of Dynamic Speculative Execution Strategy
	B. Evaluation of PMK-ELM
	C. The performance of the proposed load balancing scheme (Hadoop-LB)

	V. Conclusion
	References

