
sensors

Article

Estimation Accuracy on Execution Time of Run-Time
Tasks in a Heterogeneous Distributed Environment

Qi Liu 1,2, Weidong Cai 2,*, Dandan Jin 2, Jian Shen 3, Zhangjie Fu 3, Xiaodong Liu 4

and Nigel Linge 5

1 Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment
Technology (CICAEET), Nanjing University of Information Science & Technology,
Nanjing 210044, China; qi.liu@nuist.edu.cn

2 School of Computer & Software, Nanjing University of Information Science & Technology,
Nanjing 210044, China; 18751971087@163.com

3 Jiangsu Engineering Centre of Network Monitoring, Nanjing University of Information Science and
Technology, Nanjing 210044, China; s_shenjian@126.com (J.S.); wwwfzj@126.com (Z.F.)

4 School of Computing, Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT, UK;
x.liu@napier.ac.uk

5 Computer Networking and Telecommunications Research Centre, University of Salford, Salford,
Greater Manchester M5 4WT, UK; n.linge@salford.ac.uk

* Correspondence: cwdsuzhou@nuist.edu.cn; Tel.: +86-152-5170-8925

Academic Editor: Yike Guo
Received: 1 June 2016; Accepted: 25 August 2016; Published: 30 August 2016

Abstract: Distributed Computing has achieved tremendous development since cloud computing was
proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis
models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become
a data convergence platform for sensor networks. As one of the core components, MapReduce
facilitates allocating, processing and mining of collected large-scale data, where speculative execution
strategies help solve straggler problems. However, there is still no efficient solution for accurate
estimation on execution time of run-time tasks, which can affect task allocation and distribution
in MapReduce. In this paper, task execution data have been collected and employed for the
estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of
each task accurately. Detailed data of each task have drawn interests with detailed analysis report
being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can
be improved, in particular for some regular jobs.

Keywords: cloud computing; data convergence; MapReduce; data analysis; speculative execution

PACS: J0101

1. Introduction

In recent years, with the rapid development of social networking, internet of things, digital city
and other new generation of large-scale network applications, smart data convergence technologies for
faster processing big data generated by sensor networks or other devices are urgently required. To solve
the above problem, in 2006 Google, Amazon and other companies proposed a “cloud computing”
concept [1], presenting the use of network services anywhere and anytime on demand. It provides
easy access to a shared resource pool (such as computing facilities, storage devices, applications, etc.).
Through cloud computing, users can quickly apply or release resources according to their traffic load.
Meanwhile, pay-as-you-consume cloud computing paradigm can improve the quality of services while
reducing operation and maintenance costs [2].

Sensors 2016, 16, 1386; doi:10.3390/s16091386 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 1386 2 of 15

Based on MapReduce (MR), Big Table and Google File System (GFS) proposed by Google, Hadoop
has become a typical open-source cloud platform. Recently, it has been accepted and well used in both
industry and academia due to its features of scalability, easy to deploy and high efficiency. Apart from
Hadoop, some novel distributed platforms, e.g., Apache Storm [3] and Spark [4], have also been
proposed and widely applied to process big data [5,6]. Apache Storm [3] is known as an efficient
stream data preprocessing platform and has been steadily serving Twitter. Apache Spark [4] is another
platform for big data processing. It is more applicable and has more capabilities, which consists of
Spark Streaming [7], Spark SQL [8], MLlib [9] and GraphX [10]. All of the above modules make Spark
a powerful platform. However, Hadoop is still a good choice for off-line computation, especially
for a cluster lack of memory [11]. Actually, many research works based sensor networks have been
continuously propelled. Several systems have been built based on Hadoop to speed up the procedure
of sensor data analysis and data management [12–16].

As the core module of Hadoop, MR has been well investigated in order to improve the
performance of job allocation and distribution. Scheduler is one of the critical parts in MR, which
decides whether data can be processed efficiently. Previous work has been tremendously conducted on
optimizing the Scheduler [17–24]. Apart from the scheduler, speculative execution strategies have also
gained wide attention [25–37], since incorrect estimating the running duration of a run-time task may
cause its inappropriate allocation. For periodically executed jobs, an optimized speculative execution
strategy can effectively improve the performance of entire MR processing.

In this paper, a novel method is presented to improve the estimation accuracy of jobs’ execution
time. Native Hadoop MapReduce is modified to collect data of run-time tasks. A linear model has
been built based on the features of the data to predict the task finishing time more accurately.

The rest sections are organized as followed. Related work is introduced in Section 2, followed by
Section 3, where our scheme for collecting historical data is presented. In Section 4, the relationship
between progress and timestamp is analyzed and verified for predicting running time of run-time
tasks, moreover, reasons for some phenomenon are discussed. Finally, conclusion and future work are
presented in Section 5.

2. Related Work

Recently, with the development of cloud computing, many distributed big data progressing
tools have been born. Hadoop, Storm [3] and Spark [4] that sponsored by Apache company have
gained extensive attention due to their excellent performance. In stream processing field, Storm
and Spark [3–6] have been the most important tools. Twitter used Storm to analyze and process
data generated by social networks. Moreover, Alibaba, Baidu, Rocket Fuel, etc. also applied in
their systems [3]. Except for Storm, Spark [4], as a new powerful framework, is being more and
more attractive for some companies due to its convenience for machine learning and graph operator.
Zaharia et al. proposed Spark Streaming [7], in which a novel recovery mechanism grants itself
higher efficiency over traditional backup methods, and tolerance strategies [4]. Armbrust et al.
presented a new module called Spark SQL [8]. Spark SQL provided rich DataFrame APIs and
automatic optimization, which makes it significantly simpler and more efficient over previous systems.
Spark MLlib offerd a wide range of functions for learning parameter settings, and APIs for a number
of popular machine learning algorithms, including some potential statistics, linear regression, naive
Bayes and support vector machines [9]. By taking advantage of distributed data flow architecture,
GraphX brings low-cost fault tolerance and efficient graphic processing. On the basis of the data stream
framework, GraphX achieved an exponential level performance optimization [10]. These frameworks
usually have better performance while processing stream data. However, they have to pay for more
memory consumption, which means that when it is applied in industry, companies have to pay
more money. Furthermore, they do not have an obvious improvement over Hadoop in off-line and
batch computation fields. Therefore, Hadoop is still a good choice, especially for a cluster lack of
memory [11].

Sensors 2016, 16, 1386 3 of 15

Many research works based sensor networks have been continuously propelled. Many systems
have been built based to speed up the procedure of sensor data analysis [12–16]. Almeer speeded
up remote sensing image analysis through an MR parallel platform [12]. Xu et al. introduced a
Hadoop-based video transcoding system [13]. Hundreds of HD video streams in the wireless sensor
networks can be parallelly transmitted due to the features of MR. Finally, better performance was
achieved by optimizing some important configuration parameters. Jung et al. presented a distributed
sensor node management system based on Hadoop MR [14]. With applying some specific MR and
exploiting various crucial features of Hadoop, a dynamic sensor node management scheme was
implemented. A solution for analyzing the sensory data was proposed in [15] based on Hadoop
MR. According to the method, user behavior can be detected, and lifestyle trends can be accurately
predicted. Alghussein et al. proposed a method based on MR to detect anomalous events by analyzing
sensor data [16].

As the most critical part in MR, scheduler’s efficiency decides whether data can be processed
efficiently and tremendous progress has been made now [17–24]. Apart from the scheduler, speculative
execution strategies also gained wide attention with an increasing number of researchers concentrating
on optimizing the performance of speculative execution [25–33].

A map task scheduling algorithm was presented to improve the overall performance of
MapReduce calculations [17]. Their approach results in a more balanced distribution of the
intermediate data. An approach to automating the construction of a job schedule was proposed
that minimizes the completion time of such a set of MapReduce jobs [18]. Dynamic MR [19], which
allows map and reduce slots to be allocated to each other, was proposed to facilitate the execution of
the job. Yi proposed LsPS [20], a scheduler based on job size for higher efficiency of task assignments
by abolishing the same response time. The execution efficiency of Memory-Intensive MapReduce
applications was introduced in [21]. A resource-aware scheduler was proposed, in which a job is
divided into phases. In each phase, a resource requirement is set constant, so phase-level scheduling
can be achieved [22]. Saving resources of the cluster were conducted in [23], where a scheduler
consisting of two algorithms called EMRSA-I and EMRSA-II was proposed. The disadvantages of
current scheduler solutions for offline applications were analyzed in [24], and two algorithms were
therefore presented, by which span and total finishing time can be decreased.

Recently, speculative execution strategies (SE) have been proposed [25–37]. Due to the
unreasonable scheduling algorithms, SE strategy is used for solving the struggles and usually seen
as a fault-tolerant mechanism. Proposed in Google, the speculative execution was implemented in
Apache Hadoop and Microsoft Dryad. However, the current native SE strategy in Hadoop suffered
from low accuracy [25]. Facebook disabled their SE strategy to avoid extra resource waste [26].
An optimized strategy, called LATE, was presented in [25], and weights of three stages (shuffle,
sort, and reduce) in reduce task are set 1/3. MCP was proposed in [26], where data volume was
considered when calculating the remaining time of run-time tasks. Maximizing Cost Performance
was used as another limit for launching a backup task other than the difference between remaining
time and backup time. EURL [27] was proposed where system load was seen as a key factor during
calculating the remaining time of a task. An extended MCP was proposed while a load curve was
added [28]. A smart strategy was proposed based on hardware performance and data volume of
each phase [29]. In [30], the differences of work nodes were investigated to estimate backup tasks
precisely. Optimal Time Algorithm (OTA) is another method that aims at improving the effectiveness
of the strategy. However, the difference between the nodes’ processors are not well considered [31].
A new Speculative Execution algorithm based on C4.5 Decision Tree (SECDT) was proposed to predict
execution time more accurately. In SECDT, completion time of straggling tasks is speculated based
on the C5.4 decision tree [32]. Wang et al. proposed a strategy called Partial Speculative Execution
(PSE) strategy. By leveraging the checkpoint of original tasks, the efficiency of the MR is therefore
improved [33]. Adaptive Task Allocation Scheduler (ATAS) was presented to improve the original

Sensors 2016, 16, 1386 4 of 15

strategy. The ATAS reduces the response time and backs up tasks more quickly. Therefore, the success
ratio of backup tasks is enhanced [34].

SE strategies based on the Microsoft’s distributed system have also been proposed. Using real-time
progress reports, outliers of all tasks can be detected in an early stage of their lifetime [35].
Consequent actions setting free resources were then conducted to accelerate the overall job execution.
To maximize job execution performance, Smart Clone Algorithm (SCA) was proposed in [36], which
obtains workload thresholds used for speculative execution. The enhanced speculative execution
(ESE) [37] algorithm was proposed for heavy clusters, as an extension of Microsoft Mantri programs.

Though many strategies have been proposed as above, detailed data of each task have drawn
no interests with no detailed analysis report being made. Current existing SE strategies still have low
accuracy while estimating the finishing time of running tasks.

3. A Two-Phase Regression Method

In this section, the method for gathering detailed information about each running task is
introduced. Features of the data are then analyzed to facilitate prediction accuracy results for speculated
tasks. Through the analysis of these data, the rule of the data tendency is discovered. Base on this,
a new method called two-phase regression (TPR) is presented to predict the finishing time of running
tasks more accurately, which is an optimized method of Linear Regression aiming at improving
the accuracy.

3.1. Gathering Detailed Information of Each Running Task

In Hadoop MapReduce, speculation is implemented in various classes. The relationship between
these classes is shown in Figure 1. TaskRuntimeEstimator is an interface while StartEndTimesBase
stores the lifetime of a complete task and it can be used for estimating the running time of a new
task. The function estimtedNewAttemptRunTime is for calculating the finishing time of a backup
task. Estimating time of a running task is calculated in a class called LegacyTaskRuntimeEstimator.
The function estimtedRunTime is used for calculated the finishing time of the current task.
The updateAttmpt function in both classes is a function for updating the task status every time when
the progress updates. When a heartbeat arrives, DefaultSpeculator will start estimation processes to
decide if a backup task needs to be created. The function addSpeculativeAttempt in it can be used for
adding a backup task into a task pool. The statusUpdate updates the task status and call the functions
to calculate the finishing time.

Sensors 2016, 16, 1386 4 of 16

Consequent actions setting free resources were then conducted to accelerate the overall job execution.
To maximize job execution performance, Smart Clone Algorithm (SCA) was proposed in [36], which
obtains workload thresholds used for speculative execution. The enhanced speculative execution
(ESE) [37] algorithm was proposed for heavy clusters, as an extension of Microsoft Mantri programs.

Though many strategies have been proposed as above, detailed data of each task have drawn
no interests with no detailed analysis report being made. Current existing SE strategies still have low
accuracy while estimating the finishing time of running tasks.

3. A Two-Phase Regression Method

In this section, the method for gathering detailed information about each running task is
introduced. Features of the data are then analyzed to facilitate prediction accuracy results for
speculated tasks. Through the analysis of these data, the rule of the data tendency is discovered. Base
on this, a new method called two-phase regression (TPR) is presented to predict the finishing time of
running tasks more accurately, which is an optimized method of Linear Regression aiming at
improving the accuracy.

3.1. Gathering Detailed Information of Each Running Task

In Hadoop MapReduce, speculation is implemented in various classes. The relationship between
these classes is shown in Figure 1. TaskRuntimeEstimator is an interface while StartEndTimesBase stores
the lifetime of a complete task and it can be used for estimating the running time of a new task. The
function estimtedNewAttemptRunTime is for calculating the finishing time of a backup task. Estimating
time of a running task is calculated in a class called LegacyTaskRuntimeEstimator. The function
estimtedRunTime is used for calculated the finishing time of the current task. The updateAttmpt
function in both classes is a function for updating the task status every time when the progress
updates. When a heartbeat arrives, DefaultSpeculator will start estimation processes to decide if a
backup task needs to be created. The function addSpeculativeAttempt in it can be used for adding a
backup task into a task pool. The statusUpdate updates the task status and call the functions to
calculate the finishing time.

Figure 1. Implementation detail.

In Algorithm 1, a data structure called HisPro containing the chain (progress, timestamp) is used
to store real-time information. When a task is to be completed, such a dataset will be generated and
written to HDFS. α in Algorithm 1 is a threshold for evaluating if the dataset should be written to
HDFS. It is an empirical value, and it is set 0.95 in this paper to ensure that the dataset will be stored
before the task finishes. Time complexity equals the original time complexity due to the fact that data
collecting method does not change the original logic procedure. Space complexity is O (m * n), where
m is the task volume and n represents the data volume stored in each list. Figures 2 and 3 show an
example of collected data being generated when WordCount and Sort are executed, respectively.

Figure 1. Implementation detail.

In Algorithm 1, a data structure called HisPro containing the chain (progress, timestamp) is used
to store real-time information. When a task is to be completed, such a dataset will be generated and
written to HDFS. α in Algorithm 1 is a threshold for evaluating if the dataset should be written to

Sensors 2016, 16, 1386 5 of 15

HDFS. It is an empirical value, and it is set 0.95 in this paper to ensure that the dataset will be stored
before the task finishes. Time complexity equals the original time complexity due to the fact that
data collecting method does not change the original logic procedure. Space complexity is O (m * n),
where m is the task volume and n represents the data volume stored in each list. Figures 2 and 3 show
an example of collected data being generated when WordCount and Sort are executed, respectively.
Through which, it can be seen that the same trend between progress and consumed time appears
during the execution of WordCount and Sort.

Algorithm 1: Data Collecting Method (GetDataSet)

Input:
TA: The task attempt
TN: The name of the task attempt
P: The progress of a running task
TT: The type of the running task
DM: The data map storing all the data lists of currently running tasks, whose key is TN and value is
DL
DL: The data list storing HisPro generated by a running task
Steps:
For each TA in the task pool

If Current TA is Running
Get the current HisPro
Get the DL from DM according to TN
If DL does not contain HisPro

Add HisPro to the DL
Else

Update the DL using HisPro
EndIf
Update the DL in DM

EndIf
If P > α

savetoHDFS (TA, DL, TT)
EndIf

EndFor

Sensors 2016, 16, 1386 5 of 16

Through which, it can be seen that the same trend between progress and consumed time appears
during the execution of WordCount and Sort.

Algorithm 1: Data Collecting Method (GetDataSet)

Input:

TA: The task attempt

TN: The name of the task attempt

P: The progress of a running task

TT: The type of the running task

DM: The data map storing all the data lists of currently running tasks,

whose key is TN and value is DL

DL: The data list storing HisPro generated by a running task

Steps:

For each TA in the task pool

If Current TA is Running

Get the current HisPro

Get the DL from DM according to TN

If DL does not contain HisPro

Add HisPro to the DL

Else

Update the DL using HisPro

EndIf

Update the DL in DM

EndIf

If P > α

savetoHDFS (TA, DL, TT)

EndIf

EndFor

Figure 2. Data collected during running WordCount on the same node. Different groups of data
generated from four map tasks running on the same node when executing WordCount: (a) Group 1;
(b) Group 2; (c) Group 3; and (d) Group 4.

Figure 2. Data collected during running WordCount on the same node. Different groups of data
generated from four map tasks running on the same node when executing WordCount: (a) Group 1;
(b) Group 2; (c) Group 3; and (d) Group 4.

Sensors 2016, 16, 1386 6 of 15
Sensors 2016, 16, 1386 6 of 16

Figure 3. Data collected during running Sort on the same node. Different groups of data generated
from four map tasks running on the same node when executing Sort: (a) Group 1; (b) Group 2; (c)
Group 3; and (d) Group 4.

3.2. Data Analysis

In this section, a prediction algorithm, called Two-Phase Regression (TPR) algorithm is
proposed, which can be divided into four steps: data preprocessing, data smoothing, data regression,
and data prediction. Data storage structure is as (p, Timestamp).

Step 1: Data Preprocessing. The preprocessing function is shown in Equation (1), and final data
structure can be expressed as (p, t). p represents progress and t is calculated according to Equation (1).

i i mint Timestamp Timestamp  , (1)

Step 2: Data Smoothing. Smoothing method is used for errors filtering, through which preprocessed
data are smoothed with a five-point approximation. Specific smoothing processes are shown in
Equation (2). Given a group of data, e.g., {6, 4, 5, 4, 3, 5}, then, the following values can be obtained:
T(0) = 6, T(1) = 5, T(2) = 4.4, T(3) = 4.2, T(4) = 4, T(5) = 5.

Step 3: Data Regression. A mathematic model is shown in Equation (3), where a and b are two
constants called regression parameters, while ε is a value near 0.

To work out the above function, Equation (4) is proposed as the first solve. T̂ , â and b̂
are the estimation value of T, a and b, respectively

(0) (0)

(1) ((0) (1) (2)) / 3

(2) ((0) (1) (2) (3) (4) (5)) / 5

(3) ((0) (1) (2) (3) (4) (5) (6) (7)) / 7

...

(2) ((4) (3) (2) (1) ()) / 5

(1) ((2) (1) ()) / 3

() (

T t

T t t t

T t t t t t t

T t t t t t t t t

T n t n t n t n t n t n

T n t n t n t n

T n t



  

     

       

         

     

)n

,
(2)

 2

2
~ (,)

~ (0,)

T ap b
T N ap b

N




 

  






 (3)

Figure 3. Data collected during running Sort on the same node. Different groups of data generated from
four map tasks running on the same node when executing Sort: (a) Group 1; (b) Group 2; (c) Group 3;
and (d) Group 4.

3.2. Data Analysis

In this section, a prediction algorithm, called Two-Phase Regression (TPR) algorithm is proposed,
which can be divided into four steps: data preprocessing, data smoothing, data regression, and data
prediction. Data storage structure is as (p, Timestamp).

Step 1: Data Preprocessing. The preprocessing function is shown in Equation (1), and final data
structure can be expressed as (p, t). p represents progress and t is calculated according to Equation (1).

ti = Timestampi − Timestampmin, (1)

Step 2: Data Smoothing. Smoothing method is used for errors filtering, through which preprocessed
data are smoothed with a five-point approximation. Specific smoothing processes are shown in
Equation (2). Given a group of data, e.g., {6, 4, 5, 4, 3, 5}, then, the following values can be obtained:
T(0) = 6, T(1) = 5, T(2) = 4.4, T(3) = 4.2, T(4) = 4, T(5) = 5.

Step 3: Data Regression. A mathematic model is shown in Equation (3), where a and b are two
constants called regression parameters, while ε is a value near 0.

To work out the above function, Equation (4) is proposed as the first solve. T̂, â and b̂ are the
estimation value of T, a and b, respectively

T(0) = t(0)
T(1) = (t(0) + t(1) + t(2))/3
T(2) = (t(0) + t(1) + t(2) + t(3) + t(4) + t(5))/5
T(3) = (t(0) + t(1) + t(2) + t(3) + t(4) + t(5) + t(6) + t(7))/7
. . .
T(n− 2) = (t(n− 4) + t(n− 3) + t(n− 2) + t(n− 1) + t(n))/5
T(n− 1) = (t(n− 2) + t(n− 1) + t(n))/3
T(n) = t(n)

, (2)

{
T = ap + b + ε

ε ∼ N(0, σ2)

(
T ∼ N(ap + b, σ2)

)
(3)

Sensors 2016, 16, 1386 7 of 15

T̂ = âp + b̂ (4)

Then, (p, t) can be substituted into Equation (1), as expressed in Equation (5).

Ti = api + b + εi (i = 1, 2, . . . , n) (5)

Least Squares [38] is used to calculate the minimum value of the function Q(a, b), as described in
Equation (6), for the purpose of improving the accuracy of the method.

min
i

Q(a, b) =
n

∑
i=1

[Ti − (api + b)]2 (6)

Equations (7) and (8) are apartial differential equations generated by Equation (6), in which, Ti
and pi in these two equations are seen as constants, a and b are variables. A Solutions to Equations (7)
and (8) are recorded as â and b̂, which are the least square estimation of a and b, respectively

∂Q(a, b)
∂b

= −2
n

∑
i=1

(Ti − api − b) = 0 (7)

∂Q(a, b)
∂a

= −2
n

∑
i=1

(Ti − api − b)pi = 0 (8)

Finally, â and b̂ can be calculated according to Equations (9) and (10), respectively, where â is the
slope of point (pi, Ti), so we can calculate it according to Equation (10), whereas Tand p are obtained
by Equation (11). T̂ = âp + b̂ can be seen as the regression function of Equation (12).

b̂ = T − âp (9)

â =
lpt

lpp
=

∑
i
(pi − p)(Ti − T)

∑
i
(p− p)2 (10)

p =
1
n

n

∑
i

pi, T =
1
n

n

∑
i

Ti (11)

t = E(T) = f (p1, p2, . . . , pn) (12)

The TPR can be seen as an extension of part (1) of Equation (13), where λ is a threshold set as
0.67, decided by the point where the slope has the biggest change. When p equals λ, an equation
shown in Equation (14) can be obtained. According to the continuity of the data tendency, the value
of part (1) and part (2) in Equation (14) are equivalent. Thus, d can be described as Equation (15).
Finally, Equation (16) can be obtained.{

T = ap + b + ε

T = c(p− λ) + d + ε

p <= λ

p > λ

(1)
(2)

, (13)

{
T = aλ + b + ε (1)
T = d + ε (2)

, (14)

d = aλ + b (15){
T = ap + b + ε

T = cp + (a− c)λ + b + ε

p <= λ

p > λ

(1)
(2)

, (16)

Sensors 2016, 16, 1386 8 of 15

Step 4: Data Prediction. Data are firstly divided into two equal parts, A and B. Top 1/3 of part A is
dropped to avoid potential errors created by the initial phase. Then, Part A is used for training phase
to find parameters (a, b). The variable (c) in Equation (16) is calculated according to the mean value of
data generated in the same node. Part B is used for validation.

4. Experiments and Results

4.1. Data Collection and Its Results

In order to establish a practical performance testing environment, a Hadoop cluster consisting
of eight virtual machines has been set up in a server. The server is equipped with four Intel® Xeon®

CPU E5649 2.53 GHz six-core-processors, 10 TB hard drive and 288 GB memory. The speed of hard
drives is about 144 MB/s. Those virtual machines are connected to a 1000 Mbps switch according to
bridge mode. The specification of each machine is shown in Table 1, and the version of Hadoop is
2.6.0. Table 2 shows input data volume of Sort and WordCount, as well as data volume of map tasks
collected by our gathering module through running jobs for multi times. Data sets in [39] are used as
for testing scenarios. These data sets are freely provided by Purdue MapReduce Benchmarks Suite.
The Benchmarks Suite has been widely used for evaluating MR optimization.

Table 1. The detailed information of each virtual machine.

Node ID Memory (GB) Core Processors

Node 1 10 8
Node 2 8 4
Node 3 8 1
Node 4 8 8
Node 5 4 8
Node 6 4 4
Node 7 18 4
Node 8 12 8

Table 2. The detailed volume of input data and collected data.

Application Input Data(GB) Data Volume Collected (Groups)

Sort 30 326
WordCount 50 727

Result files are stored in the local HDFS as shown in Table 3. All Files are named
with “attempt”, TimeStamp, JobId, “m”, TaskId, attemptId and “MAP”, separated by “_”, e.g.,
“attempt_1460088439095_0005_m_000008_0_ MAP”. Table 4 shows the data structure of a task file,
which contains two columns, i.e., progress and timestamp, respectively.

Table 3. Data of Map Tasks Collected by Modified Hadoop.

File Name Size

attempt_1460032292591_0001_m_000000_0_ MAP 588 B
attempt_1460032292591_0002_m_000000_0_ MAP 903 B
attempt_1460032292591_0003_m_000000_0_ MAP 1.46 KB
attempt_1460032292591_0004_m_000000_0_ MAP 840 B
attempt_1460032292591_0005_m_000000_0_ MAP 1.23 KB
attempt_1460032292591_0006_m_000000_0_ MAP 1.33 KB
attempt_1460032292591_0007_m_000000_0_ MAP 861 B
attempt_1460032292591_0008_m_000000_0_ MAP 630 B

.

Sensors 2016, 16, 1386 9 of 15

Table 4. Data Structure.

Progress Timestamp

0.068 1460095563715
0.112 1460095567625
0.202 1460095587516
0.231 1460095607664
0.240 1460095611976
0.249 1460095633288
0.265 1460095633289
0.292 1460095633295
0.305 1460094649633

.

4.2. Data Analysis and Prediction

A notebook configured with 12 GB memory, Core® i3 dual-core-processors and a 500 GB hard
disk is used for parameter optimization and prediction time. Data files are first copied to localhost
from HDFS. RMSE and MAPE, described in Equations (17) and (18), respectively, are selected as our
evaluation indicators, where T’ is the predicted value and T represents the actual value when the
progress reaches i. Figures 4 and 5 depict four groups of data fitness for WordCount and Sort during
their whole lifetime when the regression function is applied. In Figure 4, regression values fit actual
values when the progress is below about 0.65, but does not perform very well when a task is going to
be accomplished, during which differences between them gradually happen.

Sensors 2016, 16, 1386 9 of 16

Table 4. Data Structure.

Progress Timestamp
0.068 1460095563715
0.112 1460095567625
0.202 1460095587516
0.231 1460095607664
0.240 1460095611976
0.249 1460095633288
0.265 1460095633289
0.292 1460095633295
0.305 1460094649633

… …

4.2. Data Analysis and Prediction

A notebook configured with 12 GB memory, Core® i3 dual-core-processors and a 500 GB hard
disk is used for parameter optimization and prediction time. Data files are first copied to localhost
from HDFS. RMSE and MAPE, described in Equations (17) and (18), respectively, are selected as our
evaluation indicators, where 'T is the predicted value and T represents the actual value when the
progress reaches i . Figures 4 and 5 depict four groups of data fitness for WordCount and Sort during
their whole lifetime when the regression function is applied. In Figure 4, regression values fit actual
values when the progress is below about 0.65, but does not perform very well when a task is going
to be accomplished, during which differences between them gradually happen.

Figure 4. Linear Regression calculated by direct regression algorithm during a lifetime. (a) Group 1;
(b) Group 2; (c) Group 3; and (d) Group 4 data and their values calculated by Linear Regression for
WordCount sample.

Figure 4. Linear Regression calculated by direct regression algorithm during a lifetime. (a) Group 1;
(b) Group 2; (c) Group 3; and (d) Group 4 data and their values calculated by Linear Regression for
WordCount sample.

Figure 5 shows the data fitness of sort data, where a similar tendency happens as in Figure 4 with
a bit more differences when a task is at its very beginning.

RMSE =

√√√√ n

∑
i=1

(Ti
′ − Ti)

2

n
, (17)

MAPE =

n
∑

i=1
(
∣∣Ti
′ − Ti

∣∣/Ti)

n
(18)

Sensors 2016, 16, 1386 10 of 15

The TPR method is then implemented, as shown in Tables 5 and 6. Twenty-four groups of data
are randomly selected and evaluated using the MRSE and MAPE. For WordCount sample shown in
Table 5, most MRSE values are less than 2 and MAPE values are under 5%. A similar tendency can
be found in Sort Sample shown in Table 6. In Table 5, the average RMSE value of WordCount is 1.7,
and the average MAPE is 2.8%, while in Table 6, the average RMSE value is 1.5, and the MAPE is 2.1%.Sensors 2016, 16, 1386 10 of 16

Figure 5. Linear Regression calculated by direct regression algorithm during a lifetime. (a) Group 1;
(b) Group 2; (c) Group 3; and (d) Group 4 data and their values calculated by Linear Regression for
Sort sample.

Figure 5 shows the data fitness of sort data, where a similar tendency happens as in Figure 4
with a bit more differences when a task is at its very beginning.

2

1

(')n
i i

i

T T
RMSE

n


  , (17)

1

(| ' | /)
n

i i i
i

T T T
MAPE

n






, (18)

The TPR method is then implemented, as shown in Tables 5 and 6. Twenty-four groups of data
are randomly selected and evaluated using the MRSE and MAPE. For WordCount sample shown in
Table 5, most MRSE values are less than 2 and MAPE values are under 5%. A similar tendency can
be found in Sort Sample shown in Table 6. In Table 5, the average RMSE value of WordCount is 1.7,
and the average MAPE is 2.8%, while in Table 6, the average RMSE value is 1.5, and the MAPE is
2.1%.

Table 5. Error evaluation during training phase for WordCount sample.

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8
RMSE (S) 1.2 1.6 2.8 1.5 1.6 1.4 1.3 1.4
MAPE (%) 1.7 2.8 2.8 1.7 2.4 2.7 1.6 3.1

 Group 9 Group 10 Group 11 Group 12 Group 13 Group 14 Group 15 Group 16
RMSE (S) 2.4 1.4 1.0 1.9 1.7 1.7 1.3 1.2
MAPE (%) 3.3 2.4 1.1 5.3 5.5 2.4 1.7 2.0

 Group 17 Group 18 Group 19 Group 20 Group 21 Group 22 Group 23 Group 24
Average

Value
RMSE (S) 0.9 1.9 1.2 1.5 2.1 1.4 1.1 1.3 1.7
MAPE (%) 1.7 3.8 1.3 2.2 4.9 3.0 2.0 2.4 2.8

Figure 5. Linear Regression calculated by direct regression algorithm during a lifetime. (a) Group 1;
(b) Group 2; (c) Group 3; and (d) Group 4 data and their values calculated by Linear Regression for
Sort sample.

Table 5. Error evaluation during training phase for WordCount sample.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

RMSE (S) 1.2 1.6 2.8 1.5 1.6 1.4 1.3 1.4
MAPE (%) 1.7 2.8 2.8 1.7 2.4 2.7 1.6 3.1

Group 9 Group 10 Group 11 Group 12 Group 13 Group 14 Group 15 Group 16

RMSE (S) 2.4 1.4 1.0 1.9 1.7 1.7 1.3 1.2
MAPE (%) 3.3 2.4 1.1 5.3 5.5 2.4 1.7 2.0

Group 17 Group 18 Group 19 Group 20 Group 21 Group 22 Group 23 Group 24 Average
Value

RMSE (S) 0.9 1.9 1.2 1.5 2.1 1.4 1.1 1.3 1.7
MAPE (%) 1.7 3.8 1.3 2.2 4.9 3.0 2.0 2.4 2.8

Table 6. Error evaluation during training phase for Sort sample.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

RMSE (S) 1.6 1.5 1.4 1.1 1.6 2.4 1.7 1.5
MAPE (%) 1.4 1.2 1.0 0.8 1.3 7.3 1.8 1.4

Group 9 Group 10 Group 11 Group 12 Group 13 Group 14 Group 15 Group 16

RMSE (S) 1.6 1.6 3.1 1.6 2.4 2.4 0.9 2.1
MAPE (%) 1.5 2 8 1.7 3.9 7.9 1.8 2.7

Group 17 Group 18 Group 19 Group 20 Group 21 Group 22 Group 23 Group 24 Average
Value

RMSE (S) 1.7 0.6 2.3 1.6 1.3 1.8 1.4 1.6 1.5
MAPE (%) 1.8 6.8 4.6 1.5 0.9 2.8 1.5 2.1 2.7

We run experiments with λ values from 0.4 to 0.9 and the method for getting the value of λ has
been given in Section 3. As shown in Figure 6, the best RMSE and MAPE accuracy are achieved when

Sensors 2016, 16, 1386 11 of 15

the λ value is at about 0.67. When λ is less than 0.67, data consisting of (progress, timestamp) pairs
are considered to be generated in the following phase, and few data would be used for finding the
reasonable parameters; when λ is over 0.67, a similar situation happens as in Figures 4 and 5.

Sensors 2016, 16, 1386 11 of 16

Table 6. Error evaluation during training phase for Sort sample.

 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

RMSE (S) 1.6 1.5 1.4 1.1 1.6 2.4 1.7 1.5

MAPE (%) 1.4 1.2 1.0 0.8 1.3 7.3 1.8 1.4

 Group 9 Group 10 Group 11 Group 12 Group 13 Group 14 Group 15 Group 16

RMSE (S) 1.6 1.6 3.1 1.6 2.4 2.4 0.9 2.1

MAPE (%) 1.5 2 8 1.7 3.9 7.9 1.8 2.7

 Group 17 Group 18 Group 19 Group 20 Group 21 Group 22 Group 23 Group 24
Average

Value
RMSE (S) 1.7 0.6 2.3 1.6 1.3 1.8 1.4 1.6 1.5

MAPE (%) 1.8 6.8 4.6 1.5 0.9 2.8 1.5 2.1 2.7

We run experiments with  values from 0.4 to 0.9 and the method for getting the value of 
has been given in Section 3. As shown in Figure 6, the best RMSE and MAPE accuracy are achieved
when the  value is at about 0.67. When  is less than 0.67, data consisting of (progress,
timestamp) pairs are considered to be generated in the following phase, and few data would be used
for finding the reasonable parameters; when  is over 0.67, a similar situation happens as in Figures
4 and 5.

Figure 6. Accuracy with different value of  .

Table 7 depicts differences between actual values and prediction values using Two-Phase
Regression for prediction. The average values of MRSE and MAPE are 4.9 and 9.8%, respectively. A
Sort sample is examined in Table 8, sharing a similar tendency as in Table 7. The Average RMSE value
is 6.3, and the MAPE is 13.5%. Certain groups depict big differences between predicted and actual
values, because the type of input data in those groups is rack-local, which means task allocation
happens in the local rack where the node belongs. When rack-local files are replaced by data-local
ones, through which task allocation only happens in the node, the average MRSE and MAPE for
WordCount decrease to 3.6 and 5.5%, respectively, while for Sort, those values also reduce to 4.8 and
6.1%, respectively.

Figure 6. Accuracy with different value of λ.

Table 7 depicts differences between actual values and prediction values using Two-Phase
Regression for prediction. The average values of MRSE and MAPE are 4.9 and 9.8%, respectively.
A Sort sample is examined in Table 8, sharing a similar tendency as in Table 7. The Average RMSE
value is 6.3, and the MAPE is 13.5%. Certain groups depict big differences between predicted and
actual values, because the type of input data in those groups is rack-local, which means task allocation
happens in the local rack where the node belongs. When rack-local files are replaced by data-local
ones, through which task allocation only happens in the node, the average MRSE and MAPE for
WordCount decrease to 3.6 and 5.5%, respectively, while for Sort, those values also reduce to 4.8 and
6.1%, respectively.

Table 7. Error evaluation in predicting phase for WordCount sample.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

RMSE (S) 1.8 3.5 5.7 2.7 3.6 2.8 3.5 1.9
MAPE (%) 1.7 5.6 4.9 3.3 5.6 3.5 5.1 2.4

Group 9 Group 10 Group 11 Group 12 Group 13 Group 14 Group 15 Group 16

RMSE (S) 10.9 6.7 3.7 5.2 2.7 4.4 3.1 1.9
MAPE (%) 21 17.2 7.4 10.2 4.7 6.2 4.3 2.2

Group 17 Group 18 Group 19 Group 20 Group 21 Group 22 Group 23 Group 24 Average
Value

Corrected
Value

RMSE (S) 3.1 7.4 3.2 10.0 11.4 7.4 9.4 1.8 4.9 3.6
MAPE (%) 6.0 18.5 4.0 18.9 33.5 20.8 26.5 1.5 9.8 5.5

Table 8. Error evaluation in predicting phase for Sort sample.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 Group 8

RMSE (S) 3.4 4.4 4.2 4.1 2.8 9.4 3.4 4.1
MAPE (%) 2.7 3.7 4.5 5.4 2 78.0 3.6 4.9

Group 9 Group 10 Group 11 Group 12 Group 13 Group 14 Group 15 Group 16

RMSE (S) 4.3 3.7 9.3 7.8 10.9 3.7 13.6 5.0
MAPE (%) 3.4 3.3 40.3 12 28.0 7.7 12.3 10.3

Group 17 Group 18 Group 19 Group 20 Group 21 Group 22 Group 23 Group 24 Average
Value

Corrected
Value

RMSE (S) 3.8 7.6 10.4 3.7 9.4 6.7 10.8 3.7 6.3 4.8
MAPE (%) 3.5 17.3 25.4 2.8 11 11.2 25.8 4.2 13.5 6.1

Sensors 2016, 16, 1386 12 of 15

Four groups of data both for WordCount and Sort are depicted in Figures 7 and 8, respectively.
It can be seen during a whole lifetime, prediction values calculated by the TPR method fit the actual
values well. Even when the progress is over 0.67, differences remain stable and near zero in most cases.Sensors 2016, 16, 1386 13 of 16

Figure 7. Two-Phase Regression values. Error obtained by Abs (Regression Value – Actual value). (a)
Group 1; (b) Group 2; (c) Group 3; and (d) Group 4 data and their values calculated by Two-Phase
Regression for WordCount sample.

Figure 8. Two-Phase Regression values. Error obtained by Abs (Regression Value – Actual value). (a)
Group 1; (b) Group 2; (c) Group 3; and (d) Group 4 data and their values calculated by Two-Phase
Regression for Sort sample.

5. Conclusions

In this paper, detailed historical task execution data are collected by modifying MapReduce. A
two-phase regression method has been presented for better prediction of the execution time of
running tasks. According to the results, MAPE of running time prediction is on average 5.5% for
WordCount sample and 6.1% for Sort sample. Periodical jobs have shown better accuracy according
to the experimental results. In the future, we will study the relationship between starting speculation
and load balancing. According to previous work, speculation would damage load balancing [40], and
we will try to reduce the influence of starting the speculative execution strategy.

Figure 7. Two-Phase Regression values. Error obtained by Abs (Regression Value–Actual value).
(a) Group 1; (b) Group 2; (c) Group 3; and (d) Group 4 data and their values calculated by Two-Phase
Regression for WordCount sample.

Sensors 2016, 16, 1386 13 of 16

Figure 7. Two-Phase Regression values. Error obtained by Abs (Regression Value – Actual value). (a)
Group 1; (b) Group 2; (c) Group 3; and (d) Group 4 data and their values calculated by Two-Phase
Regression for WordCount sample.

Figure 8. Two-Phase Regression values. Error obtained by Abs (Regression Value – Actual value). (a)
Group 1; (b) Group 2; (c) Group 3; and (d) Group 4 data and their values calculated by Two-Phase
Regression for Sort sample.

5. Conclusions

In this paper, detailed historical task execution data are collected by modifying MapReduce. A
two-phase regression method has been presented for better prediction of the execution time of
running tasks. According to the results, MAPE of running time prediction is on average 5.5% for
WordCount sample and 6.1% for Sort sample. Periodical jobs have shown better accuracy according
to the experimental results. In the future, we will study the relationship between starting speculation
and load balancing. According to previous work, speculation would damage load balancing [40], and
we will try to reduce the influence of starting the speculative execution strategy.

Figure 8. Two-Phase Regression values. Error obtained by Abs (Regression Value–Actual value).
(a) Group 1; (b) Group 2; (c) Group 3; and (d) Group 4 data and their values calculated by Two-Phase
Regression for Sort sample.

In Figures 5 and 6, we can clearly find that when λ is close to 0.67, TPR has a higher accuracy.
Exploring the procedure of the task, we find that local data combination happens from the stage,
and those data are usually sorted on the same node. Based on the reason, the task speed is faster
from the moment. In Figures 7 and 8, it seems that bigger differences exist when a task is going to

Sensors 2016, 16, 1386 13 of 15

be accomplished. Actually, this is mainly due to the fact that some data need to be written to the
distributed file system, and the speed of writing is easily influenced by the system load.

5. Conclusions

In this paper, detailed historical task execution data are collected by modifying MapReduce.
A two-phase regression method has been presented for better prediction of the execution time of
running tasks. According to the results, MAPE of running time prediction is on average 5.5% for
WordCount sample and 6.1% for Sort sample. Periodical jobs have shown better accuracy according to
the experimental results. In the future, we will study the relationship between starting speculation and
load balancing. According to previous work, speculation would damage load balancing [40], and we
will try to reduce the influence of starting the speculative execution strategy.

Acknowledgments: This work is supported by the NSFC (61300238, 61300237, 61232016, 1405254, and 61373133);
Marie Curie Fellowship (701697-CAR-MSCA-IFEF-ST); the 2014 Project of six personnel in Jiangsu Province under
Grant No. 2014-WLW-013; the 2015 Project of six personnel in Jiangsu Province under Grant No. R2015L06;
Basic Research Programs (Natural Science Foundation) of Jiangsu Province (BK20131004); and the PAPD fund.

Author Contributions: All authors contributed significantly to the preparation of this manuscript. Qi Liu and
Weidong Cai are the main authors who proposed the idea, performed the experiments and wrote the manuscript.
Weidong Cai performed the experimental data processing and revised the manuscript. Dandan Jin, Jian Shen,
Zhangjie Fu, Xiaodong Liu and Nigel Linge discussed with the main authors the proposed method and revised
this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51,
107–113. [CrossRef]

2. Fu, Z.; Sun, X.; Liu, Q.; Zhou, L.; Shu, J. Achieving efficient cloud search services: Multi-keyword ranked
search over encrypted cloud data supporting parallel computing. IEICE Trans. Commun. 2015, E98B, 190–200.
[CrossRef]

3. Toshniwal, A.; Taneja, S.; Shukla, A.; Ramasamy, K.; Patel, J.M.; Kulkarni, S.; Bhagat, N. Storm@ twitter.
In Proceedings of the 2014 ACM International Conference on Management of Data(SIGMOD), Snowbird,
UT, USA, 22–27 June 2014; pp. 147–156.

4. Stoica, I. Conquering big data with spark and BDAS. In Proceedings of the 2014 ACM International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), New York, NY, USA,
16–20 June 2014; p. 193.

5. Rodríguez-Mazahua, L.; Sánchez-Cervantes, J.L.; Cervantes, J.; García-Alcaraz, J.L.; Alor-Hernández, G.
A general perspective of big data: Applications, tools, challenges and trends. J. Supercomput. 2015. [CrossRef]

6. Namiot, D. On big data stream processing. Int. J. Open Inf. Technol. 2015, 3, 48–51.
7. Zaharia, M.; Das, T.; Li, H.; Hunter, T.; Shenker, S.; Stoica, I. Discretized streams: Fault-tolerant streaming

computation at scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, Farmington, PA, USA, 3–6 November 2013; pp. 423–438.

8. Armbrust, M.; Xin, R.S.; Lian, C.; Huai, Y.; Liu, D.; Bradley, J.K.; Meng, X.; Kaftan, T.; Franklin, M.; Zaharia, M.
Spark SQL: Relational data processing in Spark. In Proceedings of the 2015 ACM International Conference
on Management of Data (SIGMOD), Melbourne, Australia, 31 May–4 June 2015; pp. 1383–1394.

9. Meng, X.; Bradley, J.; Yuvaz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Ghodsi, A.; Xin, D. MLlib: Machine
learning in apache spark. J. Mach. Learn. Res. 2016, 17, 1–7.

10. Gonzalez, J.E.; Xin, R.S.; Dave, A.; Crankshaw, D.; Franklin, M.J.; Stoica, I. Graphx: Graph processing in a
distributed dataflow framework. In Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), Broomfield, Denver, CO, USA, 6–8 October 2014; pp. 599–613.

11. Gu, L.; Li, H. Memory or time: Performance evaluation for iterative operation on Hadoop and
Spark. In Proceedings of the 2013 IEEE International Conference on High Performance Computing and
Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (HPCC
and EUC 2013), Zhangjiajie, China, 13–15 November 2013; pp. 721–727.

http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1587/transcom.E98.B.190
http://dx.doi.org/10.1007/s11227-015-1501-1

Sensors 2016, 16, 1386 14 of 15

12. Almeer, M.H. Cloud Hadoop Map Reduce for Remote Sensing Image Analysis. J. Emerg. Trends Comput.
Inf. Sci. 2012, 3, 637–644.

13. Xu, H.; Wang, L.; Xie, H. Design and experiment analysis of a Hadoop-based video transcoding system for
next-generation wireless sensor networks. Int. J. Distrib. Sensor Netw. 2014, 2014, 151564. [CrossRef]

14. Jung, I.Y.; Kim, K.H.; Han, B.J.; Jeong, C.S. Hadoop-based distributed sensor node management system.
Int. J. Distrib. Sensor Netw. 2014, 2014, 601868. [CrossRef]

15. Hussain, S.; Bang, J.H.; Han, M.; Ahmed, M.I.; Amin, M.B.; Lee, S.; Nugent, C.; McClean, S.; Scotney, B.;
Parr, G. Behavior life style analysis for mobile sensory data in cloud computing through MapReduce. Sensors
2014, 14, 22001–22020. [CrossRef] [PubMed]

16. Alghussein, I.I.; Aly, W.M.; El-Nasr, M.A. Anomaly detection using Hadoop and MapReduce technique in
cloud with sensor data. Int. J. Comput. Appl. 2015, 125, 22–26.

17. Ibrahim, S.; Jin, H.; Lu, L.; He, B.; Antoniu, G.; Wu, S. Maestro: Replica-aware map scheduling for MapReduce.
In Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), Ottawa, ON, Canada, 13–16 May 2012; pp. 435–442.

18. Verma, A.; Cherkasova, L.; Campbell, R.H. Orchestrating an ensemble of MapReduce jobs for minimizing
their makespan. IEEE Trans. Dependable Secure Comput. 2013, 10, 314–327. [CrossRef]

19. Tang, S.; Lee, B.S.; He, B. Dynamic MR: A dynamic slot allocation optimization framework for MapReduce
clusters. IEEE Trans. Cloud Comput. 2014, 2, 333–347. [CrossRef]

20. Yao, Y.; Tai, J.; Sheng, B.; Mi, N. LsPS: A job size-based scheduler for efficient task assignments in Hadoop.
IEEE Trans. Cloud Comput. 2015, 3, 411–424. [CrossRef]

21. Shi, X.; Chen, M.; He, L.; Xie, X.; Lu, L.; Jin, H.; Wu, S. Mammoth: Gearing Hadoop towards memory-intensive
MapReduce applications. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 2300–2315. [CrossRef]

22. Zhang, Q.; Zhani, M.F.; Yang, Y.; Boutaba, R.; Wong, B. PRISM: Fine-grained resource-aware scheduling for
MapReduce. IEEE Trans. Cloud Comput. 2015, 3, 182–194. [CrossRef]

23. Mashayekhy, L.; Nejad, M.M.; Grosu, D.; Zhang, Q.; Shi, W. Energy-aware scheduling of MapReduce jobs
for big data applications. IEEE Trans. Parallel Distrib. Syst. 2016, 26, 2720–2733. [CrossRef]

24. Tang, S.J.; Lee, B.S.; Fan, R.; He, B.S. Dynamic job ordering and slot configurations for MapReduce workloads.
IEEE Trans. Serv. Comput. 2016, 9, 4–17. [CrossRef]

25. Zaharia, M.; Konwinski, A.; Joseph, A.D.; Katz, R.H.; Stoica, I. Improving MapReduce performance in
heterogeneous environments. In Proceedings of the 8th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), San Diego, CA, USA, 8–10 December 2008; pp. 29–42.

26. Chen, Q.; Liu, C.; Xiao, Z. Improving MapReduce performance using smart speculative execution strategy.
IEEE Trans. Comput. 2014, 63, 954–967. [CrossRef]

27. Wu, H.; Li, K.; Tang, Z.; Zhang, L. A heuristic speculative execution strategy in heterogeneous distributed
environments. In Proceedings of the 2014 Sixth International Symposium on Parallel Architectures,
Algorithms and Programming (PAAP), Beijing, China, 13–15 July 2014; pp. 268–273.

28. Huang, X.; Zhang, L.; Li, R.; Wan, L.; Li, K. Novel heuristic speculative execution strategies in heterogeneous
distributed environments. Comput. Electrical Eng. 2016, 50, 166–179. [CrossRef]

29. Liu, Q.; Cai, W.; Shen, J.; Fu, Z.; Linge, N. A smart strategy for speculative execution based on hardware
Resource in a heterogeneous distributed environment. Int. J. Grid Distrib. Comput. 2016, 9, 203–214.
[CrossRef]

30. Liu, Q.; Cai, W.; Shen, J.; Fu, Z.; Linge, N. A smart speculative execution strategy based on node classification
for heterogeneous hadoop systems. In Proceedings of the 18th International Conference on Advanced
Communication Technology (ICACT), PyeongChang, Korea, 31 January–3 February 2016; pp. 223–227.

31. Raju, R.; Amudhavel, J.; Pavithra, M.; Anuja, S. A heuristic fault tolerant MapReduce framework for
minimizing makespan in hybrid cloud environment. In Proceedings of the International Conference on
Green Computing Communication and Electrical Engineering, Coimbatore, India, 6–8 March 2014; pp. 1–4.

32. Li, Y.; Yang, Q.; Lai, S.; Li, B. A new speculative execution algorithm based on C4.5 decision tree for Hadoop.
In Proceedings of the International Conference of Young Computer Scientists, Engineers and Educators
(ICYCSEE 2015), Harbin, China, 10–12 January 2015; pp. 284–291.

33. Wang, Y.; Lu, W.; Lou, R.; Wei, B. Improving MapReduce performance with partial speculative execution.
J. Grid Comput. 2015, 11, 587–604. [CrossRef]

http://dx.doi.org/10.1155/2014/151564
http://dx.doi.org/10.1155/2014/601868
http://dx.doi.org/10.3390/s141122001
http://www.ncbi.nlm.nih.gov/pubmed/25420151
http://dx.doi.org/10.1109/TDSC.2013.14
http://dx.doi.org/10.1109/TCC.2014.2329299
http://dx.doi.org/10.1109/TCC.2014.2338291
http://dx.doi.org/10.1109/TPDS.2014.2345068
http://dx.doi.org/10.1109/TCC.2014.2379096
http://dx.doi.org/10.1109/TPDS.2014.2358556
http://dx.doi.org/10.1109/TSC.2015.2426186
http://dx.doi.org/10.1109/TC.2013.15
http://dx.doi.org/10.1016/j.compeleceng.2015.06.013
http://dx.doi.org/10.14257/ijgdc.2016.9.2.18
http://dx.doi.org/10.1007/s10723-015-9350-y

Sensors 2016, 16, 1386 15 of 15

34. Yang, S.J.; Chen, Y.R. Design adaptive task allocation scheduler to improve MapReduce performance in
heterogeneous Clouds. J. Netw. Comput. Appl. 2013, 57, 61–70. [CrossRef]

35. Ananthanarayanan, G.; Kandula, S.; Greenberg, A.; Stoica, I.; Lu, Y.; Saha, B.; Harris, E. Reining in the
outliers in Map-Reduce clusters using Mantri. In Proceedings of the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), Vancouver, BC, Canada, 4–6 October 2010; pp. 265–278.

36. Xu, H.; Lau, W.C. Optimization for Speculative Execution in a MapReduce-Like Cluster. In Proceedings of
the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May
2015; pp. 1071–1079.

37. Xu, H.; Lau, W.C. Task-cloning algorithms in a MapReduce cluster with competitive performance bounds.
In Proceedings of the IEEE 35th International Conference on Distributed Computing Systems (ICDCS),
Columbus, OH, USA, 29 June–2 July 2015; pp. 339–348.

38. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math.
2016, 11, 431–441. [CrossRef]

39. Ahmad, F.; Chakradhar, S.T.; Raghunathan, A.; Vijaykumar, T.N. Tarazu: Optimizing MapReduce on
heterogeneous clusters. ACM SIGARCH Comput. Archit. News 2012, 40, 61–74. [CrossRef]

40. Fan, Y.; Wu, W.; Xu, Y.; Chen, H. Improving MapReduce performance by balancing skewed loads.
China Commun. 2014, 11, 85–108. [CrossRef]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jnca.2015.07.012
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1145/2189750.2150984
http://dx.doi.org/10.1109/CC.2014.6911091
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	A Two-Phase Regression Method
	Gathering Detailed Information of Each Running Task
	Data Analysis

	Experiments and Results
	Data Collection and Its Results
	Data Analysis and Prediction

	Conclusions

