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Abstract 

Of all industrial sectors, the built environment puts the most pressure on the natural environment, 

and in spite of significant efforts the International Energy Agency suggests that buildings-related 

emissions are on track to double by 2050. Whilst operational energy efficiency continues to receive 

significant attention by researchers, a less well-researched area is the assessment of embodied carbon 

in the built environment in order to understand where the greatest opportunities for its mitigation 

and reduction lie. This article approaches the body of academic knowledge on strategies to tackle 

embodied carbon (EC) and uses a systematic review of the available evidence to answer the following 

research question: how should we mitigate and reduce EC in the built environment? 102 journal 

articles have been reviewed systematically in the fields of embodied carbon mitigation and reduction, 

and life cycle assessment. In total, 17 mitigation strategies have been identified from within the 

existing literature which have been discussed through a meta-analysis on available data. Results reveal 

that no single mitigation strategy alone seems able to tackle the problem; rather, a pluralistic 

approach is necessary. The use of materials with lower EC, better design, an increased reuse of EC-

intensive materials, and stronger policy drivers all emerged as key elements for a quicker transition to 

a low carbon built environment. The meta-analysis on 77 LCAs also shows an extremely incomplete 

and short-sighted approach to life cycle studies. Most studies only assess the manufacturing stages, 

often completely overlooking impacts occurring during the occupancy stage and at the end of life of 

the building. The LCA research community have the responsibility to address such shortcomings and 

work towards more complete and meaningful assessments.  

Keywords: embodied carbon reduction, embodied carbon mitigation, low carbon built environment, 

LCA buildings.  

1. Introduction and Theoretical Background 

Of all industrial sectors, the built environment puts the most pressure on the natural environment. In 

the European Union, it accounts for 50% of all extracted materials, 42% of the final energy 

consumption, 35% of greenhouse gases (GHGs) emissions [1] and 32% of waste flows [2], and global 

figures are not much different [3]. To manage the environment sustainably, the role of the built, and 

particularly the urban, environment is crucial. Cities occupy only 3% of the Earth’s land but account 

for around 70% of energy consumption and carbon dioxide emissions [4]. While buildings provide the 

essential infrastructure for civilization and our need for shelter, they also create an ecological threat 

in terms of resource consumption and depletion, air quality, and pollution of soil and water [5].  

Considerable effort across policy, academia and industry has therefore gone into improving the energy 

efficiency of buildings. Until recently political effort has focused almost entirely on the operational 

stage (occupancy phase) of buildings, with one example being the European Union final deadline for 

nearly Zero Energy Buildings (nZEB) from 2020 [6]. The reason given for this focus is that operational 

energy (and carbon) accounts for the greatest share of life cycle energy (and carbon) of a building.  
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In spite of these efforts CO2 emissions are continuing to rise, with the International Energy Agency 

(IEA) suggesting that emissions are on track to double by 2050 [7]. Part of the reason appears to be 

that the higher energy efficiency leads to rebound effects from increased energy demand, due to, for 

instance, “more heated space, higher temperatures, and for longer periods” [8].  However a less well-

researched reason may be due to the unnecessary dichotomy between operational and embodied 

impacts, which has the unintended consequences both of ignoring the effects of increased 

construction and in some cases of shifting the environmental burdens from one life cycle stage 

(occupancy) to the others [9]. There is now robust evidence that the embodied impacts of buildings 

are a significant contributor to global emissions, and that as a percentage of whole life impacts of 

buildings they can account for more than 50%  [10], with 70% calculated for some cases in the UK [11].  

Out of several potential measures, ‘embodied carbon equivalent’ (CO2e
1) is useful for several relevant 

reasons: 

 It measures and indicates the contribution of buildings and their products to global warming 

and climate change, which is increasingly critical [12, 13]; 

 Through considering the carbon intensity of the energy carrier it is more comprehensive than 

embodied energy [14]; 

 While it may not accurately represent additional ecological and environmental impacts [9, 15, 

16], it correlates well with several impact categories of more comprehensive impact 

assessment methods (e.g. ReCiPe) [17], thus acting as a useful indicator for impacts other 

than climate change. 

The substantial growth of related literature from outside academia [18-23] which address the themes 

of EC reduction and mitigation also confirms the importance of embodied carbon. 

In spite of this growing interest and understanding of the issue, the body of academic knowledge on 

strategies to tackle embodied carbon has not previously been investigated systematically. This article 

addresses this shortcoming and uses a systematic review of the academic evidence to answer the 

following research question: how should we mitigate and reduce, embodied carbon in the built 

environment? The following section introduces the method whereas section three discusses each of 

the mitigation strategies identified and provides a synopsis of the reviewed literature in table form. 

Section four includes the meta-analysis of all collected data to identify existing trends and issues. It 

also discusses the outcomes of the systematic review and identifies the most pressing issues which 

demand close attention. Section five concludes the article.   

2. Method 

The systematic approach used to review the existing literature ensures thoroughness, rigour and 

objectivity in the selected studies. This approach is widely used in medical and management sciences 

[24, 25] but also in built environment research [26]. A further technique often combined with this 

process is the meta-analysis of data to quantitatively integrate research findings across a wide number 

of studies [25] in order to reveal and map significant trends [26] through the harmonised use of 

reviewed data [15, 26]. Ultimately, the purpose of a systematic literature review and meta-analysis is 

                                                           
1 Defined as the sum of CO2eq emissions related to all activities and components other than the operational 
energy consumption related to a building’s life. More generally, embodied costs or impacts may refer to different 
units such as energy, carbon, water, natural resource depletion, etc.. Carbon dioxide equivalent emissions, are 
also the measuring unit of the Global Warming Indicator (GWI) 
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to make sense of key elements within a large collection of sometimes-contradictory studies to 

facilitate decision-making and action with an aim to inform both policymaking and practice [24].  

In this article the following strings2 and combinations thereof have been searched across main 

literature database3: 

 Embodied carbon mitigation (+strategy) 

 Embodied carbon reduction (+strategy) 

 Embodied carbon management (+strategy) 

 Embodied carbon building(s) 

 Life cycle assessment building(s) 

 LCA building(s) 

 Life cycle carbon building(s) 

Due to the rapidly developing field, search results were temporally limited to 10 years and given 

existing disputes over reliability, data quality, and system boundaries within LCA, results were also 

limited to peer-reviewed journal articles. In total, after manually removing duplicates due to the 

different search engines used, 876 manuscripts matched the initial search criteria. The abstracts of 

these papers were then reviewed for a second selection round which resulted in 229 articles, due to 

the key words being mentioned in different parts of the abstracts without any connection. These 229 

were analysed in depth, and 102 were identified to fall within the remit of the present work, which 

included sufficient information for the scope of this study with respect to embodied carbon mitigation 

and reduction in the built environment and enough detail on the LCA study, where this was 

undertaken.  

The research question asks, how should we mitigate and reduce embodied carbon in the built 

environment? To answer this, the following elements were identified from the studies: 

(1) Mitigation strategies: first as they arose from the articles and then coded into consistent and 

coherent clusters; 

(2) The geographical breadth of the study (GA), rated 0 to 3, where 0 is a study not related to a 

geographical area and 1 to 3 instead cover super-country, country, and sub-country levels 

respectively; 

(3) The scale of the study (SS), rated 0 to 3, where 0 is a study related to, for instance, a whole 

neighbourhood and 1 to 3 cover context (i.e. building), system (e.g. façade), and component 

(e.g. brick) levels;  

(4) The life cycle stages included in the analysis, mapped using the framework developed by the 

European Technical Committee TC350 [27] (Figure 1Figure 1). 

Regarding the latter point, not all the studies allowed for a thorough mapping of life cycle stages and 

therefore this specific analysis is limited to 77 articles which are more of an LCA nature out of the 102 

reviewed.  

                                                           
2 The search was limited to Title, Abstract, and Keywords of manuscripts to avoid completely unrelated results. 
3 Web of Knowledge, Web of Science, Science Direct and Google Scholar.  
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Figure 1 - Life cycle stages of a building (BS EN 15978:2011) 

3. Embodied Carbon Mitigation Strategies 

Seventeen mitigation strategies (MSs) were identified in the reviewed literature, and these are 

presented in Table 1. MSs were defined progressively along with the review of all articles. For instance, 

MS1 was the first to be defined as the first paper we reviewed recommended a greater use of wood 

as a construction to reduce EC in buildings. Table 2 then details each of the 102 articles with the four 

elements of analysis: the mitigation strategies (numbered as given in Table 1); the geographical 

breadth of the study (GA); the scale of the study (SS); and the life cycle stages included (as identified 

within BS EN 15978).  The articles are listed in chronological order of access. The sub-sections following 

these tables take each mitigation strategy in turn and discuss it with reference to a few specific papers. 

Table 1 - Details of the mitigation strategies (MSs) identified in the literature 

MS Description 

1 Practical guidelines for a wider use of low-EC materials 

2 Better design 

3 Reduction, re-use and recovery of EE/EC intensive construction materials 

4 Tools, methods, and methodologies 

5 Policy and regulations (Governments) 

6 Refurbishment of existing buildings instead of new built  

7 Decarbonisation of energy supply/grid 

8 Inclusion of waste, by-product, used materials into building materials 

9 Increased use of local materials  

10 Policy and regulations (Construction sector) 

11 People-driven change (key role of all BE stakeholders)  

12 More efficient construction processes/techniques 

13 Carbon mitigation offsets, emissions trading, and carbon tax 

14 Carbon sequestration 

15 Extending the building's life 

16 Increased use of prefabricated elements/off-site manufacturing 

17 Demolition and rebuild 
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Table 2 – Data Collected from the systematic review of the literature 

 Mitigation Strategies GA SS BS EN 15978:2011 Life cycle stages  
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MS1: Use of materials with lower embodied energy and carbon 

The use of alternative materials with low EE and EC to mitigate the contribution of the built 

environment to climate change was a particularly common solution [e.g. 64, 73]. In many studies, this 

approach involves the use of natural materials (e.g. timber, bamboo, hemp-lime composites). For 

instance, Reddy [40] investigated the use of stabilised mud blocks (SMB) as a substitute for load 

bearing brickwork and found nearly a 50% reduction in embodied costs. With a focus on using 

alternative building materials over more traditional ones for a 28-storey residential building in Hong 

Kong, Cui and colleagues [65] quantified the related embodied carbon savings, obtaining a 34.8% 

reduction. Switching from material level to a full house project, Salazar and Meil [41] assessed the 

GHG impacts of what they call a ‘wood-intensive’ house in comparison to a typical one with brick 

cladding in Canada and found extremely significant differences between the two: 20 tCO2e for the 

former vs. 72 tCO2e of the latter. The enormous potential of a broader adoption of wood as a 

construction material seems confirmed by Upton and colleagues [35] who, in a US residential-sector-

wide study, indicated savings of 9.6 MtCO2e/annum by using wood as an alternative to concrete- and 

steel-based building systems under the assumption of 1.5 million single-family new houses built each 

year. Vukotic and colleagues [48] also found a timber structure school building to have lower impacts 

than the steel frame alternative, but recommend that “rather than encouraging debate about which 

material is ‘better’ than any other”, the best use is made of chosen materials in any particular situation 

[48]. It is worth noting that in some comparative studies, the use of materials with lower EE/EC may 

also involve commonly-used materials, such as in the work of You and colleagues [63] who found a 

4.2% CO2 reduction in preferring steel-concrete structures over masonry-concrete structures; an 

aspect which leads to the importance of design discussed in the next sub-section.  

MS2: Better design 

Good design practice and appropriate choices at the design stage, as well as techniques such as design 

for deconstruction, were identified as crucial strategies for EC reduction and mitigation. Acquaye and 

Duffy [42] conducted an input-output analysis of the Irish construction sector; they suggest that their 

results showed that better design could have reduced indirect emissions by 20% and direct emissions 

by 1.6% totalling 3.43 MtCO2e. In examining refurbishment of high-rise concrete buildings in Hong 

Kong, Chau and colleagues [66] also found a determinant role of design.  They argued that “the most 

effective option is to maintain 15-30% of the existing structural and non-structural building elements 

as it can reduce the CO2 footprint by 17.3%”. This view is echoed and supported by Cuéllar-Franca and 

Azapagic [67] who reflect on the longevity of decisions taken at the design stage and call for a 

sustainable home design which considers the impact that design choices exert over the building’s life 

cycle. The centrality of design is also emphasised by Häkkinen and colleagues [110] who recommend 

a gradual and systematic procession through all different phases and stages of design to accurately 

assess GHG emissions and achieve low-carbon buildings.  

MS3: Reduction, re-use and recovery of EE/EC intensive construction materials 

Basbagill and colleagues [79] investigated in detail the application of LCA to help designers understand 

and reduce the environmental impacts of building materials and components. They found that by 

optimising key parameters (e.g. thickness of piles and footings, and of external and internal walls) 

“anywhere from 63% to 75% reduction in the building’s maximum total embodied impact is possible” 

[79]. Garcia-Segura and colleagues [93] assessed the reduction of GHG emissions due to a reduced use 

of Portland cement and its substitution with blended cement, which has a higher content of fly ash 

(FA) and blast furnace slag (BFS). Such an approach promises to lead to 7% - 20% fewer emissions [93]. 
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Similar environmental benefits following a reduction in use of cement are echoed by Atmaca and 

Atmaca [105] and Miller and Doh [115]. Moynihan and Allwood [99] investigated the utilisation of 

structural steel in buildings and concluded that by designing to minimise the material used rather than 

the cost, the use of steel in building and the associated embodied impacts could be dramatically 

reduced.  

MS4: Tools, methods, and methodologies 

Despite the populated panorama of existing tools, assessment methods and methodology, it still 

seems this is seen as a key area to bring about embodied carbon reduction with the parallel aim of 

building a better and stronger EC culture amongst the built environment stakeholders. This may take 

the form of coupling EC assessment with building information modelling (BIM) [98], as a form on 

information hub, or combining BIM with dynamic energy simulation tools [122], to achieve an overall 

balance between operational and embodied figures. In some other cases, new methodologies aim at 

refining existing ones by, for example, coupling a life cycle carbon assessment with an analysis of the 

value created by the specific activity/product under investigation [84].  

MS5: Policy and regulations (Governments) 

Perhaps unsurprisingly, the implementation and/or revision of policy and regulations by Governments 

also emerged as a commonly cited strategy for EC reduction [e.g. 44, 53, 96]. In some studies [96] this 

strategy is mainly intended as a means to support other mitigation strategies, like a wider use of low 

EE/EC materials, whereas in others policy has a broader reach. For instance, Dhakal [43] reports on 

Chinese and Japanese contexts where a 50% CO2 reduction could be achieved through the impact of 

policies on design and construction practices.  

MS6: Refurbishment of existing buildings 

A few scholars believe the greatest opportunity for EC mitigation lies with the upkeep of existing 

buildings. This appears to be especially true in developed countries where the existing building stock 

forms the vast majority of the built environment. Gaspar and Santos [109] assessed the potential 

saving for a detached house in Portugal built in the late 1960s, concluding that refurbishment would 

be 22% more efficient than demolition and rebuild. A strong case for refurbishments can be also found 

in the work of Power, who demonstrated that the case for large scale demolitions “is greatly 

weakened” when considering EC as well as operational figures, for the EC of an average refurbishment 

project to bring an existing house up to modern standards is around one third of that of a new house 

[33, 46].  

MS7: Decarbonisation of energy supply/grid 

Just as the idea of decarbonising the energy supply is seen as one pathway to operational-carbon-free 

buildings [8], some scholars point out that there is the same opportunity for embodied costs [37, 51, 

54]. For instance, in the study from Heinonen and colleagues [54] a specific ‘greener’ energy mix would 

cut 6% off the total emissions figure.  

MS8: Inclusion of waste, by-product, and used materials into building materials 

A further beneficial effect may be brought about by the inclusion of waste and by-products into 

building materials [e.g. 57, 118], in light of cradle-to-cradle design and circular economy approaches 

which have recently received increased attention as a valid and viable alternative to the traditional 

linear make-use-dispose paradigm. Intini and Kuehtz [55] investigated the use of recycled plastic 
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bottles to manufacture thermal insulation in Italy and concluded that recycled polyethylene 

terephthalate (PET) can reduce environmental impact as much as 46% with respect to GWP. Some 

researchers also highlight the importance of considering the necessary supply chain to realise this [60].  

MS9: Increased use of local materials  

Several studies reported the EC reduction due to an increased use of local materials which would 

reduce transportation impacts [e.g. 45, 104, 107]. In a detailed assessment of stone production carried 

out in accordance to PAS2050 guidelines, Crishna and colleagues [52] argued that depending on the 

stone type and the country of origin, the use of UK-based stones can save between 2% - 84% of the 

EC of stones sourced from abroad. It is also worth considering that such strategy would benefit local 

or national economies as well as the environment.   

MS10: Policy and regulations (Construction sector) 

For some scholars, the strength of policies and regulations lies not (or at least not only) with 

governments but with bodies and stakeholders within the construction sectors [e.g. 42, 95]. For 

instance, Alshamrani and colleagues [95] developed an integrated LCA – LEED model for sustainability 

assessment and believe there would be positive consequences if it were voluntarily adopted and used 

in the construction sector.  

MS11: Social ‘component’ -–People-driven change driven by strong demand from(key role 

of all BE stakeholders in the built environment) 

This cluster groups ‘social’ elements for a built environment with lower EC, such as an aesthetic 

demand for “buildings [with] sustainable credentials” [58], or solutions related to people’s skills such 

as the contractors’ ability to plan resources, their management skills and construction performance 

mentioned by Sandanayake and colleagues [123]. Also, social or cultural aspects have been identified 

as barriers to EC reduction, such as the inertia of builders towards environmentally conscious 

regulations in China reported by Li and Colombier [39].  

MS12: More efficient construction processes/techniques 

In some studies, a gain in efficiency in the construction sector is seen as an important opportunity for 

EC reduction [e.g. 34, 58, 123]. This is often intended as a more efficient manufacture of building 

materials, the use of innovative and less wasteful processes during the construction stage, or a 

combination of the two. This strategy also includes the reduction of delays, the impact of site 

conditions, and the use of more energy efficient machinery.   

MS13: Carbon mitigation offsets, emissions trading, and carbon tax 

Some scholars see the solution to the EC problem in carbon mitigation and trading, and in fewer cases 

carbon taxing. For instance, Dalene [69] reports on a case study of a residential building where all 

“GHG emissions were offset by carbon mitigation programs and certified carbon offsets  were 

purchased” to achieve carbon neutral status. At a broader scale, Kennedy and Sgouridis [56] 

developed a carbon accounting framework for cities to categorise and determine urban emissions 

strategies.  

MS14: Carbon sequestration 

The carbon sequestration approach found in few studies [e.g. 28, 43] is to some extent linked to the 

previous strategy but it deserves a separate category due to different underlying principles: while 



12 
 

carbon offsets and emissions trading offer a policy solution to EC reduction, carbon sequestration 

looks at the technological side of the issue exploring new materials or innovative uses of existing ones 

to capture and store carbon. For instance, Sodagar and colleagues [59] studied the use of biotic 

materials in a social housing project in the UK and concluded that the carbon lock-up potential could 

reduce carbon emissions by 61% over the 60-year lifespan of the houses.   

MS15: Extending the building's life  

Intuitively, extending a building’s life span would delay and therefore reduce the EC associated with 

deconstruction and demolition, waste processing and rebuild. However, this strategy is only 

considered by a handful of studies in the existing literature [e.g. 60, 61, 78].  In some of the studies, 

this strategy does not simply consider aiming for a longer service life of the building but is also about 

designing the building with the necessary flexibility to be durable and adaptable.  

MS16: Increased use of prefabricated elements/off-site manufacturing 

This category is somewhat linked to more efficient construction processes but due to a clear stream 

within the existing literature oriented towards off-site manufacturing and prefabrication it was coded 

separately. In some studies, the emission savings of this strategy alone have been quantified. For 

instance Mao and colleagues [85] found that semi-prefabrication would emit 3.2% less than 

conventional construction. Off-site manufacturing has been also investigated in combination with 

other strategies (e.g. the use of low embodied carbon materials) such as in the case of Monahan and 

Powell [58].  

MS17: Demolition and rebuild 

In a very few cases, such as Dubois and Allacker [103], it has been suggested that a truly significant 

carbon reduction in the built environment would only be achievable through wide campaigns of 

demolition and reconstruction with the belief that embodied costs of such activities are negligible 

compared to the benefits of new build. In another study [31], a demolition level higher than current 

practice is considered a “sensible compromise” to tackle climate change. 

4. Meta-Analysis and Discussion 

This section analyses and interpolates data from the systematic literature review presented so far. As 

such, it can be regarded as that which Glass [125] defines as ‘secondary analysis’ or ‘meta-analysis’. 

However while secondary analysis involves “the re-analysis of data for the purpose of answering new 

[research] questions with old data”, meta-analysis is understood as “the analysis of results from 

individual studies for the purpose of integrating the findings” [125], which is the purpose of this 

section.  

As a starting point, Table 3 maps the geographical amplitude and scope of the articles reviewed. Such 

two elements have been approached and reviewed systemically, and the clustering system used goes 

from macro (e.g. super-country level) to micro (e.g. regional level).    The totals sum up to more than 

100% because some of the articles considered for this research showed a wider approach not 

restricted to a single geographical area or to a particular scale of study. However, the vast majority 

(72.564.3%) of the studies focus on single countries, while very few (10.4%) consider wider 

geographical areas or single regions within a country. This may reflect how specific the built 

environment is from country to country, suggesting that a nation-wide approach is the preferred 
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option when addressing embodied carbon issues to realistically consider the peculiarities of different 

contexts.  

 

Table 3 - Geographical Amplitude and Scope of the articles reviewed 

 GA (geographical amplitude) SS (scope of the study) 

0 14.7% 15 (13%) 22.5% (18%) 
1 13.7% 14 (12.2%) 46.1% (36.7%) 
2 72.5% 74 (64.3%) 15.7% (12.5%) 
3 11.8% 12 (10.4%) 41.2% (32.8%) 

Totals 112.7% 125.5% 
GA: 0 = not related to geographical areas; 1 = super-country level; 2 = country 
level; 3 = sub-country level – SS: 0 = supra-context level; 1 = context level 
(building); 2 = system level; 3 = component level.  

 

Things change for the scope of the studies and the meta-analysis reveals that most consider either 

buildings as a whole (46.136.7%) or break them down to single-material level (41.232.8%). Fewer 

studies (15.712.5%) have considered macro-assemblies such as façades or roofs. However it is 

important to note the amount of literature (22.518%) that has focussed on neighbourhoods, cities or 

– in some cases – the whole construction sector within a country.    

Figure 2 shows the analysis of temporal trend of published literature in the field. It is clear that 

academic interest around the topic is growing steadily and it may be that major international events 

or outcomes related to climate change (such as the United Nations Climate Change Conferences 

COP16 and COP19 and the IPCC reports of 2007 and 2014) could have fuelled research activity.  

 

 

Figure 2 - Temporal trend of published literature in the subject 
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Figure 3 shows the occurrence and the cumulative percentage of the number of different mitigation 

strategies considered in the literature reviewed for this research.  

 

 

Figure 3 - Number of mitigation strategies (MS) in the studies reviewed 

 

Most studies (> (more than 60% as shown in Figure 3) consider less than four mitigation strategies –

the biggest bulk being within two and four – whereas just around 10% consider more than six. Given 

the fact that the majority of the studies suggest a focus on few strategies, if we consider embodied 

carbon as a ‘problem’ and the mitigation strategies as ‘solutions’ it is useful to use a Pareto chart to 

highlight this (Figure 4). It can be seen that the usual 80/20 ratio typical of Pareto charts is not found 

here and more than half of the mitigation strategies are necessary to get to an 80% value.  

 

 

Figure 4 - Pareto chart of mitigation strategies (MS) identified in the literature 
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A further element of interest regarding mitigation strategies is how they are mutually combined. Due 

to space limit and length requirements, such information is given in Table S1 and Table S2 of the 

supplementary material attached to this article. , as shown in the correlation matrix in Table 4. Each 

strategy is fully correlated with itself, hence the 100% values on the diagonal. The matrix has been 

enhanced with a colour scale to allow for a quicker identification of existing correlation patterns.  

Table 4 - Correlation Matrix of the mitigation strategies (MS) identified in the literature 

 

Table 4The correlation analysis shows, for instance, that in nearly half of the cases when MS1 (use of 

materials with low EC) is proposed, MS2 (better design) is also mentioned, which shows indicates that 

the use of materials with lower EC is a design issue. In turn, MS2 occurs in 48% of the cases together 

with MS3 (reduction, re-use and recovery of EC intensive materials) suggesting a key role of design in 

both promoting low EC materials and reducing the use of high EC ones. It should be noted that MS4 

(new tools, methods, and methodologies) correlates almost solely with policies, either government 

led (MS4) or promoted by the construction sector (MS10). The correlation matrix in the supplementary 

material helps interpret the results of the meta-analysis. For instance, MS17 (demolition and rebuild) 

clearly shows the necessity of support from governmental policy (MS5) to happen. It is also 

noteworthy how the social ‘component’ (i.e. MS11, change driven by strong demand from all built 

environment stakeholders) correlates shows higher correlation with both policies strategies (MS5 and 

MS10), a wider use of local materials (MS9) as well as the inclusion of waste and by-products into 

buildings (MS8).  

The meta-analysis also gives useful insights into the details of the life cycle stages. Two main pieces of 

information are plotted in Figure 5 and Figure 6 respectively: first the number of life cycle stages 

considered in the studies;  and second, which life cycle stages are considered (following the coding 

and terminology of TC350 standards [27] - see Figure 1Figure 1).   
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Figure 5 - Number of life cycle stages in the LCA articles reviewed 

Figure 5 demonstrates the partial nature of current LCA research, with 50% of the studies considering 

less than 40% life cycle stages, and nearly 90% of the studies less than 60% of a building’s life cycle 

stages. Only 3 out of 77 articles have taken into account more than 80% of the stages identified by the 

TC350 standards.  Please note that the number of individual stages does not reflect the impact of each 

stage.  

Figure 6 reveals exactly which stages are most focused on in the literature.  Most studies undertake a 

cradle-to-gate (stages A1 to A3), cradle-to-site (A1 to A4), or cradle-to-commissioning assessment (A1 

to A5).  Such a focus is both narrow and short sighted, as it accounts only for short-term embodied 

costs while neglecting those in the medium and long term.  

 

Figure 6 - Life cycle stages considered in the LCA articles reviewed (77 publications out of the 102) according to TC350 
coding and terminology 
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Figure 7 shows the occurrence of life cycle stages in the literature reviewed and they are ordered as 

would normally occur during a building’s life cycle. What is interesting too is that the end of life stages 

(C1-C4) and even post-end of life stage D, are more often assessed than the embodied impacts during 

the in-use life of the building, as assessed in stages B1-B5.  

From the LCA literature, insights from the systematic review reveal a partial approach to buildings’ life 

cycle. Over 90% of the LCA studies are cradle-to-gate analyses which neglect what happens once 

building’s components have left the manufacturing plants.  Data quality and reliability also emerged 

as a source of concern. Many studies utilise the ICE database of the University of Bath [126] but there 

are doubts about the representativeness and accuracy of their findings within the UK, let alone other 

countries. In fewer cases (around 50% of the studies) the assessment extends until the end of the 

construction stage; these still overlook the potentially substantial maintenance, replacement and 

repair activities that occur over the building’s life. Indeed the B stages are the most neglected by 

current research, being considered by only 20% of the studies. The end of life stages (C and D) are 

accounted for in around 30% of the studies examined. Additionally, these activities happen in a distant 

future and are therefore characterised by high uncertainty. 

 

Figure 7 - Life cycle stages considered in the LCA articles reviewed (77 publications out of the 102) according to TC350 
coding and terminology and ordered as they occur during a building’s life cycle 

5. Conclusions 

This article has systematically reviewed a substantial amount of existing academic knowledge on 

embodied carbon mitigation and reduction in the built environment and life cycle assessment of 

buildings.   

The findings have highlighted the growing concern over the role of embodied carbon in the built 

environment. In total, 17 mitigation strategies have been identified which reveal a substantially 

diverse range of approaches to address the problem. Two main things clearly emerged from the 

analysis. Firstly, the problem requires a pluralistic solution because no single mitigation strategy is 

seen to be effective in EC reduction; indeed more than 80% of the reviewed studies recommend more 

than one mitigation strategy. Secondly, the analysis has shown the interconnectedness of the role of 

the designer with those of the researchers, the materials manufacturers and the policy makers. For 
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instance, the development and use of materials with low EC is intertwined with a better design which 

in turn is seen as the key element to also reduce, re-use and recover EC-intensive construction 

materials, such as steel and concrete. New tools, methods and methodologies are also needed to 

facilitate the transition to a low-carbon built environment, as are policies at both government and 

construction sector levels. These however require support from the society at large (social 

‘component’) if a substantial change is to be achieved.  

In developed countries, the upkeep of the existing building stock also stood out as a crucial element. 

In most cases, this was simply seen as the need to refurbish existing buildings although there are 

growing signs of more specific research activities in extending the building’s life during a 

refurbishment project in a design-for-longevity aim. Interestingly, this aspect from the mitigation 

strategies analysis clashes with the assumed service life of buildings in the LCA literature reviewed, in 

which, for the vast majority of the articles, buildings are assessed for a design life of 50 years.  However 

the evidence around us says otherwise; in the UK, for instance, 80% of the buildings that will be 

standing in 2050 have already been built [127] and the average lifespan is 132 years [114].  

This research has also shown the current incompleteness of most LCAs. Over 90% of the LCA studies 

reviewed only look at the manufacturing stage whereas just over 50% go up to the end of the 

construction stage. Impacts occurring during the occupancy stage and at the end of life of a building 

are often totally overlooked. This requires extra care when using results from published LCAs, which 

might be both partial and short sighted. While incomplete assessment is better than no assessment 

at all [128], there is now the knowledge and potential to address and attempt to solve the current 

limitations, and the academic community have the responsibility to do so. Researchers should adopt 

a stricter terminology (and editors and reviewers should monitor this) and avoid to label as LCA what 

is often instead a cradle-to-gate assessment.  

In conclusion, this research suggests that a pluralistic and multidisciplinary approach to EC reduction 

is imperative if a substantial change is to be achieved.  It has also highlighted current shortcomings 

and challenges in LCA research and calls for a more comprehensive approach to buildings’ life cycle as 

well as greater consideration for data quality and uncertainty. Work at the University of Cambridge 

will continue with such interdisciplinarity in mind to facilitate a quicker transition to a low carbon built 

environment.  

6.    Limitations and further research 

The method used, i.e. a systematic review, might miss out on some literature that still fall within the 

scope and this can be seen as a limitation of this research. Such limitation is due to the objective 

approach in selecting publications—which is based on matching keywords rather than the subjective 

judgements of the authors. For instance, this could be the case of some of the—especially Nordic—

literature on the use of materials with low EC that has not been addressed extensively here because 

it did not appear in the search results. It is however important to note that the systemic approach 

used goes from search strings to mitigation strategies through the identification of relevant literature, 

and not the other way around. Therefore, while the literature around each MS might not be 

necessarily exhaustive, the one related to the search strings certainly is.  

Based on the findings, several avenues for further research can be identified. An interdisciplinary 

framework for collaboration amongst relevant stakeholders would benefit both the theory and 

practice of embodied carbon mitigation and management. Similarly, a comprehensive review of 

methods and methodologies available and their subsequent integration into a holistic and harmonised 

updated tool would be an extremely valuable contribution. The theme of existing buildings also 
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certainly deserves further research as they perform often poorly in terms of operational energy 

consumption but have an embodied carbon capital embedded that should be more appropriately 

considered in the demolish vs. refurbish debate. Additionally, sensitivity and uncertainty analysis are 

seldom undertaken in LCAs in the built environment. Newer and simpler approaches are required to 

facilitate a wider use and a broader uptake of such fundamental components of an environmental 

impact assessment by both academics and practitioners.  

Both qualitative and quantitative research on the actors involved with each MSs, from identification 

through mapping to interactions, also constitute important advancements in the discourse around the 

topic. Finally, a quantitative evaluation of the EC reduction potential of each MS if adopted on a large 

scale would be an incredibly insightful contribution to further knowledge in the field and help guide 

policy directions.   
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