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Abstract 

Urbanisation may have been shown to have no effect on climate change, but some 

researchers suggest that cities are fully capable of responding to it. Urban Heat Islands 

(UHIs) represent dense urban areas within cities where the temperature is recorded 

to be higher than the neighbouring areas or those located in suburbia. Mitigation of 

UHI effects can help diminish detriments of climate change. This paper sets out to 

establish UHI mitigation strategies, their effectiveness and resilience to help provide 

recommendations for application of such strategies in future. Existing literature 

suggest that UK is facing with growing problem of UHI effects and sustainable 

development at urban scale can be improved if proportionate measures are taken to 

mitigate those effects. The lack of guidance for designers and planners with regards to 

UHI mitigation is also indicated in the literature where trees, shrubs and grass (TSG), 

use of high albedo materials (HAM) in external building surfaces and urban inland 

water bodies (UIWB) are identified as effective measures to mitigate UHI.  This 

research identifies and tests resilience and effectiveness of UHI mitigation strategies, 

using ENVI-met simulations and through Urban Futures Assessment Method (UFAM). 

Assessed mitigation strategies (TSG, HAM, UIWB) are shown to have a similar level of 

resilience which could be improved if proper future-proof measures are taken in 

place. As a result, some practical suggestions are provided to help improve the 

resilience of tested UHI mitigation strategies in this study.       

Keywords: Mitigating Strategies; Sustainable Cities; Urban Heat Island Effect; Urban 

Resilience; Urban Sustainability. 
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1. Introduction 

Cities accommodate over 50% of the world’s population (Jansson, 2013). While some 

may have suggested that urbanisation has limited to no effect with respect to climate 

change (Parker, 2004; Peterson, 2003), some others indicate that cities are effectively 

capable of responding to it (Emmanuel & Krüger, 2012; Hoornweg et al., 2010; Moss, 2009). 

Nevertheless, cities now contribute to 60% – 85% of the world’s energy consumption 

(Kamal-Chaoui & Roberts, 2009; Nakicenovic & Swart, 2000) and it is not credulous to 

expect that concentration of energy consemption activities on an over-crowded high-

density area of land, have an impact on at least local, if not global, warming. This is due to 

the need for heating and cooling the indoor spaces, and hot water in buildings and in some 

cases due to presence of fuel intensive industries (UN, 2010). Therefore, ideas about how to 

effectively combine urbanisation and sustainability are of critical and immediate importance 

(Kamal-Chaoui & Roberts, 2009).  

This research aims to investigate mitigation strategies for Urban Heat Island (UHI) 

phenomenon to gauge resilience and promote urban sustainability. Resilience in this paper 

refers to the extent to which these UHI mitigation strategies will be able to achieve their 

design purpose and sustain in the face of a changing future. Urban Futures Assessment 

Method (UFAM) will be employed to assess the resilience of UHI mitigation strategies. ENVI-

met will be deployed to simulate UHI effects in the selected case for this study, a planned 

development in borough of West Kensington in London (Figure 1).  

 

  Figure 1 - West Kensington, London 



The research is expected to be used first and foremost as a methodology for similar 

interventions and subsequently as a frame of reference for more sustainability-informed 

decisions for interventions at planning, design, implementation and operation phases for 

different experts including architects, urban designers, urban planners and city authorities. 

2. Review of existing literature 

2.1 Sustainable city 

Cities offer great opportunities to eliminate the detriments of climate change. They 

have an indispensable role in leading towards, and securing of a sustainable future for 

humankind (Alusi et al., 2011; Folke et al., 2011; Jansson, 2013; Mitchell, 2009; Moss, 2009; 

Rosenzweig et al., 2009). A sustainable city can be defined as a multifaceted complex entity 

with numerous interconnected networks and cycles (Mitchell, 2009). Recently the concept 

of sustainability has been intertwined closely with the notion of resilience as the latter is 

seen as inevitable if the former is intended to cling to a more sustained future. Resilience of 

cities and the need for cities of the future to be resilient has been identified as a necessary 

measure for the city of future and described as a response to environmental disturbance, 

how habitats and ecosystems can re-organise spontaneously after a disturbance, or as 

vulnerability of a system to irreversible change (Dieleman, 2013; Jabareen, 2013; Jansson, 

2013; Muller, 2007). Today’s sustainable strategies are expected to maintain the capability 

to deliver their intended benefits whatever the future may hold (Lombardi et al., 2012). 

2.2 The urban heat island (UHI)  

The UHI is a phenomenon where a significant difference in temperature can be 

observed within a city or between a city and its suburbia and/or its surrounding rural areas 

(Kolokotroni & Giridharan, 2008) and areas of maximum temperature can expectedly be 

found within the densest part of the urban area (Giannopoulou et al., 2011). Despite the 

common understanding, recent studies suggest that UHI can be found even in medium-to-

small size cities (Busato et al., 2014). In fact some studies suggest that the impact of UHI 

effects may be even higher on smaller cities. A specific case indicates a UHI peak of 6°C for a 

city of just over 200,000 people while significantly bigger cities with more than a million 

inhabitants have peaked at just above 2°C (Borbora & Das, 2014). Such evidence suggests 



that the UHI phenomenon could be much more common than it is currently believed to be. 

UHI is commonly illustrated in Figure 5. 

 

Figure 5 - UHI effects in city districts and its suburbia [19] 

 

2.3 Causes and effects 

Anthropogenic heat emissions, pollution and energy consumption within a city 

(Santamouris et al., 2011), intensive land use and high density in urban areas combined with 

buildings with high thermal masses and heat retaining properties (Harlan & Ruddell, 2011; 

Mavrogianni et al., 2011), urban street canyons effects resulting in lower rates of long-wave 

radiation loss during the night (Santamouris et al., 2011; Smith & Levermore, 2008), reduced 

speed of wind caused by design and layout of the built environment (Santamouris et al., 

2001), lack of green areas and presence of materials with reduced permeability (H. Chen et 

al., 2009; Smith & Levermore, 2008), and presence of low-albedo materials on buildings 

external façades and road surfaces (Santamouris et al., 2011) are known to be the most 

significant causes of UHI.  

UHI effects can be classified under two broad categories: people and 

(micro)climates. However, the two are not mutually exclusive. The deterioration of physical 

well-being of a city’s population (Fujibe, 2011 among others), thermoregulatory system 

damage induced by heat stress in the form of heat syncope, cardiovascular stress, thermal 

exhaustion, heat stroke and cardiorespiratory diseases (Kleerekoper et al., 2012; Rydin et 

al., 2012) are the ones with adversarial effects on inhabitants of a city which incur some 

secondary effects on microclimate by trying to improve the indoor comfort conditions 



within individual buildings. On the other hand elevated air temperature has a negative 

effect on the microclimates within cities compared to rural areas (Erell et al., 2011; Hathway 

& Sharples, 2012; Wilby, 2003), by formation of ground level ozone (Kleerekoper et al., 

2012), alteration of local micro- and macro-climates i.e. wind patterns, humidity changes, 

storms, floods, and change in local ecosystems (Lee, 1991; Mikami, 2005; Sailor & Fan, 

2002) and lastly exacerbation of global warming by increased energy consumption for air-

conditioning and increased heat emissions released into the local environment (Kolokotroni 

et al., 2012). To the contrary urban gardens are known to provide a suitable solution to 

improve the quality of life, energy poverty, urban heat stress and biodiversity in the urban 

environment (Tsilini et al., 2015). Each of these effects pertaining to climate bears a 

secondary implication and in most cases a resonating drift on other effects directly involving 

the city’s inhabitants.  

2.4 Assessment methodologies and mitigation strategies 

Prediction methodologies (such as artificial neural network) have been used to help 

predict peak energy loads during heat waves and hot summer days to manage supply and 

demand (Gobakis et al., 2011). Studies have used different tools and techniques including 

in-situ measurement and monitoring (Borbora & Das, 2014; Busato et al., 2014), CFD 

simulaition in combination with in-situ measurement (Dimoudi et al., 2014; Georgakis et al., 

2014), and artificial neural network either in combination or independent from fuzzy logic 

(Gobakis et al., 2011; Mihalakakou et al., 2002; Santamouris et al., 1999), simulation (Tsilini 

et al., 2015) to assist measuring, evaluating and prediction of the magnitude and effects of 

UHI.    

Regardless of the tools and techniques used for specific cases, major assessment 

methods such as Leadership in Energy and Environmental Design (LEED), Building Research 

Establishment Environmental Assessment Methodology (BREEAM), Comprehensive 

Assessment System for Built Environment Efficiency (CASBEE) and Building Environmental 

Assessment Method (BEAM) include criteria for mitigation of UHI effects. CASBEE provides 

the most comprehensive account of UHI parameters, spreading across its three toolkits: 

CASBEE for Home (Detached Houses), CASBEE for New Construction, CASBEE for Urban 

Development. UHI mitigation is not covered in BEAM as extensively as it is in CASBEE, but 

the criteria which BEAM represents for UHI mitigation are very similar to CASBEE. UHI 



mitigation measures are not detailed in LEED to the same extents as CASBEE or BEAM but 

where they are, similarities are evident. Taking a slightly different approach the Building 

Research Establishment (BRE) introduces BREEAM Communities which has assessment 

criteria to improve the urban microclimates. Although those criteria are not directly labelled 

as UHI mitigation measures, they can be associated with UHI effects since they aim to 

improve the health and well-being by offering the benefits of mitigation of UHI effects. 

These are capable of informing and, in the most optimistic scenarios, influencing the UHI 

mitigation strategies indirectly. As a result, a general consensus in assessment parameters 

across all the methods can be summarised as: ventilation or passage of air, shading of 

buildings, presence of green areas or roofs, use of water and, external use of high albedo 

materials on buildings’ surfaces. 

The inclusion of water retentive or porous materials in the design of the built 

environment, for example green roofs or porous paving has been pointed out in some 

previous research (Hathway & Sharples, 2012). High albedo materials in building design and 

shading of urban areas by trees or man-made structures (Takebayashi & Moriyama, 2012), 

cool materials for street and pavement covers (Dimoudi et al., 2014), green spaces at city 

scale such as parks and open fields (Rydin et al., 2012; Santamouris, 2014), presence of 

urban water bodies such as rivers and lakes within a city (Kleerekoper et al., 2012), and 

harnessing natural wind (Smith & Levermore, 2008) are other measures or strategies to 

mitigate UHI effects. However, “to appropriately select a UHI measures technology, the 

relationship between the environment where the technology has been introduced and the 

effect of introducing this technology must be studied” (Takebayashi et al., 2014, p. 217). In 

the next section the specific approach of this study will be explained.  



3. Methodology 

The existing literature was critically 

reviewed with an aim to investigate the 

concept of UHI in general and more specifically 

in correlation with the concept of sustainability 

and resilience at city scale. The review was also 

deployed to further investigate causes, effects 

and mitigation strategies of UHI. Next, current 

measures used in environmental assessment 

methods to mitigate (or at least denote) UHI 

were also reviewed, compared and analysed 

across the globe. Subsequently three UHI 

mitigation strategies were selected for further 

assessment. A combination of qualitative and 

quantitative methods was selected as this 

would yield uniform basis throughout the 

intended outcomes while providing multiple 

avenues of discussion. The first selected 

assessment methodology was the Urban 

Futures Assessment Method (UFAM) which 

assesses the resilience of the selected mitigation strategies. The UFAM is a 5-stage 

assessment methodology (Figure 2) which assesses the ability of today’s sustainable 

strategies to deliver their intended benefits in the future.  

The success of a sustainable strategy depends on its level of performance in four 

possible future scenarios set for the year 2050. At next stage a selected sampling method 

was adopted to find appropriate participants for interviews to further investigate the 

assessment methodology and address possible areas of improvement for practical 

application of this methodology from an expert’s point of view. The interviewees consist of 

individuals in the Urban Futures team, urban designers/planners who work in London and 

project team for Earl’s Court and West Kensington Opportunity Area developments where 

Figure 2 - UFAM Step Process (Lombardi et al., 2012) 



Seagrave site (Figure 3), the witness test case for the selection of suitable methodologies, is 

located.  

 

Figure 3 – Seagrave site for planned development 

The initial list included 50 recipients, which was narrowed down, in two different 

stages using purposeful sampling techniques, to 7 in order to have representation from all 

the expert groups included yet to avoid excessive data. Part of the proposed guidelines will 

be based upon numerical data demonstrating the efficacy of each UHI mitigation strategy.  

Figure 4 shows the proposed scheme for the Seagrave site: 



 

Figure 4 - Seagrave Development: East Elevation (above) and Site Plan (below) 

3.1 Tool 

The efficacy of each UHI mitigation strategy will be determined based upon 

simulations conducted by ENVI-met simulation software which has already been used 

successfully in UHI studies (e.g. Chow et al., 2011; Lahme & Bruse, 2003; Tsilini et al., 2015). 

Results from UFAM and ENVI-met assessment were then used to provide guidelines for 

urban planners aiming at mitigation of UHI effects. This has been achieved through 

triangulation of outcomes interpreted and drawn out from the literature review, expert 

interviews and the simulations. Furthermore, ideas which were developed in post data 

analysis stages were also used to inform conclusions and suggestions for further research. 

ENVI-met is a three-dimensional non-hydrostatic microclimatic model that allows for 

complex modelling and detailed investigation of urban microclimate. It shows a good 

resolution that satisfactorily models small-scale interactions between buildings, surfaces, 



and plants (Emmanuel et al., 2007). More specifically, ENVI-met has been proven capable of 

suitably simulating “major processes in the atmosphere that affect micro-climate” based on 

a well-grounded “physical basis (i.e. the fundamental laws of fluid dynamics and 

thermodynamics)…” (Ali-Toudert & Mayer, 2006, p. 96). In a comparative review of existing 

tools to assess physical parameters of urban microclimate, Moonen et al. (2012) 

acknowledge ENVI-met as a suitable tool for complex models, which takes into account a 

broad spectrum of relevant and determinant factors. With specific reference to the 

assessment of UHI mitigation strategies, Emmanuel et al. (2007) have selected ENVI-met as 

the most suitable model for analysing thermal comfort regime within the street canyon and 

urban canopy layer at fine resolutions. Ng et al. (2012) proved reasonable agreement 

between field measurement and ENVI-met simulations. A successful deployment of ENVI-

met can also be found in Roset Calzada and Vidmar (2013), Jesionek and Bruse (2003), Bruse 

(2009), and Ozkeresteci et al. (2003), just to name a few. Positive confirmations of ENVI-met 

capability to simulate temperature also come from Jänicke et al. (2015) and (Chen et al., 

2014). However, both studies also highlighted some shortcomings as far as long- and short-

wave radiations are involved.  

Notwithstanding ENVI-met suitability to approach the study of UHI mitigation 

strategies, like every other modelling and simulation tool, it also has its intrinsic limitations 

rooted in an attempt to simplify and ostensibly represent a far more complex reality. In the 

specific case of ENVI-met, the main weaknesses relate to: 1) the capability of establishing 

relative quantities such as absolute temperature profiles and air temperature throughout 

the diurnal cycle (Carnielo & Zinzi, 2013; Hedquist et al., 2009; Spangenberg et al., 2008) and 

wind speeds (Krüger et al., 2011); 2) the inability to dynamically simulate heat storage for 

building walls and roofs because of constant building indoor temperatures (Chow & Brazel, 

2012; Chow et al., 2011; Fahmy et al., 2011); 3) the simplification of building façades to a 

single, averaged heat transfer coefficient (Chow & Brazel, 2012; Spangenberg et al., 2008); 

4) the lack of horizontal soil transfer within the model that potentially affects accurate 

calculations of soil heat storage (Chow & Brazel, 2012); and, 5) difficulties regarding 

interpreting pollutant dispersal results (Krüger et al., 2011). 



3.2 Selected mitigation strategies 

Mitigation strategies which have been selected for evaluation within this research 

project are as follows: 

 Vegetation in the form of trees, shrubs and grass (TSG) (Figure 6); 

 Presence of water in form of urban inland water bodies (UIWB) - excluding rivers and 

waterways (Figure 7); 

 Use of materials with high albedo rating (HAM). 

  

Figure 6 – Area Input file for TSG           Figure 7 – Area Input file for UIWB 

In addition to the findings through critical review of literature in support of the 

selected strategies, other empirical reasons for this selection justify the choice of the 

selected strategies. First and foremost, the selected strategies are among the most 

commonly design solutions preferred by urban planners, architects and landscape 

architects. Secondly and more importantly they are favoured by the general public, or at 

worst they are the least objected solutions by the general public for their limited impact on 

the plethora of different elements, issues and determinants in urban spaces. And finally 

they seem to be the most affordable strategies both at the design stage – technically, 

financially and aesthetically, and also in implementation, operation and maintenance stages 

which make them appear on top of the priority list of actions for local authorities. 

4. Results 

4.1 Benchmark 

Figure 8 (top) demonstrates the comparison between the four receptors 

temperature 2m above ground level in degrees Kelvin and shows that the peak air 



temperature throughout the time simulated has recorded in the 14:00-15:00 hourly time 

bracket. Furthermore, the graph shows receptors C1, C2 and C3 rising at a similar rate 

between 9:00 and 15:00 while receptor C2 maintaining the lowest temperatures within this 

period, followed by C1 and then C3. Receptor C4 rises at a higher rate and reaches a 

significantly higher peak temperature than the other receptors in 14:00-15:00 time bracket.  

 

 

 

Figure 8 – Benchmark data: temperature at receptors (degrees Kelvin) during the day (top) and, Heat distribution across 
Seagrave site (bottom) 

Between 15:00 and 19:00 receptors C1, C2 and C3 fall at a similar rate and share 

similar temperatures between 16:00 and 20:00. Receptor C4 falls at a higher rate than other 

receptors between 14:00pm and 17:00pm and also shows similar temperatures as other 

receptors between 17:00 and 19:00. This graph demonstrates that the different parts of the 

site have consistently different rising temperatures between 9:00am and 15:00pm (C4 rises 



slightly quicker). However when the overall temperature of the site is decreasing in the 

afternoon the site actually has similar temperature across all areas. Figure 8 (bottom) shows 

temperature distribution in degrees Kelvin across the site at 14.00 to 15.00, the hottest time 

of day, and the location of benchmarks. A general trend can be seen as lower temperatures 

is observed at the bottom left corner of the graph gradually increasing across the site to top 

right area where the highest temperature seems to be prevailing. This can be attributed to 

the shadows of the buildings and also the fact that site landscape escalates the micro-

climate effects of some areas. It is however, important to note that the temperature 

difference is around 1.1 degrees Kelvin. 

4.2  Vegetation – Trees, Shrubs and Grass 

Figure 9 (top) presents a comparison between the four receptors temperature in 

degrees Kelvin up to 2m above ground level and shows that the peak air temperature 

throughout the time simulated is between 14:00 and 15:00pm. The graph shows receptors 

C1, C2 and C3 rising at a similar rate with similar temperatures between 9:00 and 15:00 with 

receptor C3 maintaining the lowest temperatures within this period, followed by C2 and 

then C1. Receptor C4 again rises at a greater rate and reaches a higher peak temperature 

than the other receptors between 14:00 and 15:00. Between 15:00 and 19:00 receptors C1, 

C2 fall at a similar rate and share similar temperatures between 16:00 and 20:00. C3 falls at 

a higher rate than the other receptors in the afternoon. This may be because of the 

increased shading as a result of the 5-10m dense trees combined with the shadow of the 

nearby buildings. Receptor C4 falls at a higher rate than other receptors between 14:00 and 

17:00 and also shares similar temperatures as C2 and C1 between 17:00 and 19:00. It also 

demonstrates that receptors C1, C2 and C3 consistently have similar rising temperatures 

between 9:00 and 15:00, C4 rises slightly quicker reaching peak site temperature. Between 

15.00 and 19.00 C1, C2 and C4 share similar falling temperatures however receptor C3 

maintains the lowest temperature throughout the day with this difference increasing 

between time passes. Figure 9 (bottom) shows temperature distribution in degrees Kelvin 

across the site for the TSG between 14.00 and 15.00. A general trend can be seen as cooler 

lower temperatures being present from bottom left corner of the graph gradually increasing 

across the site to the top right area where the highest temperatures are present. The 



temperature difference is 1.12 degrees Kelvin. Table 1 shows the final parameters inputted 

into the UF assessment tool and resilient value out of 10 for TSG. 

 

 

 

Figure 9 – Trees, Shrubs and Grass data: Temperature at receptors (degrees Kelvin) during the day (top) and, Heat 
distribution across Seagrave site (bottom) 

UHI Mitigation Strategy Conditions Resilient Value 

Trees, Shrubs and Grass 
(Trees 5-10m high, Shrubs 
1.5m max height, and Grass 
0.1m max height) 

Retained 

6.25 Maintained 

Correctly located                                                       

Urban Inland Water Bodies - 
Lakes / Ponds 

Retained 

6.67 Abundance of Water 

Remains exposed to 
direct sunlight 

High Albedo Materials 

Retained 

6.25 
Maintained 

Correctly located in 
Building Design                                       

Table 1 – Parameters inputted into the UF assessment tool and corresponding resilient values 



4.3 Presence of Urban Inland Bodies of Water (excluding waterways and rivers) 

Figure 10 (top) demonstrates the comparison between the four receptors 

temperature in degrees Kelvin up to 2m above ground level and shows that the peak air 

temperature throughout the time simulated is between 14:00 and 15:00. Again the general 

trend is similar to the other data sets with temperatures for the four receptors. However for 

UIWB all four receptors rise at same rate and maintain similar differences in temperature 

from 15.00 to 20.00 where their temperature differences reduce and they fall at a similar 

rate. The data presented in the graph indicates that as a general trend the area of the site 

with the highest temperatures is where receptor C4 is positioned.  

 

 

 

Figure 10 – Urban Inland Bodies of Water data: Temperature at receptors (degrees Kelvin) during the day (top) and, Heat 
distribution across Seagrave site (bottom) 

Figure 10 (bottom) shows temperature distribution in degrees Kelvin across the site 

for the water data. Again the trend seems to be that of cooler lower temperatures being 

present at bottom left corner of the graph gradually increasing across the site to top right 



area, showing a difference of 1.14 degrees Kelvin. Table 1 represents the final parameters 

inputted into the UF assessment tool and resilient value out of 10 for UIWB. 

4.4 High Albedo Materials 

Figure 11 (top) shows a comparison between the four receptors temperature in 

degrees Kelvin up to 2m above ground level. The peak air temperature throughout the time 

simulated is between 14:00 and 15:00. Previous trends already present in BM, TSG and 

UIWB are also present for HAM. Except between 9.00 and 15.00 receptor C4 increases in 

temperature at a greater rate and also reaches a peak temperature which is the highest 

witnessed anywhere within simulation area for all UHI mitigation strategies.  

 

 

 

Figure 11 – High Albedo Material data: Temperature at receptors (degrees Kelvin) during the day (top) and, Heat 
distribution across Seagrave site (bottom) 

 Figure 11 (bottom) shows temperature distribution in degrees Kelvin across 

the site for HAM. A trend can be observed similar to all other simulation data. However in 



the receptor C4 area, the hottest part of the site, the temperature is significantly higher 

than other simulations. Table 1 shows the final parameters inputted into the UF assessment 

tool and resilient value for HAM. 

5. Discussion of Findings 

Figure 12 (top) presents ENVI-met simulation results of all UHI mitigation strategies 

during the day and shows that in average TSG is the most effective strategy, followed by 

UIWB and finally HAM. The heat reduction value of the presence of TSG is clearly present 

across the whole site, especially in the locations circled in the figure. A reason for this is 

because trees mitigate UHI effects in numerous ways: through increased shading of urban 

surfaces, transpiration of heat from leaves and also absorption of reflected light heat from 

other surfaces. This conforms to findings of previous research where street trees were 

shown to be beneficial particularly to ‘sidewalks’ (Takebayashi et al., 2014). This is especially 

clear within the hottest part of the site (Receptor C4: Figure 12, bottom) for 14.00-15.00 

time bracket when the temperature difference to HAM is 1.05°C. Additionally the contour 

lines of the wind have also changed with TSG (Figure 9) where they have remained similar 

throughout other simulations. It is likely that this has occurred because of presence of trees 

although it is unclear whether or not this has had a positive or negative impact on UHI 

intensity. This outcome aligns with and further proves previous research findings denoting 

that vegetation is effective for mitigating the UHI effect (Erell et al., 2011). Research also 

indicates that parks and green spaces help to mitigate the heat island effect and reduce 

energy consumption for cooling buildings in the summer, while also maintaining changes of 

temperature induced by building materials (Gago et al., 2013). Therefore there are multiple 

benefits related to inclusion of TSG within a development and this strategy is highly 

recommended as an UHI mitigation strategy. Vegetation scored a resilience rating of 6.25 

out of 10 and is therefore a reasonable choice when aiming for resilient UHI mitigation 

strategy. The key issue preventing vegetation from gaining a higher rating is its vulnerability 

to removal as a result of land use change and issues related to maintenance. Therefore, the 

local councils and developers should make this a priority if resilience is to be increased. 

Moreover, the UFAM method identified the local context within this area of London as very 

strong such that it overrides planning policy and that the local council is unwilling to 

construct anything which does not align with it. Therefore, in terms of sustainable 



development the local context can have both a positive and negative effect. To improve 

validity of ENVI-met simulation results, assessment parameters inputted for TSG were 

adjusted to match that of the context surrounding the Seagrave car park (see Figure 3). 

These included trees of 5-10m in height with dense crowns and dense hedges with a 

maximum height of 1.5m to abide by local police guidelines to maintain lines of sight. 

 

 

 

Figure 12 – All UHI mitigation strategies compared to benchmark: average temperature degrees Kelvin during the day 
time (top) and, temperature at receptor C4 during the day time in degrees Kelvin (bottom) 



With regard to ENVI-met simulations, UIWB maintains a similar atmospheric 

temperature to the benchmark data. The results suggest that presence of water does not 

mitigate the UHI which contradicts with a wealth of literature suggesting otherwise (Huang 

et al., 2008; Kleerekoper et al., 2012; Pitiyanuwat, 2012; Rydin et al., 2012). Although one 

major reason for such discrepancy can be the difference between the climate conditions of 

the cases studied in the literature and the selected case for this study. Nonetheless, it is still 

a valid argument that ENVI-met’s capability to effectively measure cooling effect of UIWB 

has been brought into disrepute with further testing required to quantify cooling effects of 

water within the Seagrave development. Presence of water scored a resilience rating of 6.67 

out of 10. The key issue preventing water from gaining a higher resilience rating is also its 

vulnerability to removal as a result of land use change and issues related to maintenance 

which the local council/developers should make a priority for resilience to increase. 

Use of HAM was heavily prescribed as an effective UHI mitigation strategy. However, 

the results of this study show that it does not have as significant an effect as suggested by 

previous research, especially in receptor 4’s region (Figure 12). Such a discrepancy with 

what existing literature suggests might be due to specific layout of the site or other 

parameters that have not been considered in this study. The general trends available here 

are similar to that in other simulations as shown in Figure 12. However, the peak 

temperature value is higher for High Albedo data which is just over 298K compared to 

297.6K for benchmark data – compared to previous research suggesting reductions of up to 

8°C which can be linked to implications of the results being valid just for boundary 

conditions of the studied areas (Georgakis et al., 2014), 297K for TSG and 297.2K for UIWB. 

This may be because of the increased light reflection from building façade surfaces with a 

high albedo rating onto concrete areas between buildings and raising temperatures beyond 

those in other simulation data. Additionally another potential reason for this, especially at 

receptor 4, is the building layout which is such that allows for multiple reflections of light 

and heat throughout urban canyon; what is further increased by presence of HAM. The 

highest temperatures across all simulations are those present in the top right region of the 

simulation. Furthermore the layout of the buildings in the receptor 4 region reduces the 

amount of air movement around the buildings’ contour lines (Figure 8) and this further 

increases temperature. It should also be noted that in the bottom centre and bottom right 

area of the site (Figure 11), horizontal circles, the temperatures are slightly lower on the left 



and significantly higher on the right than those in benchmark. The former area’s 

temperature (left circle) is between 296.91K (23.76°C) and 297.48K (24.33°C) and the latter 

area’s temperature (right circle) is between 297.63K (24.48°C) and above 297.91K (24.76°C) 

which is within the highest temperature bracket. The urban canyon in each area has similar 

dimensions. The difference in temperature combined with similar dimensions of the urban 

canyon suggests that if HAM are combined with the stated urban canyon dimensions and 

are located away from the most southerly face of the site then micro-climate temperatures 

will be much lower. Therefore, this demonstrates how the dimensions and locations of the 

urban canyon present can have both a positive and negative effect on UHI intensity 

depending on location. 

One potential reason for ineffectiveness of HAM compared with what was found in 

literature can be the site layout (Erell et al., 2011) which may allow for multiple reflections 

of light and heat throughout urban canyons that is further amplified by the presence of 

HAM. These facts suggest that the use of HAM in a development can have both positive and 

negative effects on the microclimate between buildings and that the other factors need to 

be addressed for HAM to be an effective UHI mitigation strategy. Furthermore, the results 

show that the position and layout of the buildings are an important factor to consider when 

aiming at mitigating the UHI effect and that for HAM to be effective, the site layout, the 

building form and layout must be designed accordingly. Additional research has stated that 

retro-reflective materials can be used to reflect solar radiation away from the urban 

canyons if both urban paving and the building envelope have a high albedo rating (Rossi et 

al., 2014). Had the layout of buildings been designed such that natural wind could be 

harnessed (Rydin et al., 2012; Smith & Levermore, 2008), this would have resulted in 

reduced temperatures. Moreover, research suggests that wind velocity has a significant 

impact on cooling and ventilation effects within a city (Vardoulakis et al., 2013). Therefore, 

an improved building layout determines how successful HAM will perform as a UHI 

mitigation strategy while also providing the opportunity to harness natural wind patterns 

which can further reduce UHI effect. Moreover, it has also been shown that urban grids and 

structures have a significant impact upon thermal behaviour of built up areas (Radhi et al., 

2013). It has been stated that the distribution of buildings and urban structures within a city 

affect the formation and intensity of UHI since this distribution determines the absorption 

of solar radiation and the formation of air flows and that optimisation of urban 



design/planning in relation to energy consumption of buildings allows savings of up to 30% 

(Gago et al., 2013). 

Additional results from ENVI-met simulations are related to distribution of surface 

temperatures across the site (Figure 13). The hottest surface areas of the site are in the 

areas of asphalt (tarmac) surfaces and these temperatures rise above 315.32K (42.17°C); the 

hottest temperatures found anywhere on the site. This suggests that if road 

materials/colours are changed, they can help reduce the UHI effect. Furthermore, 

overheating issues related to tarmac surfaces can be further exasperated if the buildings 

adjacent to them have a high albedo rating and therefore there is a potential increase of 

sunlight being reflected onto the road, as is the case for the HAM simulation for this 

research project. This implies that, as previously stated, the building form must be designed 

properly for HAM to be an effective UHI mitigation strategy. Therefore, the replacement of 

tarmac with a material which does not retain heat would reduce the UHI effect in an area 

(Carnielo & Zinzi, 2013). One such example is brickwork found in Lyric Square (Figure 14) in 

the Hammersmith and Fulham Borough. The light coloured stones have a higher albedo 

rating than the black tarmac surface. As identified by UFAM, the local context and influence 

of the area is very strong and although the brickwork does not align with that of local roads, 

Lyric Square is still in the same borough of London. Therefore, it is envisaged that this type 

of brick may be a suitable replacement for tarmac in an attempt to reduce UHI effect. 

However, it is important to note that Lyric Square is used as a market square and is not a 

residential area. This reduces the chance of it being accepted within the local context. For 

that reason, the local context can indirectly affect the temperature within the microclimates 

and how effective UHI mitigation strategies within that area can be selected and 

implemented. This indicates that a change in local context can indirectly be a UHI mitigation 

strategy but this can only occur once a change in the mindset of the local residents 

happened. Additionally for sustainable solutions to be implemented, such as those assessed 

in this research, legislations are essential. A political party is only ever in such a position to 

pass legislation of this type once it has been voted into office and if local governments’ 

legislations do not align with views of the people then they will not be voted into power. 

This can create a self-contradictory dilemma and suggests that change needs to take place 

best in a bottom up approach; a change in mindset and views of people which will then 

enable political party to be voted in who will implement sustainable solutions by introducing 



the corresponding legislations. An additional benefit of implementation of brickwork similar 

to what was deployed in Lyric Square is that it would create the impression of a 

pedestrianized area. The benefits of pedestrianized areas include increased perception of 

safety due to reduced speed limits for cars; this would have an especially positive impact 

upon families living in the Seagrave development with children. Another would be that all 

people in the development would be more likely to spend time outside and interact with 

each other with this positively affecting the social aspect of sustainability (Erell et al., 2011). 

 

Figure 13 –ENVI-met  Surface Temperature Distribution 14:00 

– 15:00 (hottest hour of the day) 

 

Figure 14  – Brick  colour Lyric Square         

Hammermisth and Fulham (source: Google 

maps) 

Considering the points raised, the completion of a final simulation was deemed 

necessary to allow for improved conclusions to be reached. This simulation combined TSG 

and HAM for the reasons suggested and also replaced asphalt road with yellow brickwork 

and has been labelled ‘Best Case Scenario’ (BCS). The BCS data collected from ENVI-met 

simulation produced some interesting results. As shown in Figure 15, the BCS average site 

temperature across the whole site throughout the day does not maintain as low a 

temperature as was expected. 

It was expected that a combination of HAM, TSG and use of yellow bricks would 

produce the lowest average site temperatures in comparison with the other UHI mitigation 

strategies assessed. The BCS data actually showed temperatures throughout the day to be 

higher than BM data. This shows that the presence of TSG and yellow bricks instead of 

asphalt road have reduced the UHI present with just HAM. This also suggests that the 

presence of HAM in the building design does not actually mitigate the UHI and actually 

enhances it; this fact contradicts a wealth of literature reviewed for this study. Furthermore, 

this implies that either literatures reviewed are inaccurate, the ENVI-met software cannot 

effectively calculate reflections of light and heat throughout a simulation or that the layout 

of the buildings (especially around receptor C4) is such that regardless of the type of 



selected UHI mitigation strategies, they will be ineffective due to the spatial layout of the 

buildings. 

 

Figure 15 – Comparison of the three UHI mitigation strategies and the best case scenario (BCS) against the benchmark  

6. Conclusions  

This study suggested a systematic methodology to test the resilience of some of the 

most commonly used UHI mitigation strategies using a diagnostic real case study approach. 

The assessment was conducted using the results of an online application, ENVI-met, a 

prognostic three-dimensional microclimate simulation tool. It was shown how this can be 

applied, how the results can be presented and compared to the benchmark studies found 

through the literature review of this study. The interpretation of the results of this 

simulation was the main core of this methodology where detailed discussion of findings was 

presented to be used by different design professionals and local authorities. This was 

intended to make the best decisions in selecting UHI mitigating strategies and practically 

help the different stakeholders maximise the efficacy of the chosen strategies. Despite the 

broad applicability of this methodology, it will make very little sense if any at all, if proper 

measures are not taken to calibrate simulation parameters, and the context specifics to 

ensure that the most reliable simulation results are achieved. It is equally important that the 

results, findings and discussions are properly and proportionately contextualized in any new 

setting – in terms of macro-climate, micro-climate and building spatial layout – if the most 



informed decisions about the courses of action and suggestions about the most effective 

interventions are intended. 

Throughout this study, building design, layout and form were recurring for several 

reasons. First of all with regards to varying temperatures of seemingly similar spots on the 

site which suggests there are some encompassing determinants which overrule the 

strategies studied in this research. Secondly  as a result of effects caused by the use of HAM 

on building envelopes, which was resonated by some other microclimate effects that could 

only be attributed to the pattern of site layout. Thirdly because it was observed that the 

HAM effects were magnified by the surface solar radiance effects, and surface temperature 

of open spaces (mostly hard surfaces). And finally for the discrepancies which occurred 

during the new best case scenario simulation. The combination of these factors and the fact 

that success of other strategies is heavily dependent upon the building form and layout, 

suggests that the two latter are very important and effective factors and perhaps the most 

significant factors when UHI mitigation strategies are to be considered. This indicates that 

other strategies’ success pivots on appropriateness and effectiveness of the chosen form 

and design layout.  This fact aligns with and further proves that the most effective means to 

provide mitigation of the UHI lies within the buildings themselves. Therefore, if the UHI 

mitigation strategies are to be most successful, the provision of them should start early on 

when a new project is at conception stages where form and layout of the building can be 

altered and improved to ensure the effectiveness of the chosen UHI mitigation strategies. 

This means with assistance of simulation and analysis of UHI effects proposed within this 

study, the most sustainability-aware building form and site layout can be trialled and 

selected. This way not only the two i.e. form and layout contribute to mitigation of UHI 

effects but they also help the others succeed and achieve the best possible results. Suffice 

to say that, in an urban setting, any isolated UHI effects mitigation study of layout and 

massing within a specific site will be most likely prone to fail if the microclimate effects of 

immediate site topographies – both natural topographies, in form of land topography, 

greenery, water bodies, etc. and manmade topographies, including buildings, 

infrastructures, etc. – are underestimated or ignored. 
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