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Abstract— Recent years have seen an astronomical rise in SQL 

Injection Attacks (SQLIAs) used to compromise the confidentiality, 

authentication and integrity of organisations’ databases. Intruders 

becoming smarter in obfuscating web requests to evade detection 

combined with increasing volumes of web traffic from the Internet 

of Things (IoT), cloud-hosted and on-premise business applications 

have made it evident that the existing approaches of mostly static 

signature lack the ability to cope with novel signatures. A SQLIA 

detection and prevention solution can be achieved through 

exploring an alternative bio-inspired supervised learning approach 

that uses input of labelled dataset of numerical attributes in 

classifying true positives and negatives. We present in this paper a 

Numerical Encoding to Tame SQLIA (NETSQLIA) that implements 

a proof of concept for scalable numerical encoding of features to a 

dataset attributes with labelled class obtained from deep web traffic 

analysis. In the numerical attributes encoding: the model leverages 

proxy in the interception and decryption of web traffic. The 

intercepted web requests are then assembled for front-end SQL 

parsing and pattern matching by applying traditional Non-

Deterministic Finite Automaton (NFA). This paper is intended for a 

technique of numerical attributes extraction of any size primed as 

an input dataset to an Artificial Neural Network (ANN) and 

statistical Machine Learning (ML) algorithms implemented using 

Two-Class Averaged Perceptron (TCAP) and Two-Class Logistic 

Regression (TCLR) respectively. This methodology then forms the 

subject of the empirical evaluation of the suitability of this model in 

the accurate classification of both legitimate web requests and 

SQLIA payloads. 
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I. INTRODUCTION 

 A typical method used to pilfer confidential data is by SQLIA 

[1] with successful attacks leading to serious ramifications in 

ransom, extortion and loss of revenue to businesses. Security 

firewalls lock down ports and applications but often do little 

against malicious web requests stealthily concealed in legitimate 

web requests. This leaves most existing solutions, provided in 

Web Application Firewalls (WAF) [2] that rely on signature  

approaches to detect an attack, playing catch-up.  

The methodology demonstrated in the proposed Numerical 

Encoding to Tame SQLIA (NETSQLIA) is an alternative bio-

inspired method that combines static and dynamic analysis 

leveraging SQL parser and man-in-the-middle functionality of 

proxy for numerical attributes extraction from features (legitimate 

web requests, injection mechanisms and SQLIA types) in a web 

request (URL POST, GET and body contents). It is a self-

contained model that combines collation of the numeric attributes 

and web services from a trained model built on Microsoft Azure 

Machine Learning (MAML) [3] studio for a continuous SQLIA 

detection; dropping suspect  requests but forwarding legitimate 

web requests to the back-end database through custom Internet 

Information Services (IIS) web server. 

There is a strong argument for a bio-inspired against existing 

signature based approach, not least because an intruder may 

exploit a SQLIA type with many signature variations in order to 

evade pattern matching e.g. a SQL injection tautological attack of 

1=1 can also be written as 1 > 1, ‘a’=’a’, etc. [4] to achieve the 

same attack.  

These variations could create significant issues for signature 

based detection and prevention methods in recognising novel 

signatures that intruders continuously evolve. This paper explores 

these variations as the blue print for the random decimal attribute 

that augment these variations within a SQLIA type in the 

generation of large dataset items of any size. These random 

decimal attribute items can be given an identity by mapping to 

them patterns of these variations that exist within a SQLIA type.  

NETSQLIA excludes new attack patterns not currently trained 

for as an outlier and thereby the model is able to carry-on with 

effective SQLIA detection and prevention.  

Although the work presented in this paper may have all the 

hallmarks of a full SQLIA detection and prevention system, it is 

intended for a technique of labelled dataset extraction of any size 

primed as input to supervised learning models. Labelled dataset 

has attribute items which are classed as normal and suspect. This 

then forms an input dataset to a supervised model of ANN that is 

cross-validated with a statistical ML algorithm for the overall 

performance of Area Under Curve (AUC) which ANN comes on 

top with negligible difference of 0.02 (2%) against ML. The 

confusion matrix for the repeated ANN model training ranges 

between: AUC = 0.78 (78%) with accuracy of 0.911 (91.1%); and 

AUC = 0.912 (91.2%) with accuracy of 0.929 (92.9%).  

We present here a proof of concept demonstration and 

validation of NETSQLIA implemented on MAML studio using 

training algorithms of TCAP [5] and TCLR [6]. This 

methodology then forms the subject of the empirical evaluation of 

the suitability of this model in the numerical attributes extraction 

and accurate classification of both legitimate web requests and 

SQLIA payloads. 

The paper is laid out in six sections ending with a conclusion 

and future work summary. Section II covers background and 

theory and Section III is focused on related work; with Sections 

IV and V detailing NETSQLIA attributes encoding, evaluation 

and results. 



 

II. BACKGROUND THEORY 

The approach presented in NETSQLIA intercepts web requests 

of any intent at the proxy for numerical attributes encoding of 

features based on legitimate web requests (valid requests), 

injection mechanisms and SQLIA types. 

The injection mechanisms can be through: web page forms e.g. 

login screen; second-order injection by concealing a Trojan horse 

for a later date attack; exploiting web enabled server variables to 

gain access to back-end database; and through cookies that have 

stored state information then used to gain unauthorised access to 

the back-end database. NETSQLIA prevents second-order 

injections by enforcing in predefined patterns no special 

characters, spaces and encoding obfuscation in web form input 

being monitored. The use of proxy enables intercepted monitored 

web form input and cookies to be decrypted (if encrypted input is 

so desired) to be laid bare for thorough analysis.  

Notable SQLIA types are techniques that can be employed in 

any combination to carry out an attack which includes: 

Tautology; Invalid/Logical Incorrect; Union; Piggy-backed; Store 

procedure; Time-based; and Alternate encoding obfuscation. 

Further reading on SQL types can be found in paper [7]. 

The long existence of the SQL injection problem has not 

provided a robust test dataset similar to the one used in the 

intrusion detection system of KDD Cup [8]. The few sample 

datasets that exist are usually project specific. These would 

normally contain unprocessed strings of repeating features of the 

variations that exist within SQLIA types as against pre-processed 

features of numeric attributes suited for artificial intelligence like 

ANN and ML presented here. The random decimal attribute 

introduced in NETSQLIA is aimed to provide a way to derive 

large dataset attributes encoded from features, which is often 

lacking in existing works.  

 With this attribute of random decimal values, it is possible to 

have a large dataset to simulate in ANN and ML a hypothetical 

scenario of tens of thousands to millions of SQLIAs that are 

likely with automated injection attack tools.  

NETSQLIA is fully replicable as described here with .NET C# 

and R language background using open source software of fiddler 

proxy, SQL Script Dom Parser API, RegEx and MAML studio. 

III. RELATED WORK 

Whilst it is acknowledged that there are existing works that 

share similarities in the overall scheme of SQLIA detection and 

prevention this does not extend to the input of numerical 

attributes extraction from features in-transition to a supervised 

learning model as proposed in this paper. This forms the context 

of reviewing a few selected related works.  

 A recent work  [9] employing a hybrid of dynamic and static 

approach predicted code vulnerabilities against a supervised 

model which achieved  0.77 (77%) recall value. There was no 

AUC value provided in the paper to gauge the decency of the 

model in overall performance. In this proposed model, we have 

demonstrated a supervised learning model trained with primed 

datasets for a decent model of AUC of 0.78 (78%) with recall of 

93.7%, and even at the high end of the scale with AUC of 0.912 

(91.2%) with a recall value of 0.984 (98.4%). 

SQLrand [10]  is a related work that employs proxy and SQL 

parser but a signature approach. SQLProb [11] is also a proxy 

based approach but the proposed scheme addressed second-order 

attack which is not addressed in both approaches. 

JDBC Checker [12] is a static approach that explores finite 

state automaton but unlike in this proposed model, it lacks proxy 

to backhaul web requests for thorough analysis.  

AMNESIA [13] uses NFA static and dynamic pattern 

matching similar to the one used in the proposed scheme but the 

system solely relied on pattern matching and lacked method to 

address obfuscated requests aimed at evading pattern matching. 

Some notable works are known for code validation but here 

web traffic is backhauled for deep pattern analysis at the proxy. 

IV. NETSQLIA 

A. Numerical attributes encoding 

Fig.1 gives a high-level illustration of the three primary 

processes that highly depend on predefined NFA patterns 

implemented in RegEx. These patterns include: pre-defined 

patterns for expected legitimate requests; and patterns for outliers 

including known attack signatures (“?”, “’”, “OR”, “1=1” and “--

”), etc.  

http://bsid/bsid/Data Page.aspx?LoginName=bob

(?(?([a-zA-Z|0-9]+or[a-zA-Z|0-9]+))(?i)(?:[\

s*http(s)://].+\?(?:.+\bor|having\b.+)))

SELECT loginName FROM tblUser WHERE 

loginName='bob' 

Intercept at proxy query strings 

for known attack patterns 

matching, and extract query input 

for  SQL parser.

Construct full query from 

request in-transition and run 

against SQL parser for 

patterns in syntactic structure, 

keywords count, etc.

Match the assembled query 

against static valid patterns 

expected and outliers, at the 

same time encode to numerical 

attributes patterns matching in 

steps 1-3.

([\sA-Za-z]?)*\s[\s\w]*\s[\sA-Za-z]*\s[\sFROM]*\

s[\sWHERE]\s[\sA-Za-z]*\s[\s=]*'[^']+'

1

2

3

 
Fig. 1.Numerical attributes encoding 

B. Numerical Attributes interpretation 

Table I illustrates the procedure of attributes extraction. If the 

static defined pattern (p) finds a match, then a number is assigned 

from a range of 1 to 9. The value of 9 being a legitimate (normal) 

web request value, and a value range of 1 to 8 being any of the 

SQLIA types not excluding second-order injection mechanisms. 

The threat threshold is the factor determining the value, which in 

this case means that a number equal to or greater than 9 will be 

deemed a legitimate request. It is imperative that all other 

numeric attributes dataset items stay above two decimal 

precisions (e.g. 0.01...0.0n) meaning that the sum of all other 

attributes row items must be less than 1 as a value greater than 1 

will shift the threat threshold value. If that is the choice, then the 

sum of all attributes row items must be calculated before deciding 

on the threat threshold value. 

Matched patterns are further scored to determine (d) pattern 

match by implementing NFA backtracking [14] to cross-check if 

the criteria for features are being met. The scoring is modelled as 

follows: are the patterns being matched present in dynamic 

features (web requests); are patterns partly present in matched 

features; e.g. implementing backtracking for tautological attack 

will be a litmus test for escape character (‘), OR, patterns of 1=1 



 

and its derivations. For simplicity, range values of 0.01 to 0.05 

are assigned for a degree of precision of features in pattern 

matching. 

The assignment of numeric values range is flexible so long as 

threat threshold is accounted for and the dataset attributes are 

normalised when applied as input vectors to ANN or ML. 

TABLE I.  FEATURES ENCODING PROCEDURE 

Getting the primary attributes of predictors or x variables 

Get matched patterns (p) of features using NFA (RegEx) 

       if features matched static defined patterns 
     assign a numeric value of 1 to 9 

Validate (v) matched pattern (p) using a method of NFA backtracking 

                           randomly assign a score 0.01 to 0.05 
Randomisation (r)  

           randomly assigned a decimal value less than 0.1  

            computed against web requests total count 

Calculating the likeliness of being normal (n) threshold -risk factor 

SUM (p, v, r), take the minimal value >= 9 as threshold 

                              If   n >=9 
                                     Then  

                                                 Normal = 1 

                               Else  
                                                Suspect = -1 

Calculating y –variables or what to predict   

                               If normal (n) 
                                        Then  

                                                              0 1  

                                Else 
                                                                     1 0 

 

The labelled dataset attributes (predictors) are scaled down in 

this paper for simplicity but the approach can be replicated for as 

many attributes so desired that are attributed to SQLIA behaviour 

patterns. 

The encoding procedure in Table 1 demonstrates how the 

numerical attributes detailed in Table II are obtained. The 

notation of the attributes of recognised pattern (sitype p) 

{w0…wn}; determinant d {w0…wn} and subtype random risk r 

{r0…rn} (the random decimal attribute scaled to e.g. 0.01...0.0n). 

w0…wn and r0…rn are the dataset items (rows) values of the 

attributes detailed in Table II. These x-attributes SUM (p, d, r) are 

collated to obtain the likeliness of features being a risk factor that 

can either be -1 likeliness or 1 for remote likeliness. The y-

variables or what to predict (commonly known as class) can be a 

possible 1 (1 0) for SQLIA or 0 (0 1) for normal as illustrated in 

Table I are inferred from risk factor (r).  

TABLE II.  ENCODED NUMERIC DATA PRIMED FOR ANN AND ML 

Sitype (p) Determinant 

(d) 

Subtype 

random 

Risk (r) 

Risk 

factor 

class 

p{w0 } d{w0 } r0 xo yo 

1 0.03 0.0846 -1 10 

9 0.05 0.0482 1 01 

p{wn } d{wn} rn xn yn 

C. Implementation 

A high level overview of NETSQLIA is presented in this 

section along with Fig.2 which illustrates the four primary 

components of the complete schematic architecture of 

NETSQLIA in numerical attributes extraction from features that 

are fed as input to the supervised learning model. The stages are: 

1) Dynamic web requests of features. A simulated live 

scenario can be fed from a static file containing features. 

Alternatively, the use of a unit testing tool e.g. selenium web 

testing tool can be used to simulate request automation. This 

method can also be used to automate the initial training phase. 

2) Fiddler proxy [15] to backhaul web traffic for deep web 

request analysis that includes numerical attributes extraction 

from matched patterns before passing-on valid requests to an IIS. 

3) Web requests payload decision engine collating the 

encoded numerical attributes to a labelled dataset of normal and 

threat payloads. SQLIA payloads are dropped based on this 

collation stage assisted by existing trained model exposed as web 

service in conjunction with form input validation. 

4) Primed numerical attributes input to a better performing 

ANN (TCAP) that when cross-validated against ML (TCLR)  

produces a negligible difference, shown in Fig. 3 in Section V.
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Fig.2. Proof of concept: attributes extraction, trained model web service for SQLIA detection and prevention 



 

V. EVALUATION AND RESULT 

A total of 236 unique SQLIA features were collected across 

different hacking forums, websites and SQLIA tools. The novel 

approach described in numerical attributes extraction from 

features provides a method to generate a dataset of any size from 

the template patterns collected. There were two sets of datasets 

used which both contained four x-attributes (predictors) and two 

y-attributes (what to predict or labelled class) created for this 

experiment that were ran on MAML studio.  

Dataset 1 contained 30,000 unadulterated items (rows) 

generated as described in Section IV, which the trained model 

gave an overfitting in all confusion matrix of a value of 1. This is 

expected for a primed labelled dataset. While dataset 2 had 

50,000 dataset items that were randomly sorted to provide equal 

distribution of featured items. Dataset 2 contained a mixture of 

both 20,000 adulterated and 30,000 unadulterated dataset items. 

The adulteration part of dataset 2 involves removing the class 

labelling and using numeric range outside 1 to 9 used in clean 

data (unadulterated) to set the threat threshold.  

Fig.3 shows the preferred algorithm used in NETSQLIA with 

the gradient variations (0.78-0.914) in AUC overall performance 

between ANN (TCAP) = 0.912 and ML (TCLR) = 0.914 with 

0.02 difference which tilts ANN towards 0.9 mark for a fair AUC 

against statistical ML. Table III details the calculation of 

evaluation results. The confusion matrix values x can be 

interpreted in percentages by a simple multiplication (x*100). 

Through repeated training of the supervised classifier using 

different attribute’s items (rows) distribution, normalisation and 

split ratios, an optimum classification was achieved at: 

normalisation using transformation method of ZScore; split data 

ratio of 80:20 between training to test data. An optimised decent 

model of AUC = 0.78 has confusion matrix: accuracy = 0.911; 

precision = 0.967; recall = 0.937; and F1 Score = 0.952.  

TABLE III.  CONFUSION MATRIX 

Terminology Formula Values Performance metrics 

True Positive (TP) - 9205 Accuracy (A)= 

(TP+TN)/TE 

 
Precision 

(P)=TP/(PO) 

 
Recall (R)= 

TP/PE 

 

F1Score=2* 

 (R*P)/(R+P) 

0.929 

True Negative (TN) - 84 

False Positive (FP) - 561 

False Negative (FN) - 151 0.943 

Positive events (PE) TP+FN 9356 

Negative events 

(NE) 

FP+TN 645  

0.984 

+ observations (PO) TP+FP 9766 

-  observations (NO) FN+TN 235 0.963 

Total events (TE) PO+ NO 10001 

 

 
Fig.3 AUC comparison of TCAP(0.912) and TCLR(0.914) overall performance  

VI. CONCLUSION AND FUTURE WORK 

We have demonstrated in NETSQLIA a model for numerical 

attributes extraction of any size from features primed as dataset 

items to ANN and cross validated in ML. The benchmark of 

detection rates against existing research works are not included 

here as this paper is aimed at determining the suitability of this 

novel attributes extraction technique to accurately train 

supervised learning model exposed as web services. The 

confusion matrix shown in Table III empirically evaluates the 

model. 

The heavy-lifting done in NFA pattern matching reduces the 

classification to linear as against multi-class algorithm if NFA 

was not explored. NETSQLIA has built-in safeguards to group 

unrecognised patterns as unknown but future work is required to 

exhaustively map the random decimal values attributed to 

variations in attack features with exploring deep ANN and ML.  
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