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ABSTRACT
Agencies who provide social care services typically have to op-
timise staff allocations and the travel whilst attempting to satisfy
conflicting objectives. In such cases it is desirable to have a range
of solutions to choose from, allowing the agency’s planning staff to
explore the various options available This paper examines the use of
multi-objective evolutionary algorithms to produce solutions to the
Workforce Scheduling and Routing Problem (WSRP) formulated
with three objectives which should be minimised: financial cost,
CO2 emissions and car use. We show that financial cost and CO2
increase with the size of the problem and the imposed constraints.
In order to support the planning staff in their decision making, we
present an Evolutionary Algorithm based support tool that will iden-
tify a group of solutions from the Pareto front which match criteria
specified by the planner. We demonstrate that our approach is able
to find a wide range of solutions, which enhance the flexibility of the
agencys choices, the decision support tool subsequently allows the
planner to discover small groups of solutions that meet their specific
requirements.
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1 INTRODUCTION AND MOTIVATION
Many real-world optimisation problems require solutions that opti-
mise quantifiable constraints such as financial costs, distances trav-
elled or CO2 produced. In such scenarios optimisation techniques
can find a range of solutions (e.g. a non dominated Pareto Front),
but there exists a layer of final decision making to be carried out by
the planning staff. Where objectives conflict, there may be no single
solution which is ideal in all aspects, for instance if environmental
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impact conflicts with financial cost, then there exists a level of politi-
cal decision making required in order to determine which objectives
should be prioritised and which should be compromised. This level
of political decision making is undertaken by the planners based on
factors such as political pressure, legislative pressure, public opinion,
financial constraints or corporate and social responsibility policies.

In this paper we study a Workforce Scheduling and Routing
Problem (WSRP), in such a problem, a group of employees must
attend to a set of visits each of which must start within a specified
time window and last for a specified duration. Each employee can
perform more than one visit and employees are interchangeable. A
solution takes the form of a schedule for each employee specifying
which visits they should make and the order in which they should
attend to them. The problem instances examined in this paper allow
each employee to make use of car travel or public transport. The
transport modes used determine the financial costs of the solution
and its impact on environment and congestion.

We set out to answer two related questions, firstly can we generate
Pareto sets of solutions that give the planner a meaningful choice
and can we develop a mechanism to assist the planner when making
the choice of which solution to adopt? The ability to give planners a
choice of solution and to support them in making the decision as to
which solution to adopt is necessary, if solvers based on techniques
such as MOGAs are to gain acceptance in industry.

2 PREVIOUS WORK
The Workforce Scheduling and Routing Problem (WSRP) has been
extensively investigated along with other related vehicle routing
problems such as the Vehicle Routing Problem with Time Win-
dows (VRPTW). Unlike vehicle routing problems, the focus of the
WSRP is on individuals rather than vehicles; this focus allows WSRP
researchers to examine aspects such as modal choice. For a com-
prehensive introduction to the WSRP and an overview of the latest
developments, the reader is directed towards [2], [1] and [12]. The
WSRP is closely related to the (VRPTW) which is studied in [21] us-
ing benchmark problem instances. The VRPTW has been formulate
as a multi-objective problem in [3] using problem instances derived
from real-world data. A number of previous researchers have dealt
with problems relating to the scheduling and routing of workforces,
[20] deals with home care scheduling, [17] with security personnel
scheduling and [10] with technician scheduling. Comparison of dif-
ferent approaches to solve WSRP are difficult because no common
benchmark problem instance has been defined so far.

To the best of our knowledge, the only work considering the travel
mode within a WSRP type problem is [12], in which the authors
investigate the scheduling of healthcare workers, the modes available
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to carers are public transport or private car. However, the travel mode
of each employee is predefined and it cannot be changed in order
to optimize the solution, also no account is taken of environmental
impact. There have been a number of studies into green vehicle
routing and logistics [4, 5, 15]. Of specific interest to this paper is
[19], which focuses on the distribution of goods within the retail
sector, as in this paper, the authors make use of real world data and
emissions models, the problem scenarios are set within the Greater-
London area and solutions are sought with low greenhouse gases
emissions.

The first attempt to model the WSRP as a bi/multi-objective
problem can be found in [1]. In that case, the authors use cost and
patient convenience as the twin objectives. The authors define the
solution cost as the travel cost and staff overtime costs. Patient
convenience is defined as to whether the member of staff allocated is
preferred, moderately preferred or not preferred, with penalties of 0,
1 and 2 allocated as appropriate. The results presented show a strong
relationship between convenience and cost; the more convenient
a solution the higher the cost is likely to be. The authors also
demonstrate that increasing the length of the time allocated windows
(in practice relaxing the applied constraints) increases the likelihood
of finding a less costly solution.

We note that previous research into the WSRP does not utilize
environmental issues as a criteria, nor does it fully model the effect
of allowing modal choice. To address these shortcomings, this
paper formulates the WSRP as a multi-objective problem, with cost
reduction, CO2 reduction and car use reduction as the criteria.

3 METHODOLOGY
3.1 Problem Specification
We evaluate the sustainability of a solution of the WSRP in terms of
its CO2 emissions (kg), financial cost (staff costs and travel costs in
£) to the agency and percentage of trips made by car (considered as a
proxy for the impact of the solution on traffic, and so on congestion
and accidents). In the following, we refer to the environmental and
car use objectives as external costs to differentiate them from the
internal financial costs bourn by the agency. It may be expected
that a larger use of public transport decreases the external cost but
increases the internal one, because the reduction of working time
due to longer travel times outperform the reduction of in travel
costs. This expectation is valid in contexts where the door-to-door
duration of journeys by public transport is on average longer than
that of car-based journeys. This may not be true in very congested
cities with priority measures for public transport. A solution of the
WSRP as defined in this paper includes the transport mode used
by employees, either a car or public transport. Car journey paths
and times are determined using the GraphHopper library [16] based
on OpenStreetMap [9, 11] data, public transport times and costs
are derived from the Transport for London (TfL) API [8] The costs
associated with each solution are calculated as follows:

• CO2 emission: for cars we adopt the WebTAG UK transport
assessment model. For public transport we use the emission
factors published by TfL [7].

• Labour cost: the median of the hourly salary of a social
worker in the UK is £16 [18] and, according to EU official
statistics, the wage is around 80% of the labour cost for

social work activities. Hence we assume a labour cost of
20 £/h. We consider daily shifts of maximum 8h.

• Travel cost: we cost journeys assuming a reimbursement
rate of £0.56 per mile [6] for passengers public transport,
we assume a daily travel cost of £11.80, based on TfL daily
ticket costs.

The values of internal and external costs clearly depends on the
number of visits, the spatial distribution of the visits in relation to the
point from which the employees start their daily shift, the duration
of each visit and the duration of the time window in which each
visit has to begin. We explore the relation between these factors and
the costs of the mobility required by non-residential care services
by means of synthetic sets of visits, with random locations in the
City of London. We assume that all the carers begin their daily shift
from the agency headquarters. We analyse the costs of mobility
considering four cases, representing different operational conditions
(workload and spatial distribution of the visits) of the agency:

• London: 60 visits at randomly selected locations, within
London, each visit being within a radius of approximately
16 miles of the agency headquarters.

• BigLondon: 110 visits based on the 60 visits and agency
headquarters from the London data, with an additional 50
random visits within a radius of approximately 23 miles of
the agency headquarters.

• Offset: 110 visits set out as per BigLondon, but with the
headquarters located on the outside of the visit cluster.

• Cluster: 60 visits grouped in six clusters. The clusters are
randomly distributed around the headquarters.

For each operational case, we consider six types of service provi-
sion, represented by adding one of the following identifiers to the
name of the operational condition:

• 1: all visits have a time window of 8 hrs. i.e. the visits can
start any time during the working hours of the employees.

• 2, 4, 8: Each visit has a 4, 2 or 1 hr. time window allocated.
The beginning of the time window is chosen randomly.

• Rnd: The duration of the time window of each visit is
randomly chosen among 1, 2, 4, or 8 hrs.

• R00: Visits have 1 hr. time window, with a duration of 15,
30, 45 or 60 min randomly allocated. With the exception
of R00, the duration of each visit is 30 minutes.

Data files representing the problem may be found witin the sup-
plementary material accompanying this paper, the results files con-
taining the Pareto fronts used within the solutions are available from
[22].

3.2 Solution Generation
The approach taken, based upon that described by the authors pre-
viously [23, 24] uses a portfolio of Multi-Objective Evolutionary
Algorithms (MOEAs), which produce a set of Pareto optimal (non-
dominated) solutions. MOEAs have been proven to find good solu-
tions quickly in complex environments including those that are np
hard - although there is no guarantee that they will find the optimal
solution. For many real world problems it is not necessary to find
the optimal solution, but only to find a good-enough solution. The
difference in practical terms (such as costs, emissions or times) be-
tween good enough and optimal salutations may be small enough
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so as not to make any practical difference (e.g. a small financial
saving). Given that the costs used within the optimisation process
are estimated they may differ from the costs generated by an im-
plemented solution - e.g. unexpected traffic congestion or public
transport delays could increaseCO2 produced or financial costs, thus
negating the effects of choosing a solution with a very small cost
advantage over a solution found earlier in the process.

All of the algorithms within the portfolio use the same basic
problem representation, this being a permutation of visits and travel
modes between visits for all of the employees and visits in the
problem, when constructing a solution each visit is added to the
solution in the permutation order. For the first visit, there will be
no employees within the solution so the visit is added as the initial
visit of a new employee, the travel mode for that employee being
determined by this visit. Each subsequent visit in the chromsome
is then considered, being added to the first employee that feasibly
undertake the visit using matching travel mode from their previous
visit. If the visit cannot be added to any of the existing employees,
a new employee is created and the visit is added to that employee.
In this way a feasible solution is constructed from the problem
representation. When a solution has been built, its internal costs,
CO2 emission and impact on traffic may be calculated making it
possible to identify those genotypes that encode better solutions.

3.3 Solution Evaluation
Given the tri-dimensional nature of our problem, we visualize the
Pareto sets using plots of parallel coordinates, a common technique
for showing points in n dimensional space. It is necessary to scale
each of the objectives used in the range 0 to 1, where 0 represents the
lowest value found for that objective and 1 the highest value found.
The scaled performances of each solutions are then interpolated to
show the relationships and to compare different solutions (see figure
1). Within each plot, each axis represents one dimension and each
polyline represents one solution, showing its position on each of
the three axis. For a full review of the use of parallel coordinates
and multi-dimensional problems, the reader is referred to [14].In the
plots presented in this paper the best and worst solutions, for each
objective, are highlighted to allow the reader to gain a further insight
into the trends.

We utilize also the Hypervolume metric [25] which gives an indi-
cation as to the overall quality of a Pareto front. Each solution may
be plotted in 3-dimensional space using normalized objective values.
In this representation, the solution space is bounded by the points
(1,1,1) and (0,0,0). Hypervolume measures the volume between
the Pareto front and the vertex (0,0,0) of the hypercube defined by
the abovementioned bounding points; the larger the Hypervolume
the greater the number of solutions dominated by the front. Using
normalized objectives, the Hypervolume can assume values in the
range 0-1, a volume of 0 represents a single solution with the worst
values in all objectives, a volume of 1 represents a solution with the
best observed values in all three objectives (a solution that would
dominate all solutions produced thus far). Therefore, the hyper-
volume metric allows us to compare two Pareto fronts in order to
evaluate which represents better progress on the objectives.

3.4 Visualisation of the Pareto Set
When a Pareto front is produced, it is useful to have some form a
visualisation in order to determine the size of the front and the range
of the objectives covered. For a 2-dimensional problem the front can
be plotted by allocating each dimension to the X and Y coordinates,
the front can then be plotted as a curve. For dimensions greater than
two, plotting becomes problematic - a 3 dimensional problem may
be plotted as a surface, but visualisation, especially when rendered
in 2D can be difficult. For multi-dimensional problems the technique
of parallel coordinates [14] allows many solutions to be visualised
on one plot and the relationships between the solutions themselves
and the objectives to be explored.

For each objective within a parallel coordinates plot a vertical
axis is created, a solution is then represented by a polyline liking the
axis together at the points appropriate for that solution. The parallel
coordinates visualize the relationships between the objectives. By
using four axis, each relationship between each pair of variables is
shown.

3.5 Supporting the Choice of Solution
The Pareto front produced by the MOGAs within the portfolio may
contain several hundred solutions which are all non-dominated. This
set of solutions represents only a small fraction of the size of the total
search space. We are presented with the practical problem that the
agency planner still has to choose a single solution to adopt. Whilst
we can visualise such multi-dimensional Pareto fronts using parallel
coordinates (see section 3.4) the plot is often too crowded to allow
individual solutions to be picked out. The practice of ”brushing”
[14] allows the user to highlight sections of one or more axis in order
to highlight only those polylines that pass through the highlighted
sections. Brushing can allow a user to explore the solutions within a
crowded parallel coordinates plot [13] which goes some way towards
supporting the decision making process.

We develop a tool which will highlight a few members of the
Pareto front which may be of particular interest to the user. We adopt
two principles, firstly that we allow the planner to specify areas
of interest to them (in a manner similar to brushing) and that we
allow the planner to specify the minimum distance that significantly
separates two solutions on an axis. Whilst the MOGA may produce
a Pareto front that contains, for example, solutions with a financial
cost of £5 and £6 orCO2 values of 42g and 43g, reality might suggest
that the difference between the estimated costs in the solver and the
real-world costs of the adopted solution are such that such small
differences are insignificant when making the final choice. We can
allow the user to specify what the significance value is and then
eliminate solutions that are deemed to not be significantly different.

Our solution to this problem, allows the planner to specify ranges
of interest for each axis and minimum differences for each axis -
if no criteria are specified then the axis is not filtered. A simple
evolutionary algorithm is adopted, the representation being a binary
string, one bit for each member of the Pareto front, a 1 signifies that
the solution is filtered a 0 signifies that the solution is to be left in. A
population size of 20 is utilised, in each generation we create one
child using uniform crossover and a random bit flip mutation. An
outline of the EA is given in algorithm 1 and the parameters used in
table 1.
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Algorithm 1: Evolve Filter

1 randomise population();
2 while evals<MAX EVALS do
3 parent1 = tournament();
4 parent2 = tournament();
5 if rnd() <RECOMBINATION PRESSURE then
6 child = new Individual(parent1,parent2);
7 else
8 child = parent1.clone();

9 if < then rnd(
10 M

11 UTATION PRESSURE) mutate(child);
12 evaluate(child);
13 rip = replacementTournament();
14 if rip.finCost() >child.finCost() then
15 population.remove(rip);
16 population.add(child);

17 return findBest();

Table 1: Parameters used within the Evolutionary Algorithm

Parameter Value
Population size 20
Recombination Pressure 0.5
Mutation Pressure 0.5
Selection tournament size 2
Replacement tournament size 2

The fitness function examines each solution and adds penalties as
follows:

(1) Any solution not filtered on an axis that is out of range add
a penalty of the difference between the item value and the
closest range limit

(2) Any solution that is filtered, but lies within a range then
add a fixed penalty of 0.01

(3) Any pair of solutions on an axis that are closer together
than the specified criteria add a penalty based on the actual
difference, less the minimum specified

The first two items penalise solutions which are unfiltered outside
of specified ranges and filtered within specified ranges, the second
item is required to ensure that the EA is rewarded for including
solutions that meet the users’ criteria. Items 1 and 3 give graduated
penalties which increase depending on the severity of the issue.
The criteria that the user may specify for any of the axis is given
in table 4. Note that because the filtering is carried out after the
generation of the initial Pareto set, filtering criteria can be applied to
any of the axis on the parallel coordinates chart and not just those
objectives used in the initial optimisation. Currently the algorithm
can undertake 400,000 evaluations in approx. 10s (coded in Java on
an MS-Windows PC), which allows it to be used to support rapid
decision making, the planner can try many different sets of criteria
quickly to explore the solutions available.

4 RESULTS
4.1 Solution Range
The algorithm portfolio was applied to the problem instances de-
scribed earlier and the solutions were characterized in terms of CO2
emissions, total cost and % of employees using cars, a Pareto front of
non-dominated solutions was produced for each problem, see table
2. The size of the Pareto front (i.e. the quantity of non-dominated
solutions) ranges between 119 and 942, representing a large number
of non-dominated choices available to the decision-maker. Figure
1 gives an indication as to how evenly distributed these solutions
are within each objective. The position of the solutions within each
axis highlights areas where solutions do or do not exist. For instance
figure 1d shows that for the offset data set, there are few solutions in
the fronts that have low car use, 0% car use solutions exist, but there
is solutions between 0 and 30%. The figures show that gaps such as
that are rare, so if the decision-maker has a specific target to meet
for one of the objectives (e.g. low CO2) then they are likely to find a
solution that meets that requirement.

Table 2 shows a relation between the quantity of solutions found
and the problem constraints, represented by the time windows.
Times can be allocated to visits in a more flexible way in problem
instances with larger time windows (see the problem specification),
such flexibility allows finding solutions that are at the same time
more sustainable and less expensive for the agency. It follows that
the less constrained problems have smaller Pareto fronts, because
it is easier to find quasi-global optimal solutions, i.e. solutions that
dominate more solutions of a lesser quality. As expected, the quan-
tity of available solutions increase with the number of visits. On
the contrary, it decreases when the visits are organised in clusters,
i.e. clustering visits is equivalent to make the problem more con-
strained. The possibility of pursuing sustainability clearly depends
not only on the size of the front but also on the value of the absolute
performances. Both CO2 emissions and total costs increase when
the problem is more constrained or of bigger size, i.e. in those cases
it is easier to find solutions as mentioned above, but such solutions
are less optimised. The conclusion is confirmed by the hypervol-
ume metric, which tends to be inversely related to the size of the
front. Note that the increase in total cost is related to the increase
of the number of staff in each solution. Clearly this number rises as
the problems become more constrained, because with shorter time
windows, a greater quantity of visits have to take place concurrently.
Two visits that take place concurrently requires two members of staff,
whereas if the visits can be made sequentially it may be possible for
one member of staff to undertake both of the visits.

Table 3 shows typical examples of the best individual solutions
obtained for each problem instance. Assuming the agency wishes
to explore the effect of minimising a specific objective, we present
details of the solution found that represents the best performance
in that objective. Note that the car use objective is largely binary,
with solutions featuring 100% car use being consistently found for
the lowest cost solution. Where car use is the target, solutions
with 0% car use are also consistently found. When targeting CO2
minimisation solutions featuring 0 % car use are found in every case
except for the more constrained offset problems.

We note that the solutions showing lower costs tend towards
higherCO2 levels, and feature 100% car use. This may be explained
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Table 3: Examples of solutions found when minimising each of
the objectives and examples of the compromise solutions

Problem Target CO2 (kg) Total Cost (£) Car Use Staff
lon-4 Cost 274.0 865.3 1.000 8
lon-4 CO2 109.9 1522.0 0.000 10
lon-4 CAR 119.2 1493.3 0.000 12
lon-4 Comp. 271.0 865.9 1.000 8
cluster-2 Cost 326.0 1003.9 1.000 7
cluster-2 CO2 203.6 1620.8 0.000 11
cluster-2 CAR 203.6 1620.8 0.000 11
cluster-2 Comp. 315.0 1011.7 1.000 7
blon-1 Cost 556.0 1735.0 1.000 10
blon-1 CO2 384.3 3093.7 0.000 18
blon-1 CAR 393.3 3079.1 0.000 18
blon-1 Comp. 501.7 2866.0 0.235 17
offset-8 Cost 1148.0 2489.8 1.000 19
offset-8 CO2 874.1 3579.3 0.038 26
offset-8 CAR 961.0 3588.6 0.000 27
offset-8 Comp. 1080.0 2544.0 1.000 19

by the average time for a public transport journey being 77 minutes,
a car journey being 37 minutes. Thus solutions which make greater
use of public transport incur greater staff costs due to the increase
in staff time spent travelling. Conversely when targeting the CO2
objective, 15 of the 24 solutions produced feature 0% car use, and
in the remaining solutions the highest car usage is 11.5%. Since it
is necessary to make more use of public transport, which in turn re-
quires more staff hours, internal costs increase. The average internal
cost of a solution, (across all problem instances) that targets CO2,
is £2626.5, the average cost of one that targets cost is £1566.7 and
the average cost of equivalent compromise solutions is £1878. As
well as the three objectives, the number of staff required by each
solution is also shown, this property being of considerable interest
to the agency. We note that when targeting costs, fewer staff are
required by the solution, as it can be expected since table 2 shows
that salary accounts for around 90% of the total costs of the solution.

The relations between the objectives, outlined above, may be
viewed in the parallel coordinates shown, examples of which are
shown in Figure 1, Due to space constraints, we only reproduce
a small selection of the charts in this paper, but interactive plots
may be found online at http://www.soc.napier.ac.uk/∼40000408/
results/parallelcoords.html . Within each of the plots, four solutions
are highlighted, The red polyline highlights the solution with the
lowest CO2, green the lowest total cost, red the lowest car use, the
compromise solution (closest to the average in each objective) is
highlighted in black.

Figure 1a (London-2) shows a typical relation between CO2 and
total cost, with lower CO2 generally corresponding to higher total
costs. However, the pattern of the polylines suggests that it is not
a strong correlation. A stronger relationship is noted between to-
tal costs and car use with the crossing points contained in a much
smaller area. The relationship between car use and CO2 is funda-
mentally different, the polylines are far closer to being parallel and
no central crossing point emerges. This confirms that car use and
CO2 have a strong relation, as expected, with high car use likely to
be associated with high CO2, and vice versa.

Figure 1b and c show the same fundamental relationships as
Figure 1a, but significantly Figure 1c has a gap at the lower end of
the cost axis, demonstrating a lack of solutions with lower costs.
Figure 1d shows an example of a problem where the fundamental
relation between CO2 and total cost has changed. The visualisation
suggests a poor correlation between CO2 and total cost although

Figure 1: Parallel coordinates plots for a range of Pareto fronts.
The Solution with the lowest CO2 is denoted by the red polyline,
the green denotes the lowest Total Cost and the blue the car use.
The compromise solution is highlighted in black.

these variables have a stronger correlation in other problems (as
demonstrated in Figure 1a).

Overall, Figure 1 and table 2 show that, within the general trends
suggested by the analysis of table 3, our approach allows fine-tuning
solutions which may satisfy the generally clashing objectives of
promoting sustainability and reducing total costs of the provider of
the care service.

4.2 Supporting Decision Making
We apply the decision tool [22] to a set of Pareto fronts produced
using the portfolio technique, with CO2, total cost and car use as
the criteria, tables 5, 6,7 and 8 show the results of applying four
randomly selected sets of criteria to Pareto fronts generated for
each of the problems discussed earlier. We note that there are a
number of scenarios where the filter produces no results, there may
well be situations where there are no solutions in the initial Pareto
set that match the criteria specified, in such cases no results are
returned. Relatively small numbers of solutions are returned in
most cases, the highest average being 8.4 (table 8, thus the planner

http://www.soc.napier.ac.uk/~40000408/results/parallelcoords.html
http://www.soc.napier.ac.uk/~40000408/results/parallelcoords.html
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Table 2: A summary of the results obtained. The objectives and solution characteristics represent average values across all of the
solutions in the front.

Pareto Front Characteristics Dimension Costs to the agency providing the service
Operational conditions Service type Hypervolume Size Total Cost (£) CO2 (kg) Car Use Staff Staff Cost (£) Travel Cost (£)
London 1 0.761 229 1068 144.8 0.42 6.9 984.7 83.1

2 0.704 315 1166 163.8 0.35 9.3 1057.9 108.4
4 0.618 271 1188 215.5 0.39 12.8 1041.5 146.3
8 0.533 473 1270 247.3 0.38 15.8 1095.4 174.4
r00 0.370 511 1546 263.2 0.39 18.1 1357.4 188.3
rnd 0.632 338 1175 211.1 0.42 11.0 1043.3 132.2

Cluster 1 0.758 174 1197 225.9 0.43 7.8 1090.9 105.7
2 0.586 279 1315 286.3 0.41 10.8 1170.3 144.5
4 0.520 267 1477 284.5 0.29 14.3 1305.9 171.0
8 0.468 467 1452 328.3 0.38 16.6 1266.9 185.5
r00 0.341 463 1715 326.2 0.36 17.5 1518.5 196.8
rnd 0.579 389 1373 287.0 0.38 12.3 1217.3 155.9

Offset 1 0.690 119 2596 770.3 0.46 15.5 2326.6 269.3
2 0.594 295 2738 917.0 0.41 19.5 2407.0 331.4
4 0.433 848 3067 1094.0 0.32 26.5 2664.7 402.6
8 0.403 495 3166 1145.4 0.32 29.1 2729.3 436.4
r00 0.220 867 3730 1222.7 0.33 32.5 3276.0 453.9
rnd 0.515 427 2930 948.8 0.43 20.6 2577.9 351.7

BigLondon 1 0.600 225 2559 542.4 0.39 15.4 2317.8 241.7
2 0.514 418 2679 621.0 0.37 20.4 2374.1 305.0
4 0.450 662 2717 712.9 0.37 26.5 2341.5 375.2
8 0.457 639 2640 712.3 0.45 28.9 2257.1 383.4
r00 0.257 942 3305 728.8 0.38 32.4 2879.3 425.2
rnd 0.490 453 2756 639.6 0.37 23.5 2409.9 346.6

Table 4: Filter criteria available to the user.

Difference Range Description Numeric Range
1% VLOW 0 - 0.2
5% LOW 0 - 0.4
10% MEDIUM 0.4 - 0.8
15% HIGH 0.6 -1
20% VHIGH 0.8 - 1

is now presented with a small number of solutions that they can
evaluate. In many cases we note that tool includes some solutions
that break the significance or range constraints, in such cases the
penalty based fitness function may have included a solution that
satisfies a constraint on one axis whilst only marginally breaking
a constraint on another, thus the planner is presented with a set of
solutions that attempt to meet their requirements, even when there
are conflicts. In a small number of cases the tool returns 0 solutions
due to there being no solutions in the underlying Pareto set which
meet the criteria.

Figure 3 shows an example of the too in use, the upper plot is
crowded and difficult for the planner to distinguish between indi-
vidual solutions, the lower plot was generated by running the EA
with the criteria as specified in the caption. Note that solutions
presented are all within the ranges, the filter has attempted to elimi-
nate solutions that violate the significance criteria. The lowest two
solutions on the CO2 scale violate the significance constraint, but
examination shows that they meet all of the other constraints, they
have been included as the fitness function has traded off the penalty
from the CO2 significance against the benefits accrued against the
other criteria.

The EA has been incorporated in a Java Servlet, allowing it to
be used interactively (see figure 2), source code for the tool may be
found in the supplementary material accompanying this paper.

5 CONCLUSIONS AND FURTHER WORK
Within this paper we set out to answer two related questions, firstly
can we generate Pareto sets of solutions that give the planner a
meaningful choice and can we develop a mechanism to assist the

Figure 2: The EA incorporated into the Web based decision
Support.

planner when making the choice of which solution to adopt? In or-
der to answer these questions we propose and use a multi-objective
optimisation technique to explore the sustainability of the mobility
needed to provide a non-residential care service to a given number
of patients. Emissions and impact on traffic are used as indicators of
(social) sustainability. These indicators are compared to the cost to
the service provider in terms of staff and travel cost. We base our
study on synthetic populations of visits, located in London. This
allows us using realistic values to determine paths, travel costs CO2
emissions, and staff costs. We do not identify single optimal so-
lutions but we build the Pareto front of non-dominated solutions,
which from the planning perspective represent solutions with a par-
ticular trade-off between objectives. We note that providing the
Pareto front can give the service provider a greater control on its
actions, above all if the Pareto sets are large as shown in table 2,
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Table 8: The before and after effects of running the evolvable filter with the criteria Travel Cost = MEDIUM, Total Cost = MEDIUM,
CO2 Cost = VLOW , Total Cost Significance = 1%, CO2 Significance = 5%. The figures shown are of the format before / after.

Problem Cardinality Travel Cost CO2 Total Cost
Initial After Diff Out of Range Too Close Out of Range Too Close Out of Range Too Close

lon-1 229 0 0.00% 91 / 0 0 / 0 197 / 0 211 / 0 124 / 0 0 / 0
lon-2 315 1 0.32% 315 / 0 314 / 0 264 / 0.2 298 / 0 168 / 0.8 0 / 0
lon-4 271 0 0.00% 271 / 0 270 / 0 251 / 0 258 / 0 161 / 0 0 / 0
lon-8 461 3.2 0.69% 461 / 0.2 458 / 0 411 / 0.3 454 / 0.2 247 / 0 0 / 0
lon-r00 511 5.5 1.08% 511 / 0 510 / 0 404 / 0.6 504 / 0.4 271 / 0.1 0 / 0
lon-rnd 338 0 0.00% 338 / 0 337 / 0 313 / 0 319 / 0 180 / 0 0 / 0
blon-1 225 0 0.00% 225 / 0 222 / 0 215 / 0 209 / 0 104 / 0 0 / 0
blon-2 418 0 0.00% 418 / 0 416 / 0 367 / 0 404 / 0 220 / 0 0 / 0
blon-4 662 0 0.00% 662 / 0 660 / 0 619 / 0 651 / 0 363 / 0 0 / 0
blon-8 639 1 0.16% 639 / 0 638 / 0 612 / 0 623 / 0 348 / 1 0 / 0
blon-r00 942 1.3 0.14% 942 / 0 941 / 0 829 / 0.6 931 / 0.1 441 / 0.3 0 / 0
blon-rnd 453 0 0.00% 453 / 0 451 / 0 437 / 0 435 / 0 203 / 0 0 / 0
cluster-1 174 0 0.00% 174 / 0 170 / 0 172 / 0 157 / 0 79 / 0 0 / 0
cluster-2 279 2.6 0.93% 279 / 0 276 / 0 263 / 1.6 262 / 0 133 / 0 0 / 0
cluster-4 267 8.4 3.15% 267 / 0 265 / 0 154 / 1 249 / 1.7 141 / 0.1 0 / 0
cluster-8 467 6.4 1.37% 467 / 0.2 466 / 0 346 / 1 455 / 1 262 / 0 0 / 0
cluster-r00 463 6.2 1.34% 463 / 0.1 462 / 0 302 / 0.4 454 / 0.9 231 / 0.9 0 / 0
cluster-rnd 389 5.5 1.41% 389 / 0.3 387 / 0 326 / 0.3 381 / 0.4 197 / 0 0 / 0
offset-1 119 0 0.00% 119 / 0 116 / 0 110 / 0 93 / 0 64 / 0 0 / 0
offset-2 295 1 0.34% 295 / 0 293 / 0 286 / 0 276 / 0 161 / 0 0 / 0
offset-4 848 0 0.00% 848 / 0 846 / 0 746 / 0 835 / 0 395 / 0 0 / 0
offset-8 495 0 0.00% 495 / 0 493 / 0 379 / 0 478 / 0 222 / 0 0 / 0
offset-r00 867 0 0.00% 867 / 0 865 / 0 657 / 0 854 / 0 412 / 0 0 / 0
offset-rnd 427 0 0.00% 427 / 0 425 / 0 312 / 0 421 / 0 288 / 0 0 / 0

Table 5: The before and after effects of running the evolvable
filter with the criteria Travel Cost = Low, CO2 Cost = VLOW,
Travel Cost Significance = 5%, CO2 Significance = 1%. The
figures shown are of the format before / after.

Problem Cardinality Travel Cost CO2
Initial After Diff Out of Range Too Close Out of Range Too Close

lon-1 229 0 0.00% 199 / 0 225 / 0 197 / 0 211 / 0
lon-2 315 0 0.00% 242 / 0 312 / 0 264 / 0 298 / 0
lon-4 271 1 0.37% 170 / 0 268 / 0 251 / 0 258 / 0
lon-8 461 4.7 1.02% 305 / 0 458 / 1.5 411 / 0 454 / 0.8
lon-r00 511 2.6 0.51% 337 / 0 510 / 0.6 404 / 0 504 / 0.1
lon-rnd 338 3.8 1.12% 161 / 0 334 / 1.1 313 / 0 319 / 0.6
blon-1 225 2 0.89% 204 / 0 222 / 0 215 / 0 209 / 0
blon-2 418 5.9 1.41% 280 / 0 417 / 2.2 367 / 0.2 404 / 0.9
blon-4 662 5.8 0.88% 525 / 0 660 / 1.7 619 / 0 651 / 1.6
blon-8 639 4.1 0.64% 443 / 0.6 637 / 1.6 612 / 0.1 623 / 0.3
blon-r00 942 4.7 0.50% 585 / 0 940 / 1.2 829 / 0 931 / 1.3
blon-rnd 453 5 1.10% 366 / 0 450 / 0.4 437 / 0.3 435 / 0.2
cluster-1 174 1 0.57% 161 / 0 169 / 0 172 / 0 157 / 0
cluster-2 279 2 0.72% 204 / 0 276 / 0 263 / 0 262 / 0.2
cluster-4 267 5.8 2.17% 169 / 0.5 264 / 2.3 154 / 0.1 249 / 0.9
cluster-8 467 2 0.43% 357 / 0 465 / 1 346 / 0 455 / 0
cluster-r00 463 4.9 1.06% 239 / 0.2 460 / 1.2 302 / 0 454 / 0.4
cluster-rnd 389 5 1.29% 262 / 0 388 / 1.2 326 / 0.1 381 / 0.4
offset-1 119 2 1.68% 85 / 0 114 / 0 110 / 0 93 / 0
offset-2 295 1 0.34% 245 / 0 292 / 0 286 / 0 276 / 0
offset-4 848 6.1 0.72% 518 / 0 847 / 2.1 746 / 0 835 / 0.8
offset-8 495 5.9 1.19% 290 / 0 494 / 1.3 379 / 0.6 478 / 0.9
offset-r00 867 6.4 0.74% 315 / 0 866 / 2.6 657 / 0 854 / 1.2
offset-rnd 427 7.4 1.73% 263 / 0 424 / 2.6 312 / 0 421 / 0.7

giving it flexibility in terms of finding solutions that address internal
and social goals.

Although our approach can find large numbers of solutions, from
the perspective of the agency, it is not necessarily the quantity of
solutions that is of value, but the their attributes. We find that
CO2 and total costs increase with the number of visits and depends
on the characteristics of the provided service, with higher values
corresponding to situations where visits must take place in shorter
time windows and are arranged in clusters.

We note a significant drawback of the MOGA based approach
to solving the problem is the large number of solutions from which
the planner must make their final choice, we address this decision
making problem by using a simple EA to filter solutions to produce
a small subset of solutions quickly that the end planner can examine
in more detail. The principle value of this tool is its’ ability to

Table 6: The before and after effects of running the evolvable
filter with the criteria Total Cost = Low, CO2 Cost = medium,
Total Cost Significance = 5%, CO2 Significance = 1%. The fig-
ures shown are of the format before / after.

Problem Cardinality Total Cost CO2
Initial After Diff Out of Range Too Close Out of Range Too Close

lon-1 229 1.2 0.52% 229 / 1.2 0 / 0 138 / 0 227 / 0
lon-2 315 3.8 1.21% 315 / 3.8 0 / 0 144 / 0 313 / 0.5
lon-4 271 3.3 1.22% 271 / 3.3 0 / 0 169 / 0 268 / 0.2
lon-8 461 3.6 0.78% 461 / 3.6 0 / 0 323 / 0 460 / 0.5
lon-r00 511 3.8 0.74% 511 / 3.8 0 / 0 306 / 0.1 510 / 0.5
lon-rnd 338 3 0.89% 338 / 3 0 / 0 216 / 0 336 / 0.4
blon-1 225 2.1 0.93% 225 / 2.1 0 / 0 201 / 0.1 222 / 0
blon-2 418 2.5 0.60% 418 / 2.5 0 / 0 285 / 0 417 / 0.3
blon-4 662 3 0.45% 662 / 3 0 / 0 482 / 0.2 660 / 0.3
blon-8 639 3.5 0.55% 639 / 3.5 0 / 0 537 / 0.3 638 / 1
blon-r00 942 3.4 0.36% 942 / 3.4 0 / 0 604 / 0 941 / 0.3
blon-rnd 453 3.4 0.75% 453 / 3.4 0 / 0 324 / 0.2 452 / 0.7
cluster-1 174 2.9 1.67% 174 / 2.9 0 / 0 94 / 0 167 / 0.4
cluster-2 279 3.9 1.40% 279 / 3.9 0 / 0 164 / 0.4 276 / 0.7
cluster-4 267 3.7 1.39% 267 / 3.7 0 / 0 68 / 0 266 / 0.2
cluster-8 467 4 0.86% 467 / 4 0 / 0 119 / 0 464 / 0.3
cluster-r00 463 3.5 0.76% 463 / 3.5 0 / 0 151 / 0 460 / 0.3
cluster-rnd 389 3.9 1.00% 389 / 3.9 0 / 0 206 / 0.2 387 / 0.8
offset-1 119 2.8 2.35% 119 / 2.8 0 / 0 91 / 0 115 / 0.3
offset-2 295 2 0.68% 295 / 2 0 / 0 229 / 0 293 / 0
offset-4 848 2.3 0.27% 848 / 2.3 0 / 0 380 / 0.2 847 / 0.5
offset-8 495 1.7 0.34% 495 / 1.7 0 / 0 282 / 0 494 / 0.3
offset-r00 867 1.7 0.20% 867 / 1.7 0 / 0 384 / 0.2 866 / 0
offset-rnd 427 2 0.47% 427 / 2 0 / 0 224 / 0 425 / 0.1

apply custom filter criteria quickly in order to support the decision
making process being undertaken by the end user. The filter also has
the ability to work with any of the problem criteria that are being
made available (e.g. total cost, staff cost, travel cost, CO2, car use
etc.) even when that criteria is not part of the optimisation criteria.
Future developments could include allowing the user to specify more
complex criteria (e.g. specific features within the solution that are
desirable or undesirable to a certain degree).

Future developments would include more constrained staffing
scenarios, with a limited number of staff and different skills among
employees so that certain employees can carry out only certain types
of visits as well as considering travel modes such car sharing.
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