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ABSTRACT

Catastrophic damage to forests resulting from major storms
has resulted in serious timber and financial losses within
the sector across Europe in the recent past. Developing risk
assessment methods is thus one of the keys to finding forest
management strategies to reduce future damage. Previous
approaches to predicting damage to individual trees have
used mechanistic models of wind-flow or logistical regression
with mixed results. We propose a novel filter-based Genetic
Programming method for constructing a large set of new
features which are ranked using the Hellinger distance metric
which is insensitive to skew in the data. A wrapper-based
feature-selection method that uses a random forest classifier
is then applied predict damage to individual trees. Using
data collected from two forests within South-West France, we
demonstrate significantly improved classification results using
the new features, and in comparison to previously published
results. The feature-selection method retains a small set
of relevant variables consisting only of newly constructed
features whose components provide insights that can inform
forest management policies.
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1 INTRODUCTION

Financial losses in the forestry sector arising from damage to
trees caused by strong winds during storms can be colossal: in
2009 a storm in south-western France damaged approximately
37 million m3 of maritime pine trees [7]. This led to losses of
approximately e1.8 billion in the forestry sector, which was
almost 60% of total economic losses in France that year [9].
Ten years prior to this, a storm in the same region resulted
in approximately 26 million m3 of timber loss, which was
equivalent to the general harvested volume for 3.5 years in
maritime pine forests in south- western France [8]. As storms
are predicted by some researchers to become more intense
although less frequent in the future, it is clearly likely that
further catastrophic damage in these maritime pine forests
is likely to occur. It is thus crucial that the forestry industry
develop methods to both understand the direct causes leading
to damage occurrence and to assess and predict the risk of
damage in order to develop policies that lead to sustainable
forest management.

One of the main forest management techniques currently
used to increase income of forest owners is to undertake
thinning – the selective removal of trees in order to improve
the growth rate or health of the remaining trees [10]. However,
thinning has a tendency to increase the risk of wind-damage to
the remaining trees due to increased aerodynamic roughness
above the canopy: this leads to higher levels of turbulence
and the creation of small gaps which both increase wind
penetration between trees and can act as trigger points for
damage propagation during a storm. Therefore, selecting
the most at risk trees for early removal is a one of the key
ways to reduce wind damage risk. Mechanistic modelling
has been applied using hybrid mechanistic/empirical wind-
modelling software to predict damage at individual tree level
with some limited success. In contrast, a generalized linear
mixed model to predict damage is proposed by [2] and used
with data collected from German forests, while Kamimura et
al [13] use logistic regression to predict damage to individual
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trees within Aquitaine. The latter found that models could
discriminate between damaged/undamaged trees to some
extent, but that there was considerable room for improvement
in order to better inform forest management policy decisions.

Finding a highly accurate model is challenging due to the
nature of the data: datasets are relatively small for pragmatic
reasons relating to recording the data (≈ 1500 trees); the
number of features measured from the trees is small (typically
around 8); the proportion of damaged trees in each forest
can be low (≈ 15%). To address these issues, we first use
Genetic Programming (GP) to construct new features to
augment the original dataset. The GP method introduces
Hellinger distance [6] as a fitness measure to evaluate feature
quality, which has recently been shown to be insensitive to
imbalanced data. GP is run multiple times to construct a
large set of new features. Finally, a feature-selection approach
from machine-learning is then applied in conjunction with
a Random Forest Classifier [5] to predict tree damage. The
approach is applied to real-data obtained from two forests in
South-West France — Nezer and Aquitaine. We specifically
address the following research questions:

(1) Can GP produce new features that have higher fit-
ness according to the Hellinger distance metric than
the original features?

(2) Does a classifier applied to the augmented set of fea-
tures constructed by GP outperform results obtained
using only the original features?

(3) Does applying a variable-selection method result in
a smaller number of variables with low redundancy
and accurate prediction of the response variable ?

(4) Are the selected features informative for users within
the Forestry sector?

We find a significant improvement in classification accuracy
of approximately 16% in the Nezer forest, and 3% in the
Aquitaine forest compared to learning a model from the
original data. Similar improvements in the area-under-the-
curve (AUC) metric are also observed. The paper is novel in
terms of the application of EC techniques to inform forest
management. From an EC perspective, it is novel in that it
exploits GP to generate a large set of fit but diverse features,
scored according to Hellinger distance, and combines this with
a powerful feature-selection method from machine-learning
to efficiently find a small number of variables with high
predictive accuracy.

2 BACKGROUND

The quality of the feature set is a key factor influencing
the performance of a classification algorithm [21]. Irrelevant
and/or redundant features can have an adverse affect on the
accuracy of a classifier, as well as increasing the time required
to learn a model and the complexity of the trained classifier.
Similarly, measured features collected from a real-world prob-
lem can fail to discriminate adequately between classes. To
address these weaknesses, Evolutionary Computing (EC) has
been used widely for both feature-selection to choose relevant
features, and feature selection, to evolve new features which

provide better discrimination and can be used to augment the
original feature space. With respect to feature construction,
methods fall into two-categories: filter methods are applied
to data, independently of a classification technique, while
wrapper methods use classification performance to rank new
features. Here we focus on filter-based feature-construction
and therefore provide a brief review of relevant literature.
To avoid confusion between trees evolved by GP and forest
trees, we use the term program to refer to a GP- tree.

The most common method for feature construction is
genetic programming (GP), largely due to its ability to auto-
matically evolve mathematical models that can be linear or
non-linear and can make use of a large range of pre-defined
function and terminal nodes. Approaches can be categorised
along two dimensions: the method used to score new features
for relevance, and the number of new features simultaneously
evolved. Common methods for assessing variable relevance in-
clude Information gain (IG), Gini index (GI) or Chi-squared
[21]. The efficacy of these methods used in conjunction with
GP to evolve a single feature is evaluated in [17], indicating
little bias between metrics. Guo and Nandi [12] also evolve
a single additional feature, using scattering as a metric, and
report improved results. However, the metrics just discussed
are unlikely to work well with imbalanced datasets: to counter
this [19] propose a balanced-accuracy metric which they use
in conjunction with a GP algorithm that evolves a program
which acts as a classifier, therefore implicitly embedding
feature-selection and construction within the model.

Multi-program methods use GP to simultaneously evolve
multiple new features, e.g. [15]. However, a key difficulty of
this method is the need to pre-define the number of required
programs. In [20], the representation is fixed to evolve as
many programs as there are original features. In contrast,
Neshatian et al [18] evolve a single program but repeat the
procedure as many times as there are classes. Cooperative co-
evolution [16] has also been used to evolve multiple programs
but again suffers from the need to pre-define the number
required. An alternative method proposed in [1] constructs
multiple features by segmenting the single best evolved pro-
gram into multiple sub-trees; while this does not require
pre-fixing the program number, the number of resulting trees
is limited by the maximum depth.

In this paper we address the issue of pre-defining the
number of new features by running a single-program GP
algorithm many times. This provides a computationally
cheap method of generating new features but may result in
some redundancy. However, when this is combined with a
powerful and efficient feature selection method from machine-
learning (VSURF [11]), a minimal set of features with high
predictive accuracy is obtained. VSURF is freely available
as an R package meaning results can be easily verified and
reproduced.

3 DATA

The first data set Nezer was obtained from a field survey
of 29 permanent plots (400 m2) in the Nezer Forest located
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Table 1: Summary data from the two datasets Nezer
and Aquitaine

Trees Damaged
Trees

Percentage
Damage

Nezer 1029 130 0.13
Aquitaine 1691 563 0.33

in a region of south-west France. The tree sizes within this
data were obtained from a field survey in 1998, and damaged
trees were determined after the storm in 1999. Damage
occurred to 13% of trees in the dataset. The second data
set Aquitaine was obtained from field surveys of the national
forest inventory in France (Inventaire Forestier National;
NFI) in the Landes de Gascogne region. The survey plots
are located on a 1km × 1km grid — we use data collected
from 2007 to 2008 from a total of 235 plots. After storm
Klaus in 2009, damaged trees in the NFI plots were identified
by an additional field survey — 33% of surveyed trees were
damaged. Basic statistics of both data sets are presented in
table 1.

In addition to data collected from the surveys described
above, spatial information was also included for each plot in
the two data sets. The distance from the windward stand edge
(the westerly direction for both storms) was defined as the
boundary line between forests and unforested area including
roads (> 3m width). Although the distance was very precise
in the Nezer forest, the distance had to be estimated using
the coarse plot location in the NFI data in which the exact
plot positions were not publically available. The stem spacing
in both data sets was the mean value calculated from the
number of stems in the plot. Gap size defined as the distance
in a westerly direction between the forest in which the plot
was located and the next forest block was also calculated.
Finally a competition index (CI) [4] is calculated for all trees

— this describes the relationship between a subject tree and
neighbouring trees in order to estimate the allocation of
growth resources such as water and light that are generally
limited by the size and number of neighbours. This results
in 8 input features used to describe each tree (see table 2),
with a single output (damaged/not-damaged) indicating if
the tree was damaged in the storms described above.

4 METHODOLOGY

An overview of the method is given in figure 1. First, GP
is run n times, with each run evolving a single new feature.
The n newly constructed features are then added to the
original dataset. A feature-selection procedure VSURF [11]
is then applied to the augmented dataset in conjunction with
a random-forest classifier to derive a minimal set of features
for prediction. These features are then used to obtain the
final model using a random-forest classifier. Each step is
explained below.

Figure 1: Overview of method: the output from
multiple GP runs is used to construct a large new
set of features. A variable selection approach is used
extract a subset of relevant features which are used
by a random forest classifier

4.1 GP

The GP algorithm is a conventional generational algorithm
[14] that is initialised using ramped half and half and employs
sub tree crossover and mutation to create a new population
of 600 individuals each generation. An elitist strategy is
employed where the best member of the population is retained.
Crossover and mutation are applied with a probability of
80% and 10% respectively, otherwise a random parent is
returned. The maximum initial program depth is set to 6
and the maximum bloat depth varies between 6 and 17 as
detailed for each experiment.

Terminal nodes consist of the 8 original features from
table 2 plus three constants (minusOne, IntegerConstant,
DoubleConstant). The function node set contains standard
arithmetic operators (<,+,-,*, protectedDivide,>, <) plus
additional functions (log, sin, cos, tan, abs).

As described in section 2, the fitness functions typically
used in GP-based feature construction (e.g. information-gain)
perform poorly on imbalanced data. To mitigate this, we
make use of an alternative fitness metric called Hellinger
distance [6]. This has been shown analytically and empir-
ically to demonstrate strong skew insensitivity when used
as a splitting criterion in decision trees, and thus provides
significant advantages over more common metrics such as
information gain when dealing with imbalanced data.

Hellinger distance is defined as follows. Assume a two class
classification problem in which the information available can
be expressed as P(Yy|Xx), where y is drawn from two classes
(+,−) and x is drawn from a a finite set of attribute values
V , or in the case of continuous features, by discretising the
variable by examining a variety of splits and selecting the
most appropriate. Then, the Hellinger Distance dH is defined
as shown in equation 1.
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Table 2: Summary statistics for Aquitaine and Nezer datasets

Aquitaine Nezer
Attribute Mean Standard Deviation Mean Standard Deviation

Gap Size (m) 177.32 66.44 125.21 66.31
Diameter Breast Height (DBH) (cm) 29.88 14.42 19.1 11.31

Tree Height 17.74 6.89 12.19 6.57
Mean DBH (cm) 29.86 12.91 19.11 10.63

Stand Mean Height 17.73 6.64 12.52 6.63
Density (ha). 580.76 398.75 977.084 646.64

Competition Index (CI) 14.03 18.13 11.91 9.74
Average Competition Index 14.04 9.68 11.86 6.49

dH(P (Y+), P (Y−)) =

√∑
i

(
√

P (Y+|Xi)−
√

P (Yi|Xi))2

(1)
The fitness value thus varies between a minimum of 0 and

maximum of
√

2.

4.2 Classifier

A Random Forest classifier [5] is selected to build the pre-
dictive model. Previous work published in [13] discussed the
limitations of a logistic regression model, and preliminary
investigation by the authors with the original datasets com-
paring single decision trees, a neural network trained via back
propagation and a random forest suggested that the random
forest approach was most promising.

4.3 Variable Selection

Variable selection can be used to remove irrelevant vari-
ables, to select all important ones or to determine a sufficient
subset for prediction [11]. We utilise an R package which
performs efficient variable-selection for random forest algo-
rithms (VSURF, [11]). A two-stage strategy is employed
which is based on a preliminary ranking of the explanatory
variables using the random forests permutation-based score
of importance, followed by a stepwise forward strategy for
variable introduction to find the best predictive set. The final
predicted set contains a small number of variables with very
low redundancy but sufficient for a good enough prediction
of the response variable [11].

In a random forests framework, one of the most widely
used scores of importance of a given variable is the increase in
misclassification rate in the forest when the observed values
of this variable are randomly permuted in the out-of-bag
(OOB samples) [3]. Assume errOOBt represents the misclas-
sification rate of a single tree t on an OOBt sample. The
values of a chosen feature Xj are then randomly permuted to

get a perturbed sample denoted by ÕOB
j

, and the misclas-

sification errÕOBt

j

of predictor t on the perturbed sample
calculated. The variable importance VI of variable Xj is then
given by equation 2:

V I(Xj) =
1

ntree

∑
t

(errÕOBt

j

− errOOBt) (2)

In order to calculate the most relevant variables for pre-
diction with a random forest classifier, the method proceeds
as follows. First, 50 random forest models are learned, and
the mean V I of each variables is calculated and the variables
ranked in order of importance. Then:

(1) Eliminate all variables with mean V I less than a
pre-defined threshold, resulting in n variables

(2) Construct n new models containing k = 1 to k =
n variables, and select the model m∗ with lowest
errOOB.

(3) Construct a new set of models adding the variables
from m∗ in order of importance, retaining a variable
only if the resulting error decrease is larger than a
threshold. Retain the final model.

The procedure is applied to the large set of newly con-
structed features returned from running the genetic program-
ming algorithm, and the features selected from the final
model returned.

5 EXPERIMENTS

The following procedure is used to first construct new features,
and then identify the optimal subset of variables for creating
a model with high accuracy and AUC.

(1) Run GP k times using the entire original dataset for
a forest O, to create k new features

(2) Create 10 new datasets each containing (8+k) fea-
tures (i.e. original+constructed features) by under-
sampling O such that each new dataset OUi contains
an equal number of instances of both positive and
negative classes

(3) For each OUi , use VSURF to identify the optimal
subset of variables for prediction

(4) For each OUi , apply a random-forest algorithm using
cross-validation using a feature set f containing:
(a) V SURFind: the variables selected by VSURF

for OUi

(b) V SURFmaj : the variables that were selected in
at least 50% of the 10 individual VSURF runs
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Table 3: Analysis of Hellinger values obtained for the original 8 features and newly constructed features (in
bold)

Original Features (from table 2) Constructed Features
f1 f2 f3 f3 f5 f6 f7 f8 Mean(sd) Max Min

Nezer D17 0.613 0.580 0.592 0.613 0.613 0.613 0.175 0.572 0.709 (0.038) 0.802 0.648
D6 0.672 (0.023) 0.635 0.733

Aquitaine D17 0.254 0.260 0.249 0.266 0.286 0.050 0.217 0.282 0.387 (0.048) 0.463 0.298
D6 0.350 (0.031) 0.299 0.443

(c) V SURFAll: the concatenated set of all vari-
ables identified by VSURF from the 10 individ-
ual VSURF runs

Note that in step (1) the entire imbalanced dataset is
provided to the GP in order to construct new features using
the maximum amount of data. As previously explained,
the Hellinger metric is insensitive to the skew in the class
distribution. In the remaining feature selection steps however,
we use an under-sampling method to create balanced datasets.
The Random Forest implementation provided in R (and used
by VSURF) uses the Gini index to measure node impurity
when selecting nodes to split during decision-tree construction
and hence does not cope well with imbalanced data. As the
purpose of this research is to provide a predictive model
that can be used to inform forest management, it is seen
as important to use standard packages which results can be
easily reproduced and verified.

5.1 Experimental outline

GP was run 50 times for each set of forestry data using the
parameters given in section 4.1. 50 features were evolved for
bloat depth 6, and a further 50 for depth 17.

Variable selection was performed using the VSURF package
[11] with default parameters. Cross-validation was performed
using the R CARET package using a Random Forest classifier
with 100 decision trees, and the AUC metric to optimise
tuning. All other parameters default to those provided by
the packages.

In all statistical comparisons, a Shapiro-Wilk test is first
applied to determine whether the null hypothesis that the
results are normally distributed is first applied. If the null
hypothesis is rejected, a Wilcoxon rank sum test is applied
to test for significance, otherwise, a Student t-test. The
confidence level is considered significant and denoted by ↑ for
p-values less than 0.05 and extremely significant and denoted
by ↑↑ if the p-value is less than 0.01.

6 RESULTS

6.1 Quality of evolved features

First we examine the first research question: can GP be used
to evolve features with greater Hellinger distance than the
original feature set?. Results are show in table 3 which lists
the distance metric calculated for each of the orignal features,
and the (mean, maximum, minimum) of the distance metric

calculated from the 50 new evolved features. Results are
given for both forests from GP with depth 17 and 6. It is
clear that in both datasets, the evolved features have higher
fitness than all of the original features. A Wilcoxon rank
sum test is used to compare the distributions at D17/D6.
This shows a statistically significant difference between the
D17/D6 results at the 1% confidence level.

Note that the Hellinger distance calculated for the original
features in the Aquitaine data is much lower than in the Nezer
forest data. In the Nezer Forest, the soil type is identical
across the forest and the management approach and seedling
source are likely to be consistent across the areas. In contrast,
in Aquitaine there are variations in soil type, soil moisture,
rooting depth, and management practices across the region.
Hence, taking the data as a whole. it is more challenging for
correlate any individual feature with the correct outcome.

6.2 Classification using augmented feature
set

Next, we examine whether a random-forest classifier applied
to the augmented dataset containing either all features or a
subset of features selected via the VSURF procedure outper-
forms a random-forest classifier that only has access to the
original features. Tables 4 to 7 provide the mean and standard
deviation of the 10 runs for each variable-selection method
for both program depths (as Shapiro-Wilk tests confirm that
the null hypothesis that the data is normally distributed
cannot be rejected). Results in bold show a significant im-
provement when compared to the original feature set. Tables
4 and 6 also provide results published in [13] — these were
obtained using logistic regression using only a subset of the
data in each forest, and hence are not directly comparable
but provide a useful reference point.

For the Nezer forest, a significant improvement of 16%
in the best case is obtained in terms of classification accu-
racy compared to the original features and 11% increase in
the AUC to 94%. Although a statistically significant im-
provement is also obtained using the feature set constructed
from small programs (D=6) the improvement is less marked
however, with a maximum increase of 5% in accuracy and
AUC.

For the Aquitaine forest — whose original features scored
significantly lower according to the Hellinger metric — there
is a statistically significant improvement in both classification
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Table 4: Nezer (Depth 17): Accuracy and AUC
(means). Statistical comparison to results from orig-
inal features. Note that result reported from [13]
only used a subset of the Nezer data

Accuracy Std.Dev AUC Std.Dev

original 0.74 0.03 0.83 0.03
All 0.87↑↑ 0.02 0.93↑↑ 0.02

VSURF all 0.89↑↑ 0.02 0.94↑↑ 0.02
VSURF ind 0.90↑↑ 0.02 0.94↑↑ 0.02
VSURF maj 0.87 ↑↑ 0.02 0.92↑↑ 0.02

[13] 0.724 0.765

Table 5: Nezer D6: Accuracy and AUC (means)
with features constructed from programs of Depth
17. Statistical comparison to results from original
features

Accuracy Std.Dev AUC Std.Dev

original 0.74 0.03 0.83 0.03
All 0.77↑↑ 0.02 0.86↑↑ 0.02

VSURF all 0.79↑↑ 0.02 0.88↑↑ 0.02
VSURF ind 0.78↑↑ 0.03 0.88↑↑ 0.03
VSURF maj 0.78↑↑ 0.03 0.86↑↑ 0.03

Table 6: Aquitaine D17 : Accuracy and AUC
(means) with features constructed from programs of
Depth 6. Statistical comparison to results from orig-
inal features. Note that result reported from [13]
only used a subset of the Aquitaine data

Accuracy Std.Dev AUC Std.Dev

original 0.76 0.01 0.83 0.01
All 0.78↑↑ 0.01 0.86 ↑↑ 0.01

VSURF all 0.78 ↑↑ 0.01 0.85 ↑↑ 0.01
VSURF ind 0.79↑↑ 0.01 0.85↑↑ 0.01
VSURF maj 0.79↑↑ 0.01 0.85↑↑ 0.01

[13] 0.63 0.709

accuracy and AUC. However, the improvement is at maxi-
mum 3% in accuracy and 3% in AUC. Furthermore, reducing
the depth of the programs from which the new features are
constructed from 17 to 6 appears to make no difference in
terms of the increase in classification accuracy. A Student t-
test confirms there is no statistical difference when (D17-D6)
results are compared for each variable selection method.

6.3 Effect of Variable Selection

Next, we address the third question which examines the
effectiveness of variable selection. Recall from section 2
that VSURF first calculates the importance of each variable
(V I) according to equation 2. Figure 2 plots the mean V I

Table 7: Aquitaine D6: Accuracy and AUC (means)
with features constructed from programs of Depth
6. Statistical comparison to results from original
features

Accuracy Std.Dev AUC Std.Dev

original 0.76 0.01 0.83 0.01
All 0.78 ↑↑ 0.01 0.85 ↑↑ 0.01

VSURF all 0.78↑ 0.01 0.85 ↑↑ 0.01
VSURF ind 0.79↑↑ 0.02 0.85 ↑↑ 0.01
VSURF maj 0.79↑↑ 0.01 0.85 ↑↑ 0.01

Table 8: Number of variables selected by VSURF
for each of the 10 undersampled datasets

Mean Min Max Unique Majority

Nezer (D17) 7.6 6 10 17 7
Aquitaine (D17) 2.4 1 3 5 2

for a single under-sampled subset of the Nezer data. Only
one of 58 variables is eliminated in this step. Note also
that the multiple GP runs — which all maximise the same
objective — result in a feature set that is diverse in terms of
variable importance. Although the 50 evolved features have
similar fitness according to the Hellinger metric (see table
3 which reports small standard deviation of fitness values
for each dataset) they have diverse VI with respect to the
random forest. Figure 3 indicates the out-of-bag error for
57 RF models, containing k = 1 to k = 57 variables. The
model with lowest OOB contains 12 variables therefore this
is selected for further optimisation. It is clear that adding
additional variables results in overfitting. In the final stage
(figure 4), models are built by adding one variable at a time,
but only retaining the variable if the resulting error decrease
is greater than a threshold. This results in 8 variables from
the total of 58 under consideration being selected for the
final predictive model.

Table 8 reports statistics relating to the number of vari-
ables selected by VSURF for each of the 10 under-sampled
datasets. For Nezer, the mean number selected is 7.6. Across
all 10 datasets, the total number of unique variables is 17
(corresponding to VSURF-all) with 7 variables appearing in
at least 50% of datasets. In all tests, none of the selected
variables correspond to the original 8 features, i.e. selected
features are always those constructed by the GP algorithm.
For Aquitaine, the number of features selected is consider-
ably smaller: the mean is 2.4 with a maximum of 3. Of all
variables selected, there a 5 unique variables, with 2 being
selected in at least half of the datasets. As with Nezer, none
of the original features are selected.

A statistical comparison of the three variable selection
methods against each other shows that the null hypothesis
(i.e. selection method A is equivalent to selection method
B) cannot be rejected except in the case of V SURFind vs
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Figure 2: Mean variable importance of each of the
58 variables w.r.t 50 runs of a random forest classifier
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Figure 3: OOB error on classifiers contains k=1 to
k=58 variables (variables added in order of VI)

V SURFmaj where the former method dominates in the case
of the AUC metric. No significant differences are observed
in the Aquitaine data. It is clear that an informed variable
selection from the large number of features is beneficial;
however, the three selection methods investigated appear to
provide equivalent benefit. Reducing the number of predictive
variables is greatly preferred by the end user as it can shed
light on key features that might contribute to damage, and
therefore inform management practice. This is examined in
more detail in the next section.

6.4 Variable Analysis

In constructing new features, GP is essentially performing
feature selection from the original features, i.e. each evolved
program contains only a subset of the original features. Fig-
ures 5 and 6 show the proportion of the 50 new features that
contain at least one terminal node corresponding to each of
the 8 original features for Nezer and Aquitaine respectively.
The figure also shows the same calculation applied only to
the features selected by the VSURF procedure. For Nezer,
both distributions follow similar patterns, with the variables
Diameter at breast height (DBH) and density appearing most
important. This resonates with current understanding of
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Figure 4: OOB error on classifiers built using 1-12
variables, added in order of VI and only retained if
error is reduced by at least a threshold t
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Figure 5: Nezer data: selection of original features
in 50 programs evolved by GP (red) and in 7 features
selected by VSURF (blue).

wind-damage: DBH is considered as one of the most im-
portant variables in modelling wind damage risk and stand
density is important because it indicates how many trees
there are in each hectare to absorb the wind loading. For
Aquitaine, while Density remains important, the variable
AverageCIBal which reflects the competition index between
trees also becomes important. The Nezer forest is known to
be uniform in terms of tree and soil type, hence the compe-
tition index is likely to be less variable amongst individual
trees. In contrast, in Aquitaine there is significant more
variability between trees in stands and this variable has more
relevance. A small tree within a stand will have a high CIBal
and the biggest trees a small CIBal. Hence, this measure
can essentially be considered as an of inverse of the DBH
measure that appears important in Nezer.

7 CONCLUSION

We have described a novel method for predicting wind-
damage in forests, that can be used to inform forest man-
agement techniques to minimise financial and timber loss
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Figure 6: Aquitaine data: selection of original fea-
tures in 50 programs evolved by GP (red) and in 2
features selected by VSURF (blue).

in forests. The work represents a collaboration computer
scientists and forestry experts and represents a new approach
within the forestry industry, which has previously relied on
mechanistic modelling and models built using logistic regres-
sion to predict damage.

The approach exploited GP in order to generate a large
number of useful features without having to pre-specify the
number to evolve. We introduced the use of Hellinger dis-
tance to score fitness in light of the imbalanced data-set
and demonstrated that this evolves features that score more
highly than the original data. It is computationally inex-
pensive to generate large numbers of new features in this
manner. We then applied an efficient method from machine-
learning to perform variable-selection in conjunction with
a random forest classifier. This hybridisation of EC and
machine-learning techniques exploits strengths in both fields
to provide a powerful means of classification.

The results show that classifiers could be built using the
features that significantly outperformed classifiers that only
had access to the original features. In addition, Accuracy
and AUC are significantly higher than results reported in
[13] that used logistic regression models on the same region,
although on smaller subsets of the data used here. The
variable-selection method also enabled a small number of
useful features to be identified. These were then analysed
in order to understand which of the original features were
present in the evolved features. Importantly, the key variables
identified can be readily interpreted by forestry experts, that
is, the GP programs are explainable. This analysis provides
additional information that can be used to guide how forests
are best managed to reduce wind damage in future.
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