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Abstract

Selection methods are a key component of all multi-objective and, consequently, many-objective optimisation evolutionary algo-
rithms. They must perform two main tasks simultaneously. First of all, they must select individuals that are as close as possible
to the Pareto optimal front (convergence). Second, but not less important, they must help the evolutionary approach to provide a
diverse population. In this paper, we carry out a comprehensive analysis of state-of-the-art selection methods with different fea-
tures aimed to determine the impact that this component has on the diversity preserved by well-known multi-objective optimisers
when dealing with many-objective problems. The algorithms considered herein, which incorporate Pareto-based and indicator-
based selection schemes, are analysed through their application to the Walking Fish Group (WFG) test suite taking into account
an increasing number of objective functions. Algorithmic approaches are assessed via a set of performance indicators specifically
proposed for measuring the diversity of a solution set, such as the Diversity Measure and the Diversity Comparison Indicator.
Hyper-volume, which measures convergence in addition to diversity, is also used for comparison purposes. The experimental eval-
uation points out that the reference-point-based selection scheme of the Non-dominated Sorting Genetic Algorithm III (NSGA-III)
and a modified version of the Non-dominated Sorting Genetic Algorithm II (NSGA-II), where the the crowding distance is replaced
by the Euclidean distance, yield the best results.
c© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of KES International.
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1. Introduction

Multi-objective Optimisation Problems (MOPs) are those problems where several conflicting objective functions
must be optimised simultaneously. MOPs with more than three objective functions are usually known as Many-
objective Optimisation Problems (MaOPs) in the related literature1. The solution to MOPs and, consequently, MaOPs
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is a set of trade-off points referred to as the Pareto optimal front or Pareto optimal set. If a particular MOP satisfies
a set of requirements, e. g., linearity or convexity of the objective functions or convexity of the feasible set, then
the Pareto optimal set can be determined by mathematical programming approaches2. In the general case however,
finding the solution of a MOP is an NP–complete problem3. As a result, heuristic or meta-heuristic methods, such as
Multi-objective Evolutionary Algorithms (MOEAs)4, have arisen as one of the most popular techniques to successfully
address MOPs.

One key component of MOEAs is the selection scheme, i.e., the mechanism used to select individuals that will
survive, and which is responsible for both convergence and diversity of the solution set provided. A significant
number of MOEAs incorporates a Pareto-based selection scheme, which usually considers two separate selection
criteria5. First, individuals are ranked by applying Pareto optimality, thus giving preference to those individuals that
are non-dominated. Second, a diversity-based selection criterion is also applied to distinguish individuals belonging
to the same rank. Although Pareto-based MOEAs have proven to be successful optimisers for a wide variety of MOPs,
it has been recently demonstrated that Pareto-based selection is not suitable for MaOPs. One of the main reasons is
that the number of non-dominated individuals exponentially increases with the number of objective functions. In this
scenario, the selection scheme becomes inaccurate when ranking individuals and the selection pressure of the whole
MOEA diminishes. Hence, individuals selected to survive may not be close enough to the Pareto optimal front due to
the lack of convergence of the approach.

Two main paths have been explored in order to improve the performance of Pareto-based MOEAs when tack-
ling MaOPs5. The first one is to propose novel definitions of dominance, such as dominance area control6 and
L-optimality7, which allow the selection pressure of the MOEA to be increased. The second option focuses on im-
proving or replacing the diversity-based selection criterion. In addition to the aforementioned options, different types
of MOEAs have been proposed for solving MaOPs as an alternative to Pareto-based MOEAs5: decomposition-based
MOEAs, grid-based MOEAs and indicator-based MOEAs.

Bearing all the above in mind, the main contribution of the current work is a comprehensive study about the impact
that selection mechanisms have on the diversity preserved by MOEAs when dealing with MaOPs. For doing that, well-
known MOEAs, which incorporate selection mechanisms with different features, are applied to MaOPs with a scalable
number of objectives belonging to the Walking Fish Group (WFG) test suite8. The way in which the performance of
MOEAs can be measured has arisen as an important research area9. As a result, a considerable number of quality
indicators, like the hyper-volume10 or the Diversity Comparison Indicator 9, has been proposed for measuring either
convergence or diversity or both of them. In this work, we will focus on quality indicators specifically designed for
measuring the diversity of a solution set.

The rest of this paper is organised as follows. Section 2 is devoted to describe all the foundations related to the
work carried out herein, including the formal definition of a MOP, the particular MOEAs we have considered for our
study, as well as their selection mechanisms. The quality indicators selected to evaluate the diversity of the solution
sets provided by those MOEAs are also introduced. Then, the computational experiments performed, as well as the
results obtained, are shared in Section 3. Finally, Section 4 gives some conclusions and lines of future work.

2. Foundations

A Multi-objective Optimisation Problem (MOP) can be defined as the problem in which a set of objective functions
f1(x), . . . , fM(x) should be jointly optimised;

min F(x) = 〈 f1(x), . . . , fM(x)〉 ; x ∈ S ; (1)

where S ⊆ Rn is known as the feasible set and can be expressed as a set of restrictions over the decision set, in
our case, Rn. The image set of S produced by function vector F(·), i.e., O ⊆ RM is called the feasible objective set or
criterion set. The solution to these types of problems is a set of trade-off points. The optimality of a given solution
can be defined in terms of the Pareto dominance relation.

Definition 1 (Pareto dominance relation). For the optimisation problem specified in (1) and having x, y ∈ S, x is said
to dominate y (expressed as x ≺ y) iff ∀ f j, f j(x) ≤ f j(y) and ∃ fi such that fi(x) < fi(y).
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Definition 2 (Non-dominated subset). In problem (1) and having the set A ⊆ S, Â, the non-dominated subset of A,
is defined as

Â =
{
x ∈ A

∣∣∣@x′ ∈ A : x′ ≺ x
}
.

The solution of (1) is Ŝ, the non-dominated subset of S. Ŝ is known as the efficient set or Pareto-optimal set 2. The
Pareto-optimal front, Ô, is the image of Ŝ in the feasible objective set.

2.1. Assessing diversity of a Pareto set approximation

Several are the quality indicators that have been proposed for measuring different aspects related to the shape of
a Pareto set approximation, mainly, convergence, spread and uniformity∗. From the above three aspects, we note
that both spread and uniformity, which are closely related, determine the diversity of a Pareto set approximation. This
section is devoted to briefly describe some well-known quality indicators that we apply herein as performance metrics.
We have selected the Diversity Measure (Section 2.1.1) and the Diversity Comparison Indicator (Section 2.1.2) for
our analyses because they focus on diversity according to the taxonomy proposed by Li et al. 9 . The hyper-volume
(Section 2.1.3) has also been chosen, since it not only focuses on diversity but also on convergence and is one of the
most frequently used indicators to assess the performance of MOEAs.

2.1.1. Diversity Measure (DM)
The Diversity Measure (DM) was proposed to calculate the amount of diversity of a Pareto set approximation11.

For doing that, it considers a reference set. The solutions belonging to both the reference set and the approximation
are assigned to different grids or divisions of a hyperplane with M − 1 dimensions, with M being the number of
objectives of the problem at hand. Those divisions are called hyper-boxes. The number of solutions assigned to a
particular hyper-box, as well as the number of solutions assigned to its neighbour hyper-boxes, are used to evaluate
that hyper-box. The larger the number of hyper-boxes containing solutions that belong to both the reference set and
the approximation, the larger the indicator value, which is in the range [0, 1]. Bearing the above in mind, the value
one indicates that maximum diversity has been reached. In this case, every solution of the approximation has been
assigned to a hyper-box containing solutions of the reference set. At the same time, a DM value equal to zero means
that the Pareto front approximation is not diverse at all, since no point belonging to the former has been assigned to a
hyper-box which contains solutions of the reference set. According to Li et al. 9 , DM has several disadvantages when
dealing with MaOPs:

1. A reference set with solutions uniformly distributed in the Pareto front is required. Providing a reference set
is an arduous task, even more in the case of many-objective optimisation. Furthermore, the number of solutions in
the said reference set should be approximately equal to the number of solutions in the Pareto set approximation.

2. A distribution estimation has to be calculated for each hyper-box. There exist rM−1 hyper-boxes, with r being
the number of divisions in every dimension.

3. A value function has to be computed for each neighbour hyper-box when estimating the distribution of a
given hyper-box. A particular hyper-box has 3M − 1 neighbours. As a result, computing that value function may
be challenging in the case of dealing with MaOPs.

4. An inaccurate value of the approximation diversity could be provided, since the Manhattan distance is taken
into account instead of the Euclidean distance.

2.1.2. Diversity Comparison Indicator (DCI)
The great majority of those indicators aimed to measure the amount of diversity of a Pareto set approximation are

not suitable for problems with a large number of objective functions9. The Diversity Comparison Indicator (DCI) was
specifically proposed to measure the diversity of many-objective Pareto front approximations9. It tries to solve the
aforementioned drawbacks that arise when metrics, such as DM, deal with MaOPs. DCI takes different Pareto front

∗ Since the shape of Pareto set approximations are taken into consideration, quality indicators are usually defined by considering the objective
function space rather than the decision variable space.
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approximations and assesses their relative contribution to diversity instead of calculating the absolute contribution of
a unique Pareto set approximation.

It considers a grid environment, which consists of a set of hyper-boxes, where the solutions belonging to the
approximations are distributed. Only nonempty hyper-boxes, i.e., hyper-boxes where one or more non-dominated
solutions belonging to the mixed set of approximations have been assigned, are taken into account by DCI to calculate
the contribution of each approximation. Hence, given a particular approximation, if its solutions are assigned or are
close to the majority of the nonempty hyper-boxes, then its contribution to diversity will be significant in comparison
to the contribution of the other Pareto set approximations. If its solutions are not assigned or are far away from most of
those nonempty hyper-boxes however, then its contribution to diversity will be poor. The contribution of each Pareto
set approximation to each nonempty hyper-box has thus to be calculated. That contribution is measured in terms of
the grid distance between the Pareto set approximation and the hyper-box considered.

The grid distance GD between two hyper-boxes h1 and h2 in the grid is computed as it is shown by (2), with hk
1

and hk
2 giving the coordinates of h1 and h2 in the k-th objective, respectively. It can be observed that the Euclidean

distance is considered by DCI.

GD(h1, h2) =

√√√ M∑
k=1

(hk
1 − hk

2)2 (2)

The grid distance D between an approximation P and a hyper-box h is the minimum grid distance between h and
any other hyper-box, referred to as G(p), containing at least one solution p belonging to P:

D(P, h) = min
p∈P
{GD(h,G(p))} (3)

Therefore, the contribution CD of an approximation P to a hyper-box h can be computed as follows:

CD(P, h) =

 1−D(P,h)2

M+1 , D(P, h) <
√

M + 1
0, D(P, h) ≥

√
M + 1

(4)

Finally, considering a Pareto front approximation P, its DCI value can be calculated as it is shown by (5), where
the number of nonempty hyper-boxes is given by S .

DCI(P) =
1
S

S∑
i=1

CD(P, hi) (5)

The main advantages of this indicator are the following ones:

1. It does not require a reference set, in opposition to other indicators, such as DM or the Generational Distance12.
2. It cannot only be applied to compare two Pareto front approximations, but several of them.
3. The execution time of DCI, which belongs to O(M(LN)2), is independent of the number of hyper-boxes. L

is the number of Pareto set approximations and N is the number of solutions in those approximations.

2.1.3. Hyper-volume
The hyper-volume indicator, Ihyp(A),10,13,14,15 computes the volume of the region H delimited by a given set of

points, A, and a set of reference points, N , as it is shown by (6). Therefore, larger values of the indicator will
correspond to better solutions.

Ihyp (A) = volume

 ⋃
∀a∈A;∀n∈N

hypercube(a, n)

 . (6)

The hyper-volume indicator is also known as the Smetric or the Lebesgue measure. It has many attractive features
that had favoured its application and popularity. In particular, it is the only indicator that has the properties of a metric
and the only one to be strictly Pareto monotonic16,17. Because of these properties this indicator has been used not only
for performance assessment but also as part of some MOEAs (see Section 2.4 for details).
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To measure the absolute performance of an algorithm the reference points should be nadir points ideally. These
points are the worst elements of O, or, in other words, the elements of O that do not dominate any other element. To
contrast the relative performance of two sets of solutions, though, one can be used as the reference set. These matters
are further detailed in18,15.

Having N , the computation of the indicator is a non-trivial problem. Indeed, its determination is known to be
computationally intensive, thus rendering it unsuitable for MaOPs.

A lot of research has focused on improving the computational complexity of this indicator19,20,21,22. The exact
computation of the algorithm has been shown to be #P-hard23 in the number of objectives. These types of problems
are the analogous of NP for counting problems24. Therefore, all algorithms calculating the hyper-volume must have
an exponential run-time with regard to the number of objectives if P , NP, something that seems to be true25.

According to the most recent results, the indicator is currently known to be O(n log n + nM/2)22 for more than
three objectives (M > 3); O(n log n) for M = 2, 321. One alternative to circumvent the complexity hurdle is to apply
estimation algorithms capable of yielding an approximation of the indicator at a more convenient temporal cost. Monte
Carlo sampling26 and k-greedy strategy27 have been applied with success.

The hyper-volume can also be used to measure the progress of an algorithm as the evolution proceeds. For doing
that, the relative formulation of the binary hyper-volume indicator28 is usually considered:

Ihyp (A,B) = Ihyp (A) − Ihyp (B) . (7)

Substituting A and B by the non-dominated elements of the current and the previous iteration, PF ∗t and PF ∗t−1,
respectively, the indicator can be expressed as:

Ihyp (t) = Ihyp
(
PF ∗t

)
− Ihyp

(
PF ∗t−1

)
. (8)

2.2. MOEA selection

A wide variety of algorithms, like the Non-dominated Sorting Genetic Algorithm II 29 (NSGA-II), which is de-
scribed at Section 2.3, or the improved Strength Pareto Evolutionary Algorithm30 (SPEA2), have been designed by
incorporating Pareto optimality as the main selection criterion. Nevertheless, Pareto-based selection is not suitable
for many-objective optimisation. One of the main options to increase the performance of Pareto-based MOEAs when
dealing with MaOPs is to modify or replace the diversity-based criterion present at their selection scheme. This is the
choice addressed, for instance, by the Non-dominated Sorting Genetic Algorithm III 31 (NSGA-III). This algorithm
makes use of a reference-point-based secondary criterion to promote diversity in a solution set. The selection scheme
of NSGA-III will be better described at Section 2.5.

A different class of MOEAs are those incorporating a quality or performance indicator, like the hyper-volume10 or
the R2 indicator 32, into the selection mechanism. These quality indicators are usually designed for assessing either
convergence or diversity or both of them. Individuals are thus selected depending on their contribution to convergence
and/or diversity of the solution set they belong to. That contribution is measured by the particular quality indicator
applied. The indicator-based MOEAs we have selected for our analyses will be depicted at Section 2.4.

2.3. Pareto-based selection: NSGA-II

NSGA-II is an improvement over the original Non-dominated Sorting Genetic Algorithm33 (NSGA). NSGA-II
incorporates two key operations: fast non-dominated sorting of the population and crowding distance computation
with the aim of promoting diversity in the population.

The crowding distance considers the size of the largest cuboid enclosing each individual without including any
other member of the population. This feature is used to keep diversity in the population, where points belonging to the
same rank and with a higher crowding distance are assigned a better fitness than those with a lower crowding distance,
avoiding the use of the fitness sharing factor.

NSGA-II introduces a fast algorithm to sort the population that takes O(Mk2) computations, instead of the original
O(Mk3) of NSGA, with M being the number of objectives to be optimised and k the population size. NSGA-II also
incorporates an elitist approach for preserving candidate solutions.
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2.4. Indicator-based selection

This section is devoted to describe the particular indicator-based MOEAs we have selected in order to carry out
our study. Particularly, we have selected two algorithms that incorporate two well-known quality indicators. The first
one makes use of the hyper-volume indicator, while the second one applies the R2 indicator.

2.4.1. SMS-EMOA
The S-metric Selection Evolutionary Multi-objective Optimisation Algorithm (SMS-EMOA), which was proposed

by Beume et al. 34 , is a steady-state algorithm, i.e., only one offspring is produced and only one individual has to
be removed from the population at every generation. The hyper-volume is not computed exactly. Instead, the k-
greedy strategy is employed. These decisions were made in the hope of tackling the high computational demands of
computing the hyper-volume.

The key element of SMS-EMOA is the method for determining which element of the population will be replaced
by the offspring. This is done by applying a non-domination ranking. From the individuals that are dominated by the
rest of the population, one individual is selected such that it makes the minimum contribution to the hyper-volume
considering the whole set. Then, this individual is removed from the population and substituted by a new individual
generated by the usual variation operators. It may happen that there exists a unique non-dominated front (where all
individuals in the population are non-dominated). In this particular case, the individual with the lowest contribution
to the total hyper-volume is selected to be replaced.

2.4.2. R2-EMOA
The R2-EMOA algorithm was originally proposed by Trautmann et al. 35 and was analysed in depth by Brockhoff

et al. 36 . As in the case of SMS-EMOA, R2-EMOA is a steady-state approach, but it incorporates the R2 indicator32

as the secondary criterion for guiding the selection. Basically, at each generation, and after producing one offspring
through the variation operators, non-dominated sorting is applied. The individual a∗ belonging to the worst rank Rh

and allowing the smallest R2 indicator value associated to the remaining individuals of that worst rank to be obtained,
is selected to be replaced by the offspring. The aforementioned procedure36 is depicted by (9). Parameters r∗ and Λ

are the utopian point and the set of weight vectors, respectively, which allow preferences of a decision maker to be
incorporated into R2-EMOA35.

a∗ = arg min{r(a) : a ∈ Rh}; ∀a ∈ Rh : r(a) = R2(Rh\{a}; Λ; r∗) (9)

We note that the R2 indicator, as the hyper-volume, assess the main three features that a Pareto front approximation
should fulfil: convergence, spread and uniformity. The R2 indicator, however, presents two main differences with
respect to the hyper-volume. First, the computation of the hyper-volume, which takes exponential time in the number
of objectives† is avoided. Second, it may avoid the biased behaviour of the hyper-volume indicator regarding the
solution sets provided, which are usually focused on the knee area of the Pareto front‡. The above is due to the
potential incorporation of preferences of a decision maker.

2.5. Reference-point-based selection: NSGA-III

Another promising line for tackling MaOPs comes from the reference-point-based many-objective version of the
NSGA-II, referred to as NSGA-III. Similarly to NSGA-II, NSGA-III employs the Pareto non-dominated sorting to
partition the population into a number of fronts. In the last front however, rather than using the crowding distance to
determine the surviving individuals, a novel niche-preservation operator is applied.

This niche-preservation operator relies on reference points organised in a hyper-plane in order to promote a diverse
population. As a result, solutions associated with a smaller number of crowded reference points are more likely to
be selected. Finally, we note that a sophisticated normalisation scheme is incorporated into the NSGA-III, which is
aimed to effectively handle objective functions of different scales.

† In the case of dealing with two or three objectives efficient multi-objective optimisers based on the hyper-volume indicator have been proposed.
‡ It was shown however, that in the bi-objective case the R2 indicator presents an even more biased behaviour than the hyper-volume 36.
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(a) Hyper-volume indicator
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(b) Diversity Comparison Indicator (DCI)
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(c) Diversity Measure (DM)

Fig. 1. Box plots of the hyper-volumes (lower values are better), DCI and DM (higher values are better) obtained after running the experiment runs
on each problem and number of objectives.
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3. Experimental evaluation

The leitmotiv of this work is to study the impact of different selection methods on population diversity in MaOPs. A
shared MOEA framework was used in order to assess the impact that different selection mechanisms have on diversity
by considering the same experimental conditions. The said framework provided a testing ground common to all
approaches, and as a result, we were able to solely focus on the topic of interest. The shared MOEA is similar to other
previously proposed algorithms and falls into the (µ + λ) evolutionary strategy scheme where, at every generation,
an offspring population with λ individuals, Poff, is created starting from the current one, Pt, by applying variation
operators as in the case of NSGA-III. Subsequently, the best µ individuals are kept for the next generation population
Pt+1 and the remaining ones are disregarded. We note that for our analyses we selected the following MOEAs, which
were introduced in Section 2.2: NSGA-II, NSGA-III, SMS-EMOA, R2-EMOA and a modified version of NSGA-II,
where the Euclidean distance substitutes the crowding distance in the selection mechanism.

We chose the WFG multi-objective problem toolkit37 as the benchmark suite. It describes nine complex problems,
referred to as WFG1–WFG9, that test whether the optimisation algorithms are capable of handling different chal-
lenges, like separability, multi-modality and deceptive local optima, among others. Each problem was addressed with
M = 3, 6, 9, 12 objective functions. At the same time, the number of function evaluations was used as the stopping cri-
terion. Particularly, executions were stopped once 103+ M

3 function evaluations were carried out, thus performing longer
runs for those problems with a higher number of objective functions. The population size of the different approaches
was fixed by considering the number of objective functions of the problem at hand as well, i.e. , µ = λ = 50 × 10

M
3 .

For all cases, we ran all experiment instances 50 times§. The diversity of the resulting solution sets was computed
using the hyper-volume, DCI and DM indicators, which were described at Section 2.1. As we previously mentioned,
the hyper-volume indicator is able to capture both convergence of the approximation and its diversity, while both DCI
and DM are meant only for assessing diversity.

These results are summarised as box plots in Fig. 1. It is particularly interesting that the selection mechanism
of NSGA-III, as well as the application of the Euclidean distance rather than the crowding distance by NSGA-II,
consistently yielded better results as the number of objective functions grew. Although illustrative, box plots can not
be used to reach a definitive conclusion. That is why statistical hypothesis tests are called for. In our case, for each
problem/number of objective functions combination, we performed a Kruskal-Wallis test38 with the indicator values
achieved by each algorithm. In this context, the null hypothesis of this test is that all algorithms are equally capable of
solving the problem. If the null hypothesis was rejected, which was actually the case in all instances of the experiment,
the Conover-Inman procedure39 was applied in a pairwise manner to determine whether a particular algorithm attained
better results than another. A significance level α = 0.05, corrected using the Dunn–Šidák correction, was applied.

To further simplify the understanding of the results, we decided to adopt a more integrative representation like
the one proposed by Bader 40 . This representation groups, either by problem or by number of objectives, the results
provided by the different algorithms. It does so by computing the number of times a given algorithm was statistically
better than the others. Fig. 2 conveys these analyses. This summarised representation allows the results previously
identified in Fig. 1 to be easily verified.

4. Final remarks

Maintaining population diversity is a key issue of MOEAs. This is particularly important when dealing with
many-objective test cases as it has been repeatedly reported that current approaches are not capable of sustaining di-
verse populations. In this paper we have studied the impact that different selection schemes belonging to well-known
MOEAs have on population diversity when dealing with MaOPs. We have dealt with nine complex benchmark prob-
lems with an increasing number of objectives. The results point out the limitations of current selection schemes and
the directions for future progress in this area. Particularly, they have shown how the reference-point-based selection
approach incorporated into NSGA-III and the modified version of the NSGA-II, where the Euclidean distance re-

§ Full experiment parameters, raw data, statistical hypothesis tests and source code will be available on-line upon publication.
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(f) DMs grouped by number of objectives.

Fig. 2. Summarised representation of the statistical hypothesis tests. A higher position on the charts implies better results.

places the crowding distance, are able to provide better performance, and not only in terms of diversity as DM and
DCI indicates, but also in terms of convergence (hyper-volume), specially in the case of the modified NSGA-II.

There are other state-of-the-art algorithms that would be interesting to include in the study. One particular case is
the Multi-objective Evolutionary Algorithm based on Decomposition41 (MOEA/D) and its derivations. This algorithm
was not included because it relies on a decomposition of the search space and therefore, the selection scheme operates
in a different way. Nevertheless, one of the future lines of research prompted by this work is how to extrapolate these
results for creating an optimal decomposition of the search space.

Similarly, there are some important results that should be explored more in depth: the use of the Euclidean distance
as part of the selection scheme. Our experimental evaluation indicates this is a promising line of research and, to the
best of our knowledge, it has not been investigated yet.
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