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Abstract

A waste heat recovery system (WHRS) is used to capture waste heat re-

leased from an industrial process, and transform the heat into reusable energy.

In practice, it can be difficult to identify the optimal form of a WHRS for a par-

ticular installation, since this can depend on various design objectives, which

are often mutually exclusive. More so when the number of objectives is large.

To address this problem, a multiobjective evolutionary algorithm (MOEA) was

used to explore and characterise the trade-off surface within the design space of

a particular WHRS. A combination of clustering algorithm and parallel coordi-

nates plots was proposed for use in analysing the results. The trade-off surface

is first segmented using a clustering algorithm and parallel coordinates plots are

then used to both visualise and understand the resulting set of Pareto-optimal
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designs. As a case study, a simulation of a WHRS commonly found in the food

and drinks process industries was developed, comprising of a desuperheater cou-

pled to a hot water reservoir. The system was parameterised, considering typical

objectives, and the MOEA used to build a library of alternative Pareto-optimal

designs that can be used by installers. The resulting visualisation are used to

better understand the sensitivity of the system’s parameters and their trade-offs,

providing another source of information for prospective installations.

Keywords: waste heat recovery, optimisation, multi-objective evolutionary

algorithm, mutually exclusive objective functions

Nomenclature

n number of objectives

u number of evolved parameters

k number of clusters

ṁwd mass flow rate of water into the DSH/HWR

ṁwdmax maximum mass flow rate of water into the DSH/HWR

mwt mass of water in the HWR

mwtmin minimum mass of water in the HWR

mwtmax maximum mass of water in the HWR

Pb power of the backup heater

Pbmax maximum power of the backup heater

Thw required/demanded hot water temperature

Tmx maximum water temperature in the HWR

Tm mains water temperature

Tri input refrigerant temperature to the DSH
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Tro output refrigerant temperature from the DSH

Twi input water temperature to the DSH

Two output water temperature from the DSH

Twt water temperature in the HWR

∆Tmax maximum difference between Tmx and Thw

DSH Desuperheater

EA Evolutionary algorithm

HWR Hot water reservoir

MOEA Multiobjective evolutionary algorithm

MOOA Multiobjective optimisation algorithm

WHRS Waste heat recovery system

1. Introduction

Many energy systems have behaviours that are sensitive to their parameter

values, and these values need to be optimised [1], [2]. Many of these systems

also have multiple objectives, and these are often conflicting, meaning that

in practice there is not a single design that satisfies every objective. In this

situation, choosing an appropriate set of parameters first involves understanding

the different trade-offs that can be made within the system’s design space. One

way of doing this is to identify all the solutions that are no better or worse

than each other when considered across all objectives. This is known as the

Pareto optimal set. Multi-objective optimisation algorithms (MOOA) are a

group of optimisation techniques that are able to find good approximations of

the Pareto optimal set. Because of this, they have become increasingly popular

in the design of engineering systems [3], [4], [5], [6], including the optimisation
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of energy systems. Examples are described in [7], [8], [9], [10], [11], [12], [13],

[14], [15], [16], [17].

A Waste Heat Recovery System (WHRS) captures waste heat released from

an industrial process, storing it in a form that can later be reused, for example

using a hot water reservoir (HWR). A WHRS is a good example of a system

with mutually conflicting objectives. Common practise in WHRS optimisation

involves optimising using conventional single objective methods, typically Mixed

Integer (Non-)Linear Programming (MILP or MINLP) [18], [19], [20], [21], [22],

[23]. In cases where there are multiple objectives, these are scalarised into a

single objective. Alternatively, optimisation can be done using only a single

objective, most typically minimising the cost of the installation and operations

summed together, and the remaining objectives are implemented as constraints

[18], [19], [21], [22], [23]. Given that single objective optimisation only provides

a single solution, any information on objective trade-offs will be lost during the

optimisation process, and any analysis of how the parameters affect the sys-

tem efficiency will also be lost. In this work, by comparison, a Multi-Objective

Evolutionary Algorithm (MOEA) was used to carry out multi-objective optimi-

sation of a WHRS, using the results to visualise trade-offs in the design space.

As a case study, a simulation of a type of WHRS commonly found in the

food and drinks process industry was developed, which involves a desuperheater

connected to a HWR, providing hot water for a production plant’s intermittent

internal cleaning process. After identifying a number of common objectives for

this type of system, the MOEA was used to find a set of trade-off designs within

this objective space.

One disadvantage of MOOA and MOEA approaches is the visualisation of

results, especially when n number of objectives and u number of parameters are

large. A common method of visualising the results is to use a scatter plot, or

decision maps, as shown in [14], [10], [13], but in general these can only show

three objectives or parameters at once, which is limiting. Furthermore, the

correlation between parameter and objective values are not explicitly shown,

and in practice, analysis of the correlation is only applied to a selected few
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solutions, as depicted in [7], [8], [9]. Typically, they are the solutions at the

extrema of the Pareto-optimal set, giving limited insight to the attributes of

the other Pareto-optimal solutions found. Consequently many studies limit

themselves to n ≤ 3 objectives, as shown in [9], [13], [11], [17], [8].

To aid in the analysis of the results from high-dimensional multi-objective

optimisation, and to identify a reduced set of representative designs, this paper

proposed an alternative method of visualising the Pareto-optimal solutions. The

solutions are first clustered into k-number of clusters, either in the design space

or the parameter space, to identify the degree of commonality between the

solutions. For each cluster identified, parallel coordinates [24], [25] are used to

visualise the high-dimensional solution space and objective space as a pair of

two-dimensional plots; one for each of the spaces.

Parallel coordinate plots are used to visualise the Pareto-optimal solutions,

each for the u-dimensional solution space and n-dimensional objective space.

The correlation between a solution and its objective values in a specific cluster

are identified by the common colour used in both plots. This method of visu-

alisation can therefore reduce the number of figures (and tables) to depict the

results significantly, down to 2k figures - one for each of the two spaces. The

significant reduction in the number of figures used eases in the analysis of the

trade-offs between the Pareto-optimal solutions.

The paper is organised as follows: Section 2 provides a brief introduction

to the MOOA used in this work. Section 3 introduces WHRS and gives an

overview of the case study. Section 4 presents results and analysis using various

multidimensional visualisation methods, including decision maps and parallel

coordinates plots. Section 5 concludes the paper.

2. Multi-Objective Evolutionary Algorithm (MOEA)

Whilst many forms of optimisation can be generalised to the multi-objective

case, in practice the most widely used forms of MOOA are based around evo-

lutionary algorithms (EA). EAs are a class of population-based metaheuristic
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optimisation algorithms. As described in [26]: the initial population is a random

sample of search points, a selection mechanism then discards search points with

poor objective values, and variation operators derive a new population of search

points from those that remain. This new population then replaces the previous

population, and the process of selection and variation are repeated until an op-

timal solution is found, or some other termination criterion is met. The search

points, in our case, are vectors of parameter values. The variation operators

are crossover, which recombines two search points by swapping vector elements,

and mutation, which randomly replaces one or more vector elements to create

a new search point. Population-based metaheuristics, such as EAs, carry out a

relatively broad search of an optimisation space, and consequently are often able

to find better solutions than local search metaheuristics, such as hill climbing

or simulated annealing.

A multi-objective evolutionary algorithm (MOEA) is a specialised form of

EA, and in this work, a popular MOEA called NSGA-II [27] was used. The main

difference between NSGA-II and a single-objective EA lies in how selection takes

place. Rather than only propagating the best search points from one generation

to the next, NSGA-II first carries out a ranking of the search points in the

population. Search points which are no worse than any other when considered

across all the objectives are known as dominating search points, and are given a

rank of 1. Those which are only dominated by rank 1 search points are assigned

rank 2, etc. After ranking, the first half of the ordered population is then copied

directly to the next generation, and the remainder of the population is filled by

applying the variation operators.

NSGA-II also uses a diversity preservation method, known as crowding, to

encourage search in regions of objective space which have not been previously

explored. For the search points that are of the same rank, those that are more

dissimilar to the others are preferred for selection for the next generation pop-

ulation. This not only results in an approximation of the Pareto optimal set

which has a good spread of solutions across the objective space, but also helps

to discourage convergence to local optima.
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In addition to its wide use, not limited to the works described in [17], [11],

[15], [14], and reviews described in [28], [29], NSGA-II was also chosen because

reviews conducted by [12] indicated that NGSA-II outperformed other MOEAs

(ESPEA, NSGA-III and SPEA2) when optimising a smart building’s energy

storage system, a system with notable similarities to a WHRS [30]. The authors

of [12] use, among other metrics, hypervolume (Section 4.1) to measure the

performance of the algorithms. They summarised that NGSA-II (together with

ESPEA, developed by one of the authors of [12] in 2015) achieved the largest

hypervolumes. The larger the hypervolume, the better the optimiser. Given

the maturity of NSGA-II against ESPEA, NSGA-II was chosen to optimise the

WHRS.

3. Waste Heat Recovery System (WHRS)

Various factors have motivated an increase in WHRS installations within

the process industries. One prominent factor is the need to save on energy

costs, which have increased markedly in recent years. Another is environmental

regulations, reflecting the growing need to reduce waste heat released to the

environment [31], [32], for example the commitment reached at the 2015 UN

Climate Change Conference in Paris, France, to limit the global temperature

rise to 2◦C. In the case of the UK, it is also driven by the Climate Change Act

[33], which stipulates that carbon gas emissions should be reduced by at least

80% from 1990 levels by 2050.

This work focuses on the food and drinks process industries, which create

large volumes of waste heat whilst at the same time requiring large volumes

of heat within their processes. Waste heat is generated from processes such as

refrigeration, from cleaning, and from improper insulation of the plant. Heat

is required, for instance, to produce the hot water needed for food preparation

and the cleaning of the plant. Reports compiled by [31] and [32] indicated the

potential financial and environmental benefits of capturing and reusing waste

heat generated by food and drinks processing plants, particularly in the form
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Figure 1: The breakdown of heat usage in the database compiled by [31], and the potential

financial gain from the utilisation of waste heat.

of hot water. A summary is depicted in Figure 1, based on the information

presented in [31].

Figure 2 illustrates a typical form of WHRS found within this sector. It

is installed within a refrigeration system and coupled to a HWR. The WHRS,

essentially a type of heat exchanger called a desuperheater, enables the exchange

of heat from the hot refrigerant (the waste heat source) to the water (the heat

sink), which is heated and stored in the HWR. The collected hot water can be

used in a number of processes. A common use considered in the case study, is

for cleaning, particularly within the plant’s integrated internal cleaning process,

known as clean-in-process or washdown.

3.1. System parameters

To ensure sufficient heat is captured by the WHRS, the difference between

the temperature of the water and that of the refrigerant entering the WHRS

should be large. Ideally, water from a mains supply will normally provide that

large temperature difference, and would be sufficient to ensure significant waste

heat is captured. This is ideal if the demand for hot water is in sync with when

the waste heat is generated. However, like most renewable technologies, waste
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Figure 2: A waste heat recovery system comprising a desuperheater (DSH) and a hot water

reservoir. Waste heat is provided by the refrigeration plant.

heat is often generated when the demand is low. For example, clean-in-process

tends to occur at the beginning of the production process when there is relatively

little need for refrigeration. Because of this, it is necessary to optimise the

system in order to meet its anticipated needs. However, the optimisation of the

WHRS comes with conflicting objectives affecting its configuration, especially

regarding the design parameters of the HWR.

One key set of parameters concern the mass of water in the HWR: the

minimum operating level mwtmin and the maximum operating level mwtmax . If

the water volume is too low when demand takes place, then there may be a need

to top up the volume in order to meet demand. This will require mains water

to be heated by a back-up heater to bring the water temperature (Twt) up to

the required operating temperature (Thw), bringing with it an associated energy

cost. Hence, the mwtmin
should be sufficient to ensure that when the water is

replenished from the mains water supply (to bring the volume up to mwtmax
),
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the water temperature is constantly maintained close to Thw using heat capture,

with minimal injection of heat from the back-up heater. However, if mwtmin
is

high and the operating temperature is kept close to Thw, then there will be less

opportunity to capture waste heat by heating mains water. This is especially

the case if the reservoir is relatively small, with a low mwtmax .

There will always be a loss of energy to the environment, in this case due to

the temperature difference between the contents of the HWR and its surrounding

region, which are not in equilibrium. With no heat source available, there is a

continual drop in the HWR’s water temperature. To ensure that no external

heat is required when hot water is in demand, there is a need to capture an

excess of heat in preparation for idle periods, which can be done by keeping

the hot water temperature in the HWR (Twt) at a higher temperature, Tmx

(1). This ensures that Thw is met, despite the loss of heat to the environment

(Tloss). However, if Tmx is too high, unanticipated demand requires cold water

to be injected in order to reach Thw.

∆Tmax = Tmx − Thw − Tloss (1)

Following from this, the parameters of the WHRS to be optimised are [30]:

1. mwtmax
: the maximum mass of water in the HWR, i.e. the capacity of

the HWR,

2. mwtmin
: the minimum mass of water that must be met when the hot water

is demanded, also known as the depth of discharge (DoD),

3. Tmx: the maximum temperature level of the HWR,

4. Pbmax
: the maximum power of the back-up heater,

5. ṁwdmax : the maximum mass flow rate of the water entering the desuper-

heater (DSH).

3.2. System objectives

The following objectives were considered for optimising the WHRS [30]:
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1. to minimise the need for back-up energy when the heat captured by the

WHRS is insufficient to meet demand,

2. to maximise the overall savings when using the WHRS, i.e. the difference

in the external energy usage with and without the WHRS installation,

3. to minimise the temperature difference when the demanded temperature

was not met,

4. to minimise the temperature difference when the HWR water temperature

exceeds the demand,

5. to minimise the exceeding mass of water in the HWR from its maximum

limit of mwtmax , when the water is replenished from the mains,

6. to minimise the waste heat not captured.

. Objectives 1, 3, 4 and 5 are motivated by the desire to reduce the overall

cost of energy and water usage. Objectives 2, 4 and 6 reduce overall energy

wastage, which in turn reduces CO2 emissions. Maximising objective 2 and

minimising objective 6 can bring benefits from government incentive schemes

that promote the reduction of carbon gas emission, for instance the UK CRC

Energy Efficiency Scheme [34] and the EU Emissions Trading System (EU ETS)

[35]. These objectives may also gain benefits from other government incentives,

such as the UK Ofgem Non-Domestic Renewable Heat Incentive (RHI) [36].

These objectives promote mutually conflicting design choices. Objective 1,

for instance, can be minimised by using a small reservoir; objectives 2 and 6,

by comparison, will potentially be optimised when a large reservoir is used.

Objectives 5 and 6 benefit from a small ṁwdmax and Pbmax ; objective 3 benefits

with small ṁwdmax
and large Pbmax

; and objective 4 benefits with large ṁwdmax

but small Pbmax
[30].

3.3. Simulation and optimisation

In order to evaluate the impact of different design choices, a simulation model

was constructed using Simulinkr. The model uses thermodynamics equations to

simulate the temperature changes in the HWR given the discharge temperature
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of the refrigerant [37], the demand of the hot water, and the energy lost to

the environment. A synthetic data set was created to model the demands for

refrigeration (the waste heat source) and hot water (the waste heat sink) within

this system, based upon patterns observed within two different dairy processing

sites in Scotland.

Each time a design is evaluated, the simulation is run for a period of two

working weeks, each week modelled upon one processing site, with the two

patterns of demand concatenated to measure robustness (see Fig. 3), i.e. to

ensure that the solutions obtained from optimisation are able to cope with

varying demand. During the first week, waste heat is at its maximum capacity

when there is no demand, and with similar time intervals (the first 5 work days

or between 0 s to 4.32×105 s in Figure 3). To add variability, in the second

half of the simulation (the next 5 work days or from 6.048×105 s onwards), the

frequency of the refrigerant discharge was doubled with its intervals reduced by

half of that of the hot water demand. The hot water flow rate is 2×103 kg/h

or 0.5556 kg/s, when demanded, indicated by the hot water demand signal in

Figure 3.

The simulations were performed with the values of Pb depending on the tem-

perature difference between the water (Twi) and the refrigerant (Tri) entering

the WHRS. The value of Pb is given by (2).

Pb = rp × Pbmax
(2)

rp =



1 if rtp > 0.75

0.75 else if 0.5 < rtp ≤ 0.75

0.5 else if 0.25 < rtp ≤ 0.5

0.25 else if 0 < rtp ≤ 0.25

0 otherwise

(3)

rtp =
(Tri − Twi)

Twi × 0.25
(4)
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Figure 3: The properties of the refrigerant, hot water demand and the environmental condi-

tions affecting the WHRS. The temperatures are simulated with added noise.

ṁwd is dependent of the temperature difference between the temperature of the

water in the HWR (Twt) and the desired temperature in the HWR (Thw). ṁwd

is determined by (5).

ṁwd = rwd × ṁwdmax (5)
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rwd =



1 if rtw > 0.75

0.75 else if 0.5 < rtw ≤ 0.75

0.5 else if 0.25 < rtw ≤ 0.5

0.25 else if 0 < rtw ≤ 0.25

0 otherwise

(6)

rtw =
(Thw − Twt)

Thw × 0.5
(7)

Optimisation was carried out twice, first with a demand temperature Thw =

60◦C, a typical hot water temperature required for a food processing plant’s

clean-in-process, and the second time with Thw = 40◦C, a water temperature

that is used in newer clean-in-process solutions. NSGA-II was implemented in

Matlabr, using the typical NSGA-II variation operators settings taken from [27]:

mutation probability = 1/number of evolved parameters, distribution index for

crossover = 20, distribution index for mutation = 100, population size = 200,

generations = 100.

Table 1 lists the limits for the evolved parameters. The limits were added

to bound the search space and to speed up the convergence of the algorithm.

mwt and Twt are initialised with the evolved mwtmax at Thw. Given that the

simulation of the WHRS and HWR operations are time consuming due to its

computational complexity, only one run of NSGA-II was performed and anal-

ysed for each of the two temperature demand scenarios.

4. Results and Discussion

A challenge of multiobjective optimisation is to find appropriate ways of

visualising and understanding the resulting Pareto optimal sets. When the

number of objectives is large n > 3, as in this case study, it is not possible to

directly plot the distribution of the optimised solutions based on their objectives’

values, i.e. to plot the solutions within the objective space. This is the most

common method of visualisation. To address this, a number of approaches
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Table 1: Limits for the evolved parameters.

Parameter min max

Maximum mass of water, mwtmax
1.0× 103 kg 50.0× 103 kg

Minimum mass of water, mwtmin (%age of

mwtmax )

10 % 100 %

Maximum difference in temperature,

∆Tmax (◦C)

0◦C 98◦C − Thw

Maximum power, Pbmax (kW) 6000 kW 60000 kW

Maximum water flow rate, ṁwdmax (kg/s) 0.5 kg/s 1.0 kg/s

are analysed. Three of these were considered: the use of summary metrics

(hypervolumes), two dimensional cut-throughs (decision maps) and graphical

representations (parallel coordinates).

4.1. Hypervolumes

Hypervolume is a measure of the compactness of a distribution of points

within multidimensional space. When applied to objective space, it is com-

monly used as a summary metric for the optimum path and points between

the constraints of the Pareto set found by an MOOA [38]. Depending upon

whether the problem is versed as a minimisation or maximisation problem, the

aim is to either minimise or maximise the hypervolume between the Pareto set

and the origin. Hypervolumes may also be used to describe convergence in pa-

rameter space, in which case convergence is indicated by a flattening-off of the

hypervolume bounded by the solutions in the current Pareto set.

Figure 4 shows how the objective hypervolumes change over the course of the

MOEA runs for the two temperature demand scenarios, when all objectives are

normalised to be the maximisation problems. Figure 5 shows the correspond-

ing hypervolumes in parameter space. Note that in both cases the variance

between generations is due to stochasticity in the simulation. Figure 4 indi-

cates that both runs converge to a similar hypervolume, suggesting that there
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Figure 4: Objective hypervolumes of the Pareto set at each generation during the MOEA

runs.

is no significant difference in the difficulty of the two problems, i.e. a change

in demand temperature does not affect the difficulty of optimisation. Initial

progress is faster for the 60◦C scenario, but this may be due to the random

sampling of the initial population by the MOEA. In general, it is not possible

to tell whether the Pareto set found by the algorithm is equivalent to the true

Pareto optimal set. Nevertheless, Figure 5 gives some more insight into the

search behaviour. In particular, it can be seen that the algorithm explores an

ever decreasing region of parameter space, and this region does not significantly

shrink after about generation 80. This suggests that it has identified the regions

within which optimal solutions are found, and further optimisation then focuses

on homing in on optimal values.
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Figure 5: Parameter hypervolumes of the Pareto set at each generation during the MOEA

runs.

4.2. Decision Maps

Hypervolumes can offer insight into the convergence to optimum solutions,

and properties of the solution landscape, but they do not provide any informa-

tion about the individual solutions. A more useful approach in this regard is

to plot orthogonal two-dimensional projections of the multidimensional search

space, showing either the trade-offs between objectives or the optimal regions of

the parameter space. This is the most common method used for visualisation,

as used in many MOOA studies [14], [11], [10], [15], [16].

These projections are also known as decision maps. For an d-dimensional

space, there are
(
d
2

)
decision maps, and hence the number of maps grows rapidly.

For the case study considered, which focuses on decision maps that depict the

parameter space: with 5 parameters, there are 10 decision maps. A sample of

these are shown in Figures 6–7 for the two different demand temperature sce-
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Figure 6: Two-dimensional projections of the evolved parameters of the solutions in the Pareto

set for Thw = 60◦C.

narios. In addition to depicting the Pareto set from the final 100th generation,

the Pareto sets for the first and intermediate generations were also provided,

showing how the MOEA has honed in on regions containing the optimal solu-

tions.

It is notable that the decision maps for the two temperature demand sce-

narios are quite different. This suggests that the two optimisation spaces are

topologically different, despite having similar levels of difficulty—something that

was not evident from the hypervolume plots. For example, the decision map

for the Thw = 60◦C case shown in Figure 6 indicates that the optimal solutions

obtained favour solutions with smaller values (lower left hand side of the fig-

ures), in comparison to that of the Thw = 40◦C case. This, in turn, suggests

a non-linear relationship between target temperature and parameters. Further-

more, by looking just at the parameters space alone, the correlation between the
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Figure 7: Two-dimensional projections of the evolved parameters of the solutions in the Pareto

set for Thw = 40◦C.

evolved parameters and their objective values are not shown. By looking at Fig-

ure 6 alone, one may assume that the optimal solutions will have small HWR

tank size, for Thw = 60oC. Without correlating solutions to their objectives

values, this may or may not be true.

It is also notable that the decision maps show a clustering of solutions within

the search space (approximately indicated by circles). This suggests that there

are a relatively small number of regions in which optimal solutions are found,

and these represent a manageable number of installation types that exhibit

different trade-offs between the objectives. These trade-offs are best evidenced

when the solutions are visualised both in the parameter space and the objective

space together.
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4.3. Parallel Coordinates

A weakness of decision maps is that they do not make it easy to elicit re-

lationships between more than two parameters or objectives at once. As an

alternative, parallel coordinate plots [24] were considered. Parallel coordinate

plots are a visualisation method that transforms multidimensional patterns into

a two-dimensional form by plotting the values from each dimension on parallel

y-axes, as briefly introduced in Section 1. Parallel coordinate plots are similar

to other two-dimensional transformation methods, such as Andrews curves and

radar plots, that support data analysis by building on the human ability to

distinguish two-dimensional forms.

The parallel coordinates plot consists of d-number of parallel lines, each line

corresponding to one of the axis of the d-dimensional data. A point in a d-

dimensional space will be visualised on the parallel coordinates plot as a single

horizontal line that connects a point on each of the parallel lines. A point on

the parallel line is a coordinate of the solution at a specific axis. Given that

each parallel line in itself is an individual axis, the parallel lines may not have

the same scale as one another. In simplest term, the parallel coordinates plot

is similar to the concatenation of d-number of two-dimensional plots, with the

parallel coordinates plot consisting of d-number of y-axes, and the x-axis is the

index for each of the individual plots.

Following the observed clustering of solutions in the decision maps, the k-

means clustering algorithm was used to group the solutions into k = 7 clusters.

Figure 8 shows the parallel coordinate plots for the Pareto-optimal solutions

clustered in the objective space, and in Figure 9 the solutions are clustered

in the parameter space. Because of this, solutions in each cluster will have

similar attributes, either in terms of objective values or parameter values. Using

separate parallel coordinate plots for each cluster makes it easier to visualise and

analyse the space of designs.

To avoid clutter, the y-axes are not shown for each dimension; rather, all

values are normalised and scaled to the interval [0, 1], allowing the use of a

shared y-axis. All clusters also share the same limits used in the normalisation,
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and the limits for each objective and parameter are detailed in Tables 1 and 2.

The correlation between a solution and its objectives values in a specific cluster

is distinguishable by the common colour used in both plots.

In most cases, the same patterns are seen regardless of whether clustering is

performed in objective or parameter space, and in general these have well defined

two-dimensional shapes when visualised with parallel coordinates. This suggests

that there is a distinct and manageable set of alternative designs within the

Pareto set. However, there are some notable differences between the clusterings

in the two spaces. For instance, in the Thw = 40◦C case, clusters 6 and 7

in objective space (Figure 8a) are combined into cluster 6 in parameter space

(Figure 9a). Cluster 3 in the objective space is split into clusters 3 and 7 in the

parameter space. For Thw = 60◦C case, cluster 6 in objective space (Figure 8b)

is split into clusters 6 and 7 in parameter space (Figure 9b). This shows the

value of generating clusterings and visualisations in both the objective space and

the parameter space. The figures also show how parameter variability within

each group affects the objective values.

A visual inspection of Figure 9 indicates that only one two-dimensional pat-

tern occurs in the Pareto sets for both temperature demand scenarios: this

occurs as cluster 5 in Figure 9a and cluster 2 in Figure 9b. This corresponds

to installations with small mwtmax
, high mwtmin

, high Tmx, low Pbmax
and high

ṁwdmax . This is hence a desirable solution if there is a likelihood of the demand

temperature changing in the future—for instance, if the plant’s clean-in-process

(CIP) uses a CIP solution able to operate at lower temperature. However, it

should be noted that although it ranks highly in terms of the maximum capture

of waste heat (objective 5), this flexibility comes with a trade-off, in particular

for the 60◦C temperature demand scenario: (objective 1) high cost of external

energy usage and (objective 2) low savings achieved.

4.3.1. Clustering in the objective space

In general, the results show that in order to save on running costs, a large

hot water tank is desirable. However, larger tanks imply higher installation
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Figure 8: Parallel coordinate plots showing clusters of solutions in the Pareto set when clus-

tering is carried out in objective space. Each solution in a cluster is indicated by a different

coloured line.
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Figure 9: Parallel coordinate plots showing clusters of solutions in the Pareto set when clus-

tering is carried out in parameter space. Each solution in a cluster is indicated by a different

coloured line.
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Table 2: The max and min values used for normalisation of the objectives’ values in Figures

8a – 9a.

60◦C 40◦C

Objectives Max Min Max Min

1. To minimise

back-up energy

10.356 MWh 6.5257 MWh 5.7793 MWh 2.5120 MWh

2. To maximise

the savings

27.20 % 2.20 % 57.01 % 13.39 %

3. To min-

imise the tem-

perature differ-

ence with the

demand temper-

ature was not

met

22.4781 ◦C 0 ◦C 5.8854 ◦C 0 ◦C

4. To min-

imise the tem-

perature differ-

ence with the

demand temper-

ature has been

exceeded

31.8732 ◦C 0 ◦C 44.2305 ◦C 0 ◦C

5. To minimise

the exceeding

mass of water in

the HWR

58.4071 kg 16.6283 kg 56.7865 kg 2.6323 kg

6. To minimise

the waste heat

not captured

38.98 % 0 % 41.66 % 0 %
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costs. Although not an objective considered in this study, as installation cost

was not one of the driving factor for the process industries involved. Initial cost

may be a significant concern for some installations. The research results still

give an insight into the trade-offs involved. In particular, for the Thw = 60◦C

temperature demand scenario, if a small tank is preferable with small running

cost (external energy used), a solution is also available from the Pareto-optimal

set (clusters 3 and 4 in Figure 9b). This however, is at the expense of the

amount of waste heat recovered, and in turn, in the amount of savings achieved,

if one was to also compare these clusters with that of cluster 1 in Figure 9b,

consisting of solutions with larger tank sizes. This similar observation was made

in [7], whereby, if payback period was a priority, the solution will come at the

expense of its efficiency and effectiveness of the waste heat recovery. If a small

tank is, however, required, solutions in cluster 4 provide a better investment in

comparison to those in cluster 3.

A similar comparison can also be shown for Thw = 40◦C. By sacrificing on

the cost of installation through the installation of a larger tank, more savings

can be achieved in the long run. This can be shown by comparing the solutions

in cluster 6 with those in cluster 7 in Figure 8a. Figure 8a also indicates that

solutions in cluster 3 with large HWR tank size have higher savings achieved,

low external energy used and maximum waste heat captured. If a small tank is

preferable, solutions in cluster 5 provides better options.

4.3.2. Clustering in the parameter space

The clusters in parameter space are generally more distinct than those in

objective space. This suggests that some of the parameters are sensitive, i.e.

small changes to their values can lead to comparatively large changes in objec-

tive values. Interestingly, this distinctness remains when the parameter cluster

members are determined by clusterings done in objective space rather than the

parameter space. This highlights the existence of relatively small regions of

good parameter choices, both reflecting the analysis of the decision maps and

indicating the importance of carrying out optimisation to identify these small
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regions of optimal behaviour.

The proposed visualisation provides the ability to analyse the impact of

changes to the parameters. Parameter sensitivity within the clusters provides

additional information to the installer. The MOEA is tasked with optimising

the physical system configuration of the WHRS; however, these parameters can

be changed in real-time through software, provided that the values required do

not exceed the maximum limits of the installed system. For example, if the

installer was to fit the maximum tank size with the maximum rated power for

the backup heater and the maximum pipe size which will allow for the maximum

mass flow rate of water to flow to the desuperheater from an identified cluster,

the WHRS software could then be configured to set the operational limits of the

system based on the actual conditions within which the WHRS is operating.

If the WHRS were to be configured in software, information on how the

change in parameters can affect their objectives is useful. The presented vi-

sualisation provides this information, particularly within clusters that display

parameter instability. In this case, the instability of parameters was especially

evident when the WHRS is operating at its limits. For instance, cluster 5 in

Figures 8b and 9b shows a solution in which the tank size is small, there is a

low minimum water level when in demand, the flow rate is low, and the backup

heater power is high. It is evident from the corresponding view in objective space

that, in this situation, a small range of parameter values lead to a wide range

of objective values. This is especially the case for objective 4, the likelihood of

the temperature exceeding the target. In this case, the research concluded that

the system has a limited capacity to adapt to changes in the pattern of demand.

The capacity for a multiobjective analysis such as this to highlight these kind of

situations is useful, since in practice installers are likely to want to avoid choices

that lead to unstable behaviour.

26



5. Conclusions

This paper shows how a multiobjective evolutionary algorithm (MOEA) in

concert with multidimensional visualisation methods can be used to explore the

design space of a waste heat recovery system (WHRS), which recovers waste

heat to provide hot water stored in a hot water reservoir (HWR) at two dif-

ferent hot water temperature requirements. Unlike conventional optimisation

approaches, most of which return a single solution to a given problem, multi-

objective approaches explicitly identify solutions with different trade-offs, pro-

viding a broader view of possible design choices. This is particularly important

when optimisation objectives are mutually exclusive, as in the industrial case

study described in this paper.

The MOEA was first used to find the Pareto-optimal solutions. Clustering

then identified the relatively small number of representative trade-off solutions

that could be considered by potential installers. Parallel coordinate plots were

used to visualise these designs, helping to better understand the trade-offs within

the design space, and to identify parameter sensitivities that may be considered

during the installation of a WHRS. In the case study presented, if one was to

prioritise the minimisation of cost through the installation of a small HWR,

this may impact on the effectiveness and efficiency of the WHRS in recovering

waste heat, and in turn the saving achieved. This trade-off is made obvious

when the Pareto-optimal solutions and their objectives were displayed using the

proposed visualisation methods. The results from this case study also illustrate

the broader benefits that could be achieved by applying multi-objective meth-

ods, in concert with with clear visualisations of the Pareto-optimal solutions, to

industrial systems design, both in the energy sector and more broadly.
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[22] A. Jiménez-Gutiérrez, J. Lona-Ramı́rez, J. M. Ponce-Ortega,

M. El-Halwagi, An {MINLP} model for the simultaneous inte-

gration of energy, mass and properties in water networks, Com-

puters & Chemical Engineering 71 (2014) 52 – 66. doi:http:

//dx.doi.org/10.1016/j.compchemeng.2014.07.008.

URL http://www.sciencedirect.com/science/article/pii/

S0098135414002129

[23] C.-L. Chen, Y.-J. Ciou, Design of indirect heat recovery systems with

variable-temperature storage for batch plants, Industrial & Engineering

Chemistry Research 48 (9) (2009) 4375–4387. arXiv:http://dx.doi.org/

10.1021/ie8013633, doi:10.1021/ie8013633.

URL http://dx.doi.org/10.1021/ie8013633

[24] A. Inselberg, Parallel Coordinates: Visual Multidimensional Geometry and

Its Applications, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2009.

[25] A. Inselberg, Multidimensional detective, in: Information Visualization,

1997. Proceedings., IEEE Symposium on, 1997, pp. 100–107. doi:10.

1109/INFVIS.1997.636793.

[26] M. A. Lones, Metaheuristics in nature-inspired algorithms, in: Proceedings

of the Companion Publication of the 2014 Annual Conference on Genetic

and Evolutionary Computation, GECCO Comp ’14, ACM, New York, NY,

USA, 2014, pp. 1419–1422. doi:10.1145/2598394.2609841.

URL http://doi.acm.org/10.1145/2598394.2609841

[27] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist mul-

tiobjective genetic algorithm: Nsga-ii, Evolutionary Computation, IEEE

Transactions on 6 (2) (2002) 182–197. doi:10.1109/4235.996017.

[28] A. Alarcon-Rodriguez, G. Ault, S. Galloway, Multi-objective planning

of distributed energy resources: A review of the state-of-the-art, Re-

newable and Sustainable Energy Reviews 14 (5) (2010) 1353 – 1366.

32

http://www.sciencedirect.com/science/article/pii/S0098135414002129
http://www.sciencedirect.com/science/article/pii/S0098135414002129
http://dx.doi.org/http://dx.doi.org/10.1016/j.compchemeng.2014.07.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.compchemeng.2014.07.008
http://www.sciencedirect.com/science/article/pii/S0098135414002129
http://www.sciencedirect.com/science/article/pii/S0098135414002129
http://dx.doi.org/10.1021/ie8013633
http://dx.doi.org/10.1021/ie8013633
http://arxiv.org/abs/http://dx.doi.org/10.1021/ie8013633
http://arxiv.org/abs/http://dx.doi.org/10.1021/ie8013633
http://dx.doi.org/10.1021/ie8013633
http://dx.doi.org/10.1021/ie8013633
http://dx.doi.org/10.1109/INFVIS.1997.636793
http://dx.doi.org/10.1109/INFVIS.1997.636793
http://doi.acm.org/10.1145/2598394.2609841
http://dx.doi.org/10.1145/2598394.2609841
http://doi.acm.org/10.1145/2598394.2609841
http://dx.doi.org/10.1109/4235.996017
http://www.sciencedirect.com/science/article/pii/S1364032110000146
http://www.sciencedirect.com/science/article/pii/S1364032110000146


doi:http://dx.doi.org/10.1016/j.rser.2010.01.006.

URL http://www.sciencedirect.com/science/article/pii/

S1364032110000146

[29] R. Evins, A review of computational optimisation methods applied to

sustainable building design, Renewable and Sustainable Energy Reviews

22 (2013) 230 – 245. doi:http://dx.doi.org/10.1016/j.rser.2013.

02.004.

URL http://www.sciencedirect.com/science/article/pii/

S1364032113000920

[30] M. Mokhtar, I. Hunt, S. Burns, D. Ross, Optimising a waste heat recovery

system using multi-objective evolutionary algorithm, in: Proceedings of the

2016 on Genetic and Evolutionary Computation Conference Companion,

GECCO ’16 Companion, ACM, New York, NY, USA, 2016, pp. 913–920.

[31] The potential for recovering and using surplus heat from industry, Tech.

rep., Element Energy Limited, Ecofys, Imperial College London, Dr. Paul

Stevenson and Dr. Robert Hyde (2014).

URL https://www.gov.uk/government/publications/

the-potential-for-recovering-and-using-surplus-heat-from-industry

[32] Industrial energy efficiency accelerator: Guide to the dairy sector, Tech.

rep., Carbon Trust (2011).

URL http://www.carbontrust.com/media/206472/

ctg033-dairy-industrial-energy-efficiency.pdf

[33] Carbon budgets and targets (2015).

URL https://www.theccc.org.uk/tackling-climate-change/

reducing-carbon-emissions/carbon-budgets-and-targets/

[34] Crc energy efficiency scheme: charging scheme and guidance (2016).

URL https://www.gov.uk/government/publications/

carbon-reduction-commitment-crc-energy-efficiency-scheme-april-2013-to-march-2014

33

http://dx.doi.org/http://dx.doi.org/10.1016/j.rser.2010.01.006
http://www.sciencedirect.com/science/article/pii/S1364032110000146
http://www.sciencedirect.com/science/article/pii/S1364032110000146
http://www.sciencedirect.com/science/article/pii/S1364032113000920
http://www.sciencedirect.com/science/article/pii/S1364032113000920
http://dx.doi.org/http://dx.doi.org/10.1016/j.rser.2013.02.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.rser.2013.02.004
http://www.sciencedirect.com/science/article/pii/S1364032113000920
http://www.sciencedirect.com/science/article/pii/S1364032113000920
https://www.gov.uk/government/publications/the-potential-for-recovering-and-using-surplus-heat-from-industry
https://www.gov.uk/government/publications/the-potential-for-recovering-and-using-surplus-heat-from-industry
https://www.gov.uk/government/publications/the-potential-for-recovering-and-using-surplus-heat-from-industry
http://www.carbontrust.com/media/206472/ctg033-dairy-industrial-energy-efficiency.pdf
http://www.carbontrust.com/media/206472/ctg033-dairy-industrial-energy-efficiency.pdf
http://www.carbontrust.com/media/206472/ctg033-dairy-industrial-energy-efficiency.pdf
https://www.theccc.org.uk/tackling-climate-change/reducing-carbon-emissions/carbon-budgets-and-targets/
https://www.theccc.org.uk/tackling-climate-change/reducing-carbon-emissions/carbon-budgets-and-targets/
https://www.theccc.org.uk/tackling-climate-change/reducing-carbon-emissions/carbon-budgets-and-targets/
https://www.gov.uk/government/publications/carbon-reduction-commitment-crc-energy-efficiency-scheme-april-2013-to-march-2014
https://www.gov.uk/government/publications/carbon-reduction-commitment-crc-energy-efficiency-scheme-april-2013-to-march-2014
https://www.gov.uk/government/publications/carbon-reduction-commitment-crc-energy-efficiency-scheme-april-2013-to-march-2014


[35] The eu emissions trading system (eu ets).

URL http://ec.europa.eu/clima/policies/ets/index_en.htm

[36] Non-domestic renewable heat incentive (rhi) (2016).

URL https://www.ofgem.gov.uk/environmental-programmes/

non-domestic-rhi

[37] D. T. Reindl, T. B. Jekel, Heat recovery in industrial refrigeration,

ASHRAE Journal 49 (8) (2007) 22–29.

[38] Simone, Hypervolume approximation (2015).

URL https://uk.mathworks.com/matlabcentral/fileexchange/

50517-hypervolume-approximation

34

http://ec.europa.eu/clima/policies/ets/index_en.htm
http://ec.europa.eu/clima/policies/ets/index_en.htm
https://www.ofgem.gov.uk/environmental-programmes/non-domestic-rhi
https://www.ofgem.gov.uk/environmental-programmes/non-domestic-rhi
https://www.ofgem.gov.uk/environmental-programmes/non-domestic-rhi
https://uk.mathworks.com/matlabcentral/fileexchange/50517-hypervolume-approximation
https://uk.mathworks.com/matlabcentral/fileexchange/50517-hypervolume-approximation
https://uk.mathworks.com/matlabcentral/fileexchange/50517-hypervolume-approximation

	Introduction
	Multi-Objective Evolutionary Algorithm (MOEA)
	Waste Heat Recovery System (WHRS)
	System parameters
	System objectives
	Simulation and optimisation

	Results and Discussion
	Hypervolumes
	Decision Maps
	Parallel Coordinates
	Clustering in the objective space
	Clustering in the parameter space


	Conclusions

