
Explanation-Based Learning With Analogy for Impasse
Resolution

Matt Timperleya,∗, Maizura Mokhtarb, Gareth Bellabyc, Joe Howed

aUCLAN Energy, University of Central Lancashire, UK
bRolls-Royce University Technology Centre, University of Sheffield, UK

cSchool of Computing, Engineering and Physical Sciences, University of Central
Lancashire, UK

dThornton Energy Institute, University of Chester, UK

Abstract

This paper proposes an algorithm for the inclusion of analogy into Explanation-
Based Learning (EBL). Analogy can be used when an impasse is reached to
extend the deductive closure of EBL’s domain theory. This enables the gen-
eration of control laws, via EBL, for hardware which is not catered for in the
domain theory. This advantage addresses a problem which represents a dearth
in the current literature. Integrated Modular Avionics (IMA) literature has
thus far been concerned with the architectural considerations. This paper seeks
to address the impact of hardware changes on the controllers within an IMA
architecture. An algorithm is proposed and applied to control an aviation plat-
form with an incomplete domain theory. Control rules are generated when no
deductive explanations are possible, which still reflect the intent of the domain
theory.

Keywords: Explanation-Based Learning, Impasse Resolution, Analogy

1. Introduction

Modularity in aviation has been gaining interest (Wilson & Preyssler, 2009)
because of both the additional future-proofing inherent in having easily replace-
able modules and the flexibility of role that this engenders (Committee on Ma-
terials, Structures, and Aeronautics for Advanced Uninhabited Air Vehicles,5

Commission on Engineering and Technical Systems, 2000). Modularity makes
changing the hardware of platforms easier in order to fit specific missions, as
advocated in (Lopez et al., 2008). Changes to a hardware platform may re-
quire changes to the control software. The impact of changes in the constituent
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hardware of a platform on the software control systems, which operate on said10

platform, forms a gap in the existing literature, as do coping strategies for this
scenario.

Modular Avionics are aviation electrical systems which are integrated using
a modular design paradigm. The components forming a modular aviation plat-
form can be easily swapped (Faculty & Kahn, 2001). An Integrated Modular15

Avionics (IMA) architecture involves the interconnection of physically separate
hardware components which share computing hardware, whilst remaining logi-
cally separate (Lopez et al., 2008).

The interest in modularity in aviation hardware, and the current gap in the
literature highlights an open problem. It would be advantageous for software to20

adapt to control new items of hardware with a minimum of extra work. This
objective can be satisfied in this work by the generation of control rules for an
item of hardware which lies outside the original deductive closure of the domain
theory.

The foundations of generating fuzzy rules from Explanation-Based Learning25

(EBL) explanation structures are in (Timperley, 2015). An assumption em-
ployed was that an appropriate, general, domain theory had been elicited. In
this paper it is assumed that the domain theory is incomplete for the intended
purpose. This new assumption leads to an impasse being reached when attempt-
ing to form an explanation. As explanations are used as the basis of new fuzzy30

rules, no control laws will be derived.
EBL is focussed on generalisation, usually through the introduction of vari-

ables. This facet of EBL is what lends itself to modular control. In this work
EBL can be further extended to support the generalisation of predicates, using
analogies as supporting evidence.35

The aim of this paper is to incorporate analogical learning into Explanation-
Based learning (EBL). Analogy is proposed as a way to increase the deductive
closure of the domain theory upon reaching an impasse. This allows a controller
to generate rules for hardware outside of its original design, and therefore not
mentioned in its domain theory. Such a situation can occur when the hardware40

of the controlled platform changes.

1.1. Analogy
A previous work has augmented EBL to reach a deductive solution by com-

bining two incomplete domain theories (Hirowatari & Arikawa, 1994). Analogy
is used as the basis for linking predicates within two incomplete domain theories.45

The combination of domain theories leads to a deductive solution, in contrast to
what is proposed in this work. Augmentation of EBL with analogical capabili-
ties is an area which merits further work. This paper builds upon the previous
work by allowing analogy to extend an existing domain theory.

Analogy can be employed to continue explanation upon reaching an impasse.50

It is likely that a new component will share both similarities to other compo-
nents and an energy management strategy. This transfer of knowledge between
situations can be achieved by derivational analogy (Carbonell, 1983). Anal-
ogy has been used to map different situations to one another, in order to apply
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prior knowledge to a new situation (Huhns & Acosta, 1988); thereby performing55

transfer learning.
This paper aims to use EBL and analogy in order to generate useful control

rules for hardware which is outside the design of the controller. The objectives
of this paper are to: (i) Introduce an algorithm which augments EBL with
analogy to perform transfer learning; and (ii) demonstrate the the augmented60

EBL algorithm can generate rules which are useful but lie outside the deductive
closure of the domain theory. The objectives will be demonstrated by applying
the augmented EBL algorithm to control a hardware platform where no rules
can be generated deductively i.e. without transfer learning. If the generated
rules control the platform in a manner which reflects the intent of the domain65

theory then the second objective will be satisfied.
This paper is further divided into 5 sections. Section 2 compares the com-

bination of EBL and analogy presented in this paper to existing methods. The
advantages of combining EBL and analogy are described in Section 3, which also
provides the proposed algorithm and satisfies the first objective of this paper.70

In order to satisfy the second objective of this paper the algorithm is applied
to pitch control. The experiment described in Section 4 uses a domain theory
for throttle control which cannot produce rules for pitch deductively. Analogy
is used to generate rules for pitch. The result of applying these rules is given in
Section 5. The paper concludes with Section 6.75

2. Related Work

Transfer learning can be applied as an alternative to an impasse, such as in
(Burstein, 1986). In other applications of analogical reasoning (e.g. (Carbonell,
1983), (Klenk & Forbus, 2009)) a known solution to a similar problem is found
and mutated to be applicable to the current problem.80

Case Based Reasoning (CBR) was the method of analogical reasoning in
(Carbonell, 1983) and (Klenk & Forbus, 2009). CBR uses similarities between
previous solutions to various problems to solve the one at hand, the target
(de Mántaras & Plaza, 1997). Closely similar solutions are modified to solve
the target problem. Similarity metrics are used to guide searches for similar85

solutions. In this work a similarity between terms is used as the basis for
analogy.

If comparing the technique proposed with that of derivational analogy (Car-
bonell, 1983), the analogue is a concept rather than a situation. Another differ-
ence is, the presented technique, rather than tailoring a previous solution to a90

new situation, generalises a previous line of reasoning within a solution, to more
concepts. Applying analogy to only a single line within an example is similar
to when students refer to a specific line of a previous example to justify some
reasoning rather than the example as a whole (VanLehn & Jones, 1998). This
technique also shares some conceptual similarities with (Ishikawa & Terano,95

1996).
Both this work and that of Könic et al (Könik et al., 2009) map between

concepts in order to apply knowledge from one situation to another. There are
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some differences between this work and (Könik et al., 2009). This technique
is proposed to derive links between previously unrelated concepts. These links100

are embodied in a new, more abstract, concept definition. This technique has
a different method of application, as an alternative to failure. Both works use
a goal and explanation, as a bias, to constrain the possible analogies. This
technique also maps between potentially overlapping concepts rather than like
terms.105

This type of analogy, from information in (Falkenhainer, 1987), could be
stated as using similarity-based generalisation in order to perform a form of
analogical reasoning. The analogical reasoning is restricted to generalising in-
formation to hold to more concepts than when derived. The algorithm forms a
new concept from two existing definitions, keeping the parts specific to both and110

introducing variables where variation exists. In this regard the algorithm is sim-
ilar to EGGS (Mooney et al., 1986) which performs generalisation by applying
the aggregation of substitutions within an explanation to the whole explanation.

In this work an analogy is seen as evidence for predicate generalisation or
swapping. The generalisation can either replace the target predicate or be taken115

as evidence for swapping the source for the target. Analogies could be generated
using different techniques in order to generate evidence for predicate swapping.
One such method which is capable of deriving analogies from natural language
is (Cambria et al., 2015). It may be possible to use such techniques and either
apply them to domain theories. However, if domain theories are lacking in data120

richness then the system in (Cambria et al., 2015) could be applied to the expert
knowledge from which the domain theory was designed.

The algorithm proposed differs from (Hirowatari & Arikawa, 1994) by in-
creasing slightly the deductive closure of the program in order to apply analogi-
cal reasoning in more restricted form. This increase in deductive closure is based125

on the assumption that the addition of a new concept increases the number of
facts that can be deduced within the system.

An application of analogical learning with EBL (Hirowatari & Arikawa, 1994)
was able to construct explanations from incomplete domain theories where the
combination of domains made a deductive explanation possible. This work pro-130

poses that less exact analogues can be used to derive relations between terms
with different predicates. Rather than establishing a link between the same
terms in different domains, the emphasis is on relating different terms within
the same domain. In this paper the algorithm proposed goes further and ex-
tends a single incomplete domain theory using internal similarities between two135

predicates. This is achieved by deriving an abstraction which encompasses both
predicates.

3. Abstraction Derivation

This paper proposes the derivation of an analogical link between two de-
ductively separate concepts. This link is formed by the generation of a new140

concept, which requires commonalities between the two target concepts to be
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satisfied. The new concept is an abstraction of the two target concepts. Mem-
bership of this abstraction implies that concepts are analogous in the manner
given by the abstract concept definition. This could be thought of as weakening
the preconditions on the target concepts to form an abstraction.145

An advantage of EBL can be exploited during the definition of an analogi-
cal similarity; training examples encountered can provide an inductive bias for
disregarding terms that are not relevant.

During explanation an impasse may be reached when no deductive option
remains, but an inductive leap is possible. Inductive leaps are realised by re-150

placing one concept in a rule with another. This gives rise to a new rule which
relates previously unrelated concepts, linked by analogy. These analogous con-
cepts are not deductively entailed. The difference in predicates prohibits their
mutual unification to explain the same goal. Additions to the domain theory
which embody the similarities between the two concepts are used as a basis for155

replacing one predicate with another.
Rather than generalising a rule by abstracting specific variable bindings from

terms, as in EBL (Ellman, 1989), two concept definitions are linked by a more
abstract class so that the terms themselves can be replaced. This is similar
to assuming that the predicates themselves could be bound differently. The160

abstract class can be formed from commonalities between otherwise disparate
concept definitions. This class embodies an analogy and is expressed as a new
rule. The algorithm will now be presented.

3.1. Forming an Abstract Definition
The two concepts which are used to form an abstraction are the source and165

the target. The source is the definition of the predicate which causes an impasse.
The target is a concept searched for, using the parameters of the source as a
search bias.

Mapping establishes the similarities between two identified concepts, taken
from the model of analogy presented in (Gentner, 1983). An approach to achieve170

this within EBL is proposed. The approach for forming a new, more abstract,
definition from two target concept definitions is:

1. Collect like terms in the leaf nodes of both concepts and reduce the number
of occurrences to one by introducing variables and forming a substitution.
Do this for both, or all, concepts being considered.175

2. Discard any terms that do not appear in all concept definitions. When
considering many concept definitions, one may discard from consideration
concepts that lack common terms rather than the terms themselves. As
long as a relationship between at least two concepts is established, this is
permissible.180

3. Use these common terms to form the precedents for a new concept def-
inition. This definition captures some similarity between the concepts
considered which is assumed to be absent from the initial domain theory.

This approach has been formalised in Algorithms 1 and 2. Algorithm 1 se-
lects the analogy with the most terms in it, corresponding to matches between185
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any combination of definitions for both source and target terms. This represen-
tation calculates all the possible abstractions between each definition of both
concepts, sorted in descending order of complexity. In practice, the most com-
plex abstraction is taken and assumed to show a closer connection between two
concepts. Algorithm 2 forms the abstraction between two concepts.190

Algorithm 1 Impasse(term source)
Require: source is a ground atom
targets ← rules containing predicate(s) with arguments matching the source.

SourceDefs ← rules previously derived that imply the source, stored within
the rule-base.
// Collect analogies between each definition of the source and target. These
analogies are stored in "analogies" which is sorted by number of terms (de-
scending) in the abstraction.
for all target in targets do

targetDefs ← rules previously derived that imply the source, stored within
the rule-base.
for all targetDef in targetDefs do

for all sourceDef in sourceDefs do
Abstract(source, target)
store target in analogies along with its abstraction (targetDef).

end for
end for

end for
add the target, topmost from analogies, under source in the explanation struc-
ture.

Terms are discarded which are not common to both source and target def-
initions, as these are assumed to be irrelevant to whatever similarity is being
captured. This is to facilitate the capture of analogues that have the most
in common. More general analogues that make a weaker claim of similarity
between concepts could also be useful but could more readily lead to over-195

generalisation. Also, it may be computationally wasteful to derive very general
analogues since these could potentially be applied often to little effect.

Over-generalisation and over-specialisation have been the topic of previous
works such as the EGGS algorithm (Mooney et al., 1986). The generalisation
used to form the abstraction is similar to the EGGS algorithm. However, there200

are some differences: it is applied across two explanations, like predicates are
aggregated within a single explanation (source or target definitions), and the
generalised terms are added to a new explanation rather as replacements to an
existing explanation. This algorithm will be illustrated using an example.

3.2. An Example205

The analogical EBL algorithm can be applied to an energy management
example. Consider a battery powered system being altered to be powered by a
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Algorithm 2 Abstract(term source, term target)
Require: source and target predicates are ordered.
get the first terms from source and target concepts.
for all predicates in source do

if current predicates from source and target concepts differ then
get next source predicate.

else
while the next predicate in the source matches the current one do

note the arguments, by arity, from source term.
get the next term from source.

end while
while the next predicate in the target matches the current one do

note the arguments, by arity, from target.
get the next term from target.

end while
for all arguments from source for this predicate. do

if there is a corresponding argument in target then
add the current predicate, with the matching argument, to the ab-
straction.

else
// this should be limited to once per predicate
add the current predicate, with an introduced variable as the argu-
ment, to the abstraction.

end if
end for

end if
end for
return the abstraction.
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fuel cell. The domain theory and goal are given in Table 1.

Table 1: A sample input for EBL
Goal
can_supply(fuel_cell_1, ASI_demand)
Training Data
max_output(fuel_cell_1, 50)
demand(ASI, ASI_demand)
Domain Theory
limited(X, charge) + waste(X, heat) + requires(X, charge) + produces(X, en-
ergy) → battery(X)
fuel(X, hydrogen) + waste(X, heat) + waste(X, water) + requires(X, hydrogen)
+ produces(X, energy) → fuel_cell(X)
battery(X) + max_output(X,O) > demand(C,Y) → can_supply(X,C)
fuel_cell(fuel_cell_1)
battery(battery_1)

The EBL algorithm reaches an impasse when attempting to explain the goal:
battery(fuel_cell_one). This is shown in Figure 1. The boxed area in Figure210

1 is the point an impasse is reached. Single lines denote implications. The
double line is where the algorithm generates an abstraction to link the source
and target concepts.

Figure 1: Example explanation structure starting with battery oriented rules and using ab-
straction to substitute battery for source. Single lines depict implications and can be read
that the lower line implies the statement above. A box shows where the proposed technique
is being applied with the double line representing an abstract similarity.

The algorithm uses the unbound goal which caused an impasse as the source
concept. In this case: battery(X). Target concepts are identified as statements215

taking the form X(fuel_cell_1): In this case, fuel_cell(fuel_cell_1).
The rules which imply source and target concepts are taken as their defini-

tions. In this case the source definition is: limited(X, charge) + waste(X, heat)
+ requires(X, charge) + produces(X, energy) → battery(X). The target defini-
tion is: fuel(X, hydrogen) + waste(X, heat) + waste(X, water) + requires(X,220
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hydrogen) + produces(X, energy) → fuel_cell(X).
Terms which appear in both definitions form part of the abstract definition,

such as produces(X, energy). Predicates which appear in both definitions but
with different arguments require the introduction of a variable, such as waste(X,
W). Introducing a variable captures a weaker similarity between the two con-225

cepts and is akin to weakening the pre-conditions, compared to either target
concept.

The combination of these common factors yields the definition of the source
abstraction: requires(X, F) ∧ waste(X, W) ∧ produces(X, energy)→ source(X).

The derived abstraction sits in support of using the target predicate in place230

of the source. Swapping the predicate may result in the generation of rules when
reaching an impasse. In this example the rule for the battery can be expanded
to apply to a fuel cell. This is shown in Figure 1.

Two approaches to applying the analogy are: Firstly, the derived concept
can replace battery in the explanation and a more general rule can be derived:235

source(X) + max_output(X,O) > demand(C,Y)→ can_supply(X,C). Secondly,
the source predicate could be replaced with fuel_cell and the analogy sits in
support of this decision. The second approach is adopted in this paper.

An alternative to implicitly linking two terms and replacing one with the
other is possible. Both terms could be replaced with the abstraction, which240

would be a more explicit analogical link. However, this could lead to over-
generalisation. By storing a new rule which includes the abstraction, more than
the two concepts used to derive it could now be applicable. It could be that
analogies only hold in certain cases; the impact of this can be lessened by using
each abstraction in only the situation which caused its derivation. Further work245

could be conducted in studying the over-generalisation issue with regards to this
technique. Further nuances of this algorithm merit discussion.

3.3. Discussion
One disadvantage of applying an analogy is the utility problem. The Util-

ity problem is defined as "The difficulty in ensuring that an acquired concept250

enhances the performance of the application system" (DeJong, 2004) and is
discussed more in (Steven, 1990). Approaches to mitigating this should be em-
ployed, such as including a priori knowledge relating to utility in the domain
theory. Another approach is the empirical testing and removal of analogies that
increase the branching factor significantly without deriving useful rules.255

Applying an analogy will have a cost, not just in matching but by increasing
the branching factor of the problem. This is due to augmenting the domain
theory; more possibilities result in longer searches. It may be that no useful in-
formation is gained by permuting a rule to apply to a new situation via analogy.
There is no deductive evidence that the similarities between two concepts mean260

that a given rule applies to both. As there is a cost and potentially no gain,
since the leaps are inductive, this technique should not be overused. There
may be reason to think that similarity with nodes higher in an explanation
structure are better for judging applicability. This is described in (Carbonell,
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1983). There may also be reasons to prefer more specific rules (Huhns & Acosta,265

1988). However, when no deductive option is available this technique may give
an alternative to backtracking or failure. Choosing to derive an analogy could
be likened to strategically weakening preconditions, given that an analogy is a
subset of atoms of a concept.

It may be possible, at any point, to derive many potential analogies between270

concepts. However, since not all of these will be useful a conservative approach
is to only adopt an analogy as a last resort to failure. If an analogy is adopted
during an explanation to prevent failure, then the validity of the analogy could
be assessed by whether the new rule can be successfully applied. The criteria
for judging the utility of the rules may well be domain independent.275

There may be more than one possible analogy which can be derived. Biases
could be used to narrow down the list of potential definitions, ideally to one. One
bias could be: A definition which makes more claims than another is stronger.
Other biases could be derived by considering lexical similarity or using meta-
data labelling of concepts. The bias employed in this paper is to simply take the280

analogy that makes the claim with the largest number of similarities. Analogues
are computed for the potential matches and the strongest is chosen.

The source definition is given by backward-chaining from the goal which
causes an impasse. The target is inferred to exist and must be searched for.
This search is potentially expensive though only a subset of the domain theory285

could fit the pattern.
Another use for the derived analogy is when forming new rules, the analogy

can be considered first and a general rule formed initially. The rule could also be
annotated with any concepts considered during application for which it does not
hold, like a caveat. This would follow from the assumption that these analogies290

are a simple representation of a potentially complex relationship and can be
both correct and incorrect based on factors not modelled in the system.

Any analogy proposed by this method may be flawed since it is an attempt
to infer some commonality and relationship that is not explicitly reasoned. The
more this is applied, the greater the chance of concluding a fallacy. Therefore295

analogies should initially be proposed and should never be assumed to be cor-
rect. The argument is similar to that in (Dejong, 2006); these analogies capture
information which can be both correct and incorrect depending on factors that
the system is unaware of. To discard them too readily risks missing important
relational information but they themselves may only capture an aspect of the300

real relationship. If an analogy never leads to useful rules that hold when en-
countered in reality it should be discarded. Since it may be impossible to know
this, a probability threshold, or similar technique, could indicate which rules to
discard. Alternatively, the comparison of the impact of a given analogy on the
goals of the system could be used.305

There is an issue with assuming an abstract similarity exists. Not all ana-
logical inferences are equally likely (Davies, 1987) and where the similarity is
based on features, not all will be relevant. This is partially ameliorated by
EBL disregarding features not relevant to the example, using an inductive bias.
When trying to derive an abstract similarity between two concepts, even using310
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an example as an inductive bias, it is likely that not all features in the example
are relevant to the analogue being derived. Using an example as an inductive
bias, along with empirical validation, could help to disregard spurious analogies.

Commonality in language is important to this method as it requires either
shared terms or analogous terms. However, commonality in language may not be315

an unreasonable assumption. This is because the knowledge was originally rep-
resented using an altered subset of a shared language between experts. Therefore
it may be that lexical similarity can be used heuristically to establish or evaluate
an analogue.

Note that multiple applications of analogy could build a common set of terms320

from other concepts, whilst discarding language that isn’t commonly employed.
The common terms could be the result of previous analogical reasoning. The
effect of this technique would be most obvious where the domain theory uses
disparate terms. In this type of domain, these analogy concepts can be used to
transform nodes into a more common language.325

There is a danger of applying this technique too readily since over-application
would be costly and may bring about no real benefit. It is important to select
when to use analogy since each application represents an inductive leap and
weakens the otherwise deductive proofs EBL produces. It is important to bear
these issues in mind during knowledge engineering.330

The algorithm enables the expansion of a rule for the battery to consider a
fuel cell, for example. However, whilst this looks like a sensible application of a
rule in an abstract way it is likely that over-generalisation can occur. Alterna-
tively, rules could be generated which would ideally be prohibited with a more
complete domain theory. It is therefore important to only propose an analogy335

when the result is a useful rule. The utility of an analogy is not apparent at the
time of derivation therefore the individual rules may need to be evaluated post
generation. The algorithm is applied in simulation in order to explore these
issues further.

4. Experiment Design340

An experiment is proposed in order to show that analogy can allow EBL
to generate fuzzy rules for a piece of hardware that is not catered for by the
domain theory. The generation of fuzzy rules which reflect the intent of the
system would satisfy this objective i.e. rules which reduce energy consumption
by controlling previously unseen hardware.345

The domain theory determines what rules can be generated. In this exper-
iment it is designed for throttle control. However, the goal has had variables
bound such that an impasse will be reached when attempting to generate rules
for throttle control. This is because the variable binding height_to_go identifies
a piece of hardware relating to pitch, rather than the throttle control. Analog-350

ical reasoning is required in order to generate control laws for pitch. Rules
derived by this algorithm extend the deductive closure of the domain theory.

The generation of any rules which reduce energy consumption fulfil the intent
of the original domain theory. The rules generated in this chapter control the
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pitch of the aircraft, which is not possible using the given domain theory without355

analogy. Therefore rules which reduce energy consumption generated in this
experiment fulfil the second objective of this paper.

The system being tested is the same as in (Timperley, 2015). EBL was used
to generate fuzzy rules which were executed in order to control the throttle of
an aviation platform. The generation of useful rules, specialised from a body360

of general expert knowledge, was demonstrated by said controller requiring less
energy to complete a set flight. This paper uses the same experimental setup
as the previous work.

The approach presented in this paper has been implemented and integrated
with the X-Plane simulator. X-Plane has previously been used in high-fidelity365

aerospace research, such as (Cameron et al., 2011), as part of a broader simula-
tion suite.

Pitch changes are executed by the FLCHG system in X-Plane. This means
that the pitch controls themselves are not used. It is the throttle which controls
climb and descent. The throttle setting is calculated based on the height to the370

next checkpoint being positive or negative. Controlling the pitch via the joystick
results in a single large alteration which is then compensated for, when possible,
by the autopilot. Because of this, it is the height to the next checkpoint which
is controlled in this paper. Alteration of the required climb indirectly affects
the throttle and therefore the pitch.375

An experiment was conducted in order to evaluate the approach presented
in this paper. A series of replicable flights were devised to test the controller.
Each flight begins with a take-off, followed by a series of checkpoints to be hit.
The run ends when the final checkpoint is reached. The checkpoints are placed
such that climbing, descending and turning all feature. The autopilot flies a set380

route, input into a Flight Management System (FMS).
There are two sources of variation between the flights within a data set. The

first is the throttle control value, which is altered by the proposed algorithm.
This is allowed to vary over its entire value range [0-1]. The second source
of variation is the simulator. The time of day is not bound which may affect385

temperature and therefore air pressure. This can alter the amount of energy
perform certain activities, such as take off. The weather was set to be ‘clear’
which limits the variability of the weather significantly which in turn limits the
effect on the simulated flights. Weather includes the winds encountered and
other sources of pressure variation. Limiting these effects limits the variation in390

forces encountered during. This maintains a level of consistency in the energy
requirements of each flight. The remaining variables controlled by the simulator
are bounded by keeping the route fixed. The domain theory persistent between
flights. A data set uses a single domain theory which is updated in each flight
and passed to the next.395

The domain theory only contains rules to determine state, reason about
relative orders of magnitude, and reduce the throttle of the aircraft. There are
no rules to control pitch. The domain theory is constructed in a way which could
support analogical reasoning. The characteristics required of such a domain
theory are: additional contextual information which can act as definitions for400
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source and target concepts. There should also be sufficient generalisation that
source predicates can be replaced.

For example, consider a system input being identified by the statement veloc-
ity(input_value). Searches for X(input_value) would identify predicates with
a particular input value. However, if the same system input is identified by405

reporting(velocity, input_value) then target concepts can be identified by the
name of the input, rather than the current value.

The inputs and the output are abstracted such that predicate replacement
can occur. Additionally, the output is no longer hard coded into a parameter.
This could aid the flexibility of the domain theory in a deductive sense. By410

abstracting the inputs and output, the relationship is made to apply to different
sources.

Changes were made to the domain theory to support the formation of specific
analogies. Rules which have shared terms have been added to the domain theory
to support the generation of analogies. These rules embody the additional con-415

textual information about concepts. This additional information, unnecessary
to the intended model, may be easier than eliciting a minimal domain theory. It
is worth noting that extra information may not always need to be added in order
to form analogies, but can be used to restrict the analogies which are possible.
This can be a helpful tool in reducing unwanted rules from being derived.420

The domain theory is given in Table 2. The table also includes the goal used
to derive rules.

Goal
reduce(height_to_go,Y)
Domain Theory:
Rules
numbers
bigger(X,Y) → smaller(Y,X)
!same(X,Y) → different(X,Y)
!bigger(Y,X) → biggest(X)
!smaller(Y,X) → smallest(X)
!same(X,Y) ∧ bigger(X,Z) ∧ bigger(Z,Y) → bigger(X,Y)
reporting(I,X) ∧ bigger(X,Y) → more_than(I,Y)
reporting(I,X) ∧ smaller(X,Y) → less_than(I,Y)
reporting(I,X) ∧ same(X,none) → none(I)
more_than(I,none) → some(I)
reporting(I,X) ∧ same(X,Y) → is(I,Y)
reporting(I,X) ∧ started(I,Y) ∧ same(X,Y) → unchanged(I)
reporting(I,X) ∧ started(I,Y) ∧ !same(X,Y) → changed(I)
reporting(I,X) ∧ smaller(Y,X) → one_smaller(I,Y)
reporting(I,X) ∧ bigger(Y,X) → one_bigger(I,Y)
reduction strategy
reporting(I,X) ∧ intend(I,N) ∧ bigger(X,N) → reduce(I,N)
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throttle_command(I) ∧ height_to_go(H,I) ∧ velocity_sensor(C,I) ∧ report-
ing(H,P) ∧ reporting(C,E) ∧ same(P,E) ∧ one_smaller(I,N) → intend(I,N)
throttle_command(I) ∧ height_to_go(H,I) ∧ velocity_sensor(C,I) ∧ report-
ing(H,P) ∧ reporting(C,E) ∧ smaller(P,E) ∧ one_smaller(I,N) → intend(I,N)
state
some(parking_brake) ∧ less_than(throttle,medium) ∧ none(altitude) →
state(idle)
none(parking_brake) ∧ less_than(throttle,medium) ∧ none(altitude) →
state(taxi)
none(parking_brake) ∧ more_than(throttle,small) ∧ none(altitude) →
state(takeoff)
current(takeoff) ∧ none(parking_brake) ∧ some(altitude) → state(flight)
analogy
controls(engine_speed) ∧ affects(air_speed) ∧ affects(acceleration) ∧ pro-
vides(thrust) ∧ reflects(power) → throttle_command(throttle)
controls(elevators) ∧ affects(altitude) ∧ affects(air_speed) ∧ pitches(aircraft)
→ pitch_command(height_to_go)
reflects(motion) ∧ affected_by(throttle) → velocity_sensor(velocity, throttle)
reflects(climb) ∧ affected_by(pitch) ∧ affected_by(throttle) →
climb_sensor(climb_rate, height_to_go)
change_in(y) ∧ affected_by(throttle) ∧ affected_by(pitch) →
height_to_go(height_to_go, throttle)
change_in(x) ∧ affected_by(throttle) ∧ affected_by(pitch) →
ground_speed(groundspeed, height_to_go)
Statements
numbers
bigger(full,huge)
bigger(huge,large)
bigger(large,medium)
bigger(medium,small)
bigger(small,tiny)
bigger(tiny,none)
same(X,X)
analogy
throttle_command(throttle)
pitch_command(height_to_go)
height_to_go(height_to_go, throttle)
velocity_sensor(velocity, throttle)

Table 2: Analogical Domain Theory

The parameter values in the domain theory are used to identify simulator
inputs. During explanation these cause variables to be bound to the current425

reading for the identified input. Examples of these parameter values include:
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throttle, velocity_sensor, height_to_go, parking_break, altitude. Some bound
values in the analogy section refer to abstract notions that do not refer to system
inputs; pitch is one of these. These represent disconnected background infor-
mation derived from the expert which add context but aren’t directly related430

to rule generation without analogy. They can be altered to altered to influence
the abstractions which can be generated.

The use of a single goal for this experiment also serves to limit the possi-
ble analogies. This leaves the domain theory with an inherently hierarchical
structure.435

It is worth noting that, in the current implementation, analogies are not
added to the domain theory as new rules. The (sub)goal causing an impasse is
swapped for the target with the larger correspondence i.e. the one which formed
the most complex derived class. Additionally, the analogous nodes are not
included in the fuzzy rule derivation process. These nodes are omitted because440

the nature of the link between the source and target terms is assumed to be
irrelevant to the fuzzy rule. Instead the analogy is viewed more as evidence, or
an operational node in support of the swapped node. This allows the explanation
to continue without adding goals which would not have been present in a non-
analogical explanation structure, minus the term that has been replaced.445

When attempting to use EBL to derive a new fuzzy rule an impasse will
be reached, because there is no deductive explanation with the given domain
theory for pitch control. These impasses can be avoided by forming analogies.
The analogies in this case replace the inputs being compared and the output,
but maintain the same overall structure as the throttle derivation from the450

previous work. The output is swapped from the throttle to the height to the
next checkpoint. The inputs were also altered. The velocity sensor is swapped
for the height to go to the next checkpoint. The height to go is swapped for
ground speed.

Swapping the inputs follows a simple rationale. When the ground speed is455

smaller than the height to go to the next checkpoint, reduce the climb rate.
The climb rate could be calculated as the gradient: δy

δx . A larger gradient, and
steeper climb, would come about when the change in x (δy) is larger than the
change in y (δx). Therefore reduction occurs when ground speed is smaller than
the height to go to the next checkpoint.460

Analogy is required for the generation of all fuzzy rules during this exper-
iment. No rules can be generated by the system initially, analogy is used to
swap the output and inputs during rule generation. The domain theory re-
mains largely the same as in the previous work. Some small additions are made
to facilitate the formation of certain analogies. By swapping the output and465

inputs a general strategy is transferred to control an item of hardware which
lies outside the original domain theory. This can be seen as further relaxing
the restrictions that were present in the rule generation method proposed in the
previous work. This has been facilitated by swapping the inputs and outputs
referenced in a rule derivation.470

Inputs are fuzzified in the manner proposed in the previous work. Each
measurement is fuzzified and interpolated and is therefore relative to itself.
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This is because the range over which the linguistic values are interpolated is
determined by past values. The rules generated are dependent on the number
of fuzzy sets and refresh rate of inputs. Both of these factors influence the states475

which are considered by EBL, as well as the granularity of each rule.
The analogies formed, by the proposed algorithm, in order to swap the inputs

and output are given below. The derived concept is labelled as the target
concept.

• affected_by(throttle_ratio_all) ∧ reflects(R)→ climb_sensor(climb_rate,480

height_to_go)

• affected_by(pitch) ∧ change_in(C)→ ground_speed(groundspeed, height_to_go)

• affects(A) ∧ controls(C)→ pitch_command(height_to_go)

Note that the output is taken as an input. This output is also written to
through the switching mechanism. Having one input being written to by two485

systems means that timing can affect the rules learned, since the input will
appear to have one value or another, depending on when it is sampled. This
is one motivation for using fairly large data sets and averaging. It is worth
noting that in this experiment the autopilot is always operated at 10Hz and the
controller is initially operated at the same rate.490

In this experiment the outputs of forming an analogy are any fuzzy rules
generated by employing said analogy. As no rules can be formed deductively,
all rules will be formed in this experiment by analogy. Any rules generated
can, depending on their impact on the flight, sit in support of the technique.
The aim of the experiment is to show the possibility that the technique can be495

used to generate useful rules after knowledge engineering has taken place. The
results of the experiment are presented in the next section.

5. Results and Discussion

A set of 50 flights was conducted with a set series of waypoints. The goal
used in this experiment leads to the generation of rules which control pitch.500

However, no rules can be generated for pitch control, using the domain theory
designed for throttle control, without resolving impasses. In order to satisfy the
first objective of this paper rules must be generated after reaching impasses.
The second objective can be satisfied by demonstrating the production of useful
rules.505

There are two sources of variation between the flights within a data set.
The first is the throttle control value, which is altered indirectly by analogically
derived rules via the height_to_go to the next checkpoint. The height_to_go
is used by the autopilot to determine throttle but itself relates to pitch.

The second source of variation is the simulator. The time of day is not510

bound which may affect temperature and therefore air pressure. This can alter
the amount of energy perform certain activities, such as take off. The weather
was set to be ‘clear’ which limits the variability of the weather significantly which
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Figure 2: An average, over 50 flights, of the altitude of the aircraft. This is without Analogy.
The shaded areas indicate the standard deviation around the mean. The inputs were sampled
at 10Hz.

in turn limits the effect on the simulated flights. Weather includes the winds
encountered and other sources of pressure variation. Limiting these effects limits515

the variation in forces encountered during. This maintains a level of consistency
in the energy requirements of each flight. It may be possible to further limit the
weather and time variability using X-Plane. The remaining variables controlled
by the simulator are bounded by keeping the route fixed. The domain theory
persistent between flights. A data set uses a single domain theory which is520

updated in each flight and passed to the next.
There are two reasons to consider the average altitude of the flights within

a dataset. Firstly, the consistency of the dataset can be shown by considering
the variation in the dataset without analogy, where no rules can be generated.
Secondly, by comparing the average altitudes of each dataset, with and without525

analogy, significant impacts that the generated rules have on flight can be seen.
This establishes that the generated rules impact the system. After which, it
remains to demonstrate that the rules positively impact energy conservation.

The mean altitude for all 50 flights, along with the standard deviation, are
plotted in Figure 2. The small standard deviation implies that the route followed530

was consistent, with small differences, across all 50 flights.
The standard deviation shows the areas most affected by the derived rules.

Large standard deviations can be caused by differences in aircraft behaviour at
the same point on the time axis. As can be seen, the effect is concentrated at
the start of a climb and in the later section of flight (from about 5.5 minutes to535

7 minutes).
The controller’s effect being concentrated at the start of a steep climb may

be a result of the inputs being measured relative to themselves, rather than a
scale that applies to both. The rate of increase in either input may be partially
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Figure 3: The number of rules generated by the end of each flight is given. Rules generated
in one run are not guaranteed to be executed on the same run. This graph is for the data set
collected using analogy and the inputs were sampled at 10Hz.

hidden. When both inputs are increasing then a small change, relative to its own540

scale, might be significant for an input. However, it is possible such an increase
is not significant to the relationship being appealed to in the domain theory.
Additionally, the baseline throttle control is rather binary. A binary throttle
controller leads to a high ground speed when climbing, even when the climb is
steep. Investigation of an interpolated fuzzy relationship for the comparison of545

two inputs could prove an interesting area for future work.
The initial section of the steep climb is reduced drastically, then returns to

a steep climb. This is less granular control than was exhibited when applying
the domain theory to throttle control (Timperley, 2015). The loss of granular
control is related to the throttle output only being effected in a binary manner,550

based on the finer control of another output (height to go). This means that a
reduction in pitch may lack the finer control required to approach optimality.

The effect of the rules, from these two examples, appears to be a general
reduction in extreme levels of throttle output. However, more fluctuations are
present. Fluctuations could cause an increase in the distance travelled without555

saving sufficient energy to have a net positive effect. Also, some of the larger
plateaus have fluctuations which are small. These fluctuations come from the
effect of the fuzzy rules competing with the auto-throttle. This shows that the
effect of the fuzzy controller may be truncated by competition with the auto-
throttle. The degree of competition with the auto-throttle is affected by the560

switch timings.
The number of rules generated, by run, is shown in Figure 3. A full listing of

the rules generated is given in Table 3. Each of these rules required analogical
reasoning during derivation. They satisfy the first objective of the paper.
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Run Input Output
ground speed climb rate Height to go Height to go

1 large large small tiny
1 medium medium medium small
1 huge huge medium small
1 huge huge huge large
1 small small medium small
1 medium medium tiny none
1 medium medium small tiny
1 small small tiny none
1 huge huge large medium
1 huge huge tiny none
1 small small huge large
1 huge huge small tiny
1 large large medium small
1 large large large medium
1 none small medium small
1 small small small tiny
2 medium medium huge large
2 large large tiny none
2 medium medium large medium
3 large large huge large
11 medium medium medium none
12 small small large medium
13 medium medium small none
17 medium medium huge small
37 large large medium tiny

Table 3: Table of the fuzzy rules generated, by run, with analogy.
The controller was operated at 10Hz.

565

The sharp increase of rules in the final run may indicate that more rules
may have been generated given a larger number of runs. The fuzzy rules, gener-
ated by analogical EBL, affected the remaining battery charge. Battery charge
measures the mainstay of the energy available to the platform. A more efficient
flight results in a higher remaining charge at the end of a run. If the controller570

generates useful rules then a more efficient flight will be indicated by remaining
charge. The generation of useful rules via analogy satisfies the second objective
of the paper. The remaining battery charge is plotted by run in Figure 4.

Figure 4 shows that some rules had a positive effect on efficiency but that
the gains are situational. The rules are generated by analogy as a first attempt575

to extend an incomplete domain theory. Each rule represents a shallow under-
standing of a deeper concept. The rules should ideally use empirical data about
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Figure 4: The battery charge remaining at the end of each run for flights both with (red) and
without Analogy (blue). Inputs sampled at 10Hz.

individual rule impact, as well as specific combinations of rules in different or-
ders. This data could be used to further specialise the rule to better reflect a
deeper understanding of the concept it represents.580

Rules impact is situational and examples of a negative impact can be seen in
Figure 4. This is likely due to the large reduction in altitude between about 5.5
and 7 minutes. This results in a longer path taken to reach the final checkpoint.
A longer route in this case costs more energy than is saved by reducing altitude.

The fuzzy rules are all part of a reduction strategy, which sits in opposition585

to the auto-throttle ascending to a new checkpoint. The switch settings alter
the balance between these two factors. The effect of the switch timings is further
examined in a series of flights using different sampling rates for the controller.

Sets of 50 flights were again conducted. In each case the switch setting for
the fuzzy controller was altered. The remaining charge, both with (red) and590

without Analogy (blue) is given, as well as the number of rules generated per
flight. The aim is to elicit any general trends between the switch settings, the
efficacy and the number of rules generated. The following switching rates are
presented: 6.6Hz (every 0.15 seconds), 5Hz (every 0.20 seconds), and 4Hz (every
0.25 seconds). The figures for each result set are given below:595

• The number of rules generated for a 6.6Hz controller is given in Figure 5.
The remaining battery charge is shown in Figure 6.

• The number of rules generated for a 5Hz controller is given in Figure 7.
The remaining battery charge is shown in Figure 8.

• The number of rules generated for a 4Hz controller is given in Figure 9.600

The remaining battery charge is shown in Figure 10.
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Figure 5: The number of rules generated by the end of each flight. Analogical controller
enabled, inputs sampled at 6.6Hz.

Figure 6: The battery charge remaining at the end of each run. Inputs sampled at 6.6Hz.
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Figure 7: The number of rules generated by the end of each flight. Analogical controller
enabled, inputs sampled at 5Hz.

Figure 8: The battery charge remaining at the end of each run. Inputs sampled at 5Hz.
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Figure 9: The number of rules generated by the end of each flight. Analogical controller
enabled, inputs sampled at 4Hz.

Figure 10: The battery charge remaining at the end of each run. Inputs sampled at 4Hz.
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The ’height to go’ input, which is also the output, is written to by both the
auto throttle and fuzzy controller. Rule generation is guided by the input value.
This balance may simply have exposed the EBL algorithm to more situations
than other sampling rates.605

More rules were generated when the controller operated at the highest fre-
quencies. Rule generation was most prolific at 6.6Hz. Operating the controller
at a higher rate gives it a higher resolution. Rules can be executed which reduce
pitch, which prevents the aircraft reaching a state which necessitates the gen-
eration of more rules. With a large pitch several rules need to be generated in610

order to result in a reduction in pitch. This is because a change is only affected
by the autopilot once the output becomes negative, so several rules are required
to bring a large pitch to a negative value. By keeping the pitch at smaller values,
fewer rules are required. This may point to higher rates of controller execution
being beneficial.615

Some rules may come from seeing an output from a previous controller exe-
cution, rather than the value from the autopilot. The input may be insufficiently
reduced to cause a change in pitch and the algorithm may produce further rules
as a consequence. Not all rules generated are guaranteed to affect the throttle
on their own, since the auto throttle is specified as being concerned with the620

sign of the value. Therefore several rules may need to be generated in turn, and
executed in concert, to result in an effect. This could complicate a study of the
impact of individual rules in this case.

The remaining charge was generally improved by the 4Hz controller, but
a significant loss in efficiency was evident in later runs. This may imply that625

rules generated earlier in this case were of a greater utility. This implies that
even when useful rules are generated from an analogy, invalid rules may also be
generated. An algorithm for adding caveats to an analogy in order to prevent
detrimental rules from being learned could be a fruitful aspect of further work.
This would likely require clearer data on the individual impact of each rule,630

both alone and in conjunction with others. Both cases need to be considered, as
multiple rules may combine to produce a positive effect where only one would
not.

6. Conclusion

An approach for incorporating analogy into EBL has been presented. The635

technique could be used to further generalise rules in a system by linking pre-
viously separate concepts. These links are formed by deriving an abstraction.
Doing this may imply that whatever reasoning held in deriving the original rule
analogously holds for the new hardware. Analogy is an example of transfer
learning.640

Transfer learning can be applied as an alternative to an impasse. This tech-
nique can operate where an impasse is reached due to a mismatch between outer
predicates with the same form. The reason for addressing this type of impasse
is that EBL, by generalising, already avoids some potential impasses due to
differing parameters.645
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By applying this technique EBL can make inductive leaps when deductive
explanation fails. However, this entails all of the drawbacks of making inductive
leaps. Given that the potential costs are weighed against the possibility of no
gains, the technique should be applied conservatively.

However, flights which performed significantly below the baseline could imply650

that the technique requires further work. Each rule should ideally be evaluated
for its individual impact, but where the derivations are only possible by analogy
it is likely that there may be no information for evaluation. Deviation from
known mission parameters or principles could be possible. Further work into
eliciting a general evaluation strategy for analogies would be beneficial. It would655

be particularly beneficial to glean more from the underlying correlation than just
a connecting analogy. Each analogy holds only in certain circumstances. For
this reason, formation of analogy may be considered the start of an ongoing
learning task.

Some rules were generated which satisfy the aim of this paper, by generating660

rules for a piece of hardware which was not within the original deductive closure
of the system. However, the nature of the results illustrate that rules other than
ones with a positive impact on energy management were produced. This means
that the intent of the domain theory was not realised in every rule generated.
The discrimination of useful rules should be the focal point of further work.665
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