
 
 

Discrepancies between theoretical and actual heating demand in Scottish 
modern dwellings 
 

 
Abstract: The study reports on the differences between the actual heat consumption profiles of twelve dwellings 
monitored for four years and their predicted heat demand profiles as calculated by the UK Government’s 
Standard Assessment Procedure (SAP). This monitoring methodology analysed the selected homes over 4 years 
of occupation leading to a longitudinal study. Using descriptive statistical metrics this paper considers different 
groupings and normalisation methods to understand differences in heat demand. It uses this methodology to 
compare predicted over delivered energy over longer occupation periods. The results demonstrate that the 
compliance SAP model, incorrectly estimates heat demand by up to one and a half times that recorded in these 
dwellings. It also concludes that analysing energy consumption over time should exclude early occupation years 
as they suffer from occupant adjustment periods. Furthermore, by applying a heat energy factor, none of the 
dwellings achieve equal or better consumption levels than SAP, however flats and the low consuming group 
dwellings achieve closest to the predicted.  
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Introduction  

Heat consumption in domestic buildings is based on thermal comfort and personal hygiene 
regimes. Both depend on building envelope efficiency, occupant habits and behaviours and 
heating services. The heating services efficiency is dependent on the Coefficient of 
Performance (COP), fuel used and the degradation of the system over time, partially affected 
by poor maintenance patterns. Space heating is dependent on the building’s envelope 
efficiency and the occupant’s energy efficient habits. Number of occupants in the dwelling 
and also the patterns of use in cooking, showering/ bathing can greatly influence fuel used 
for water heating. Equally significant, are internal gains from latent heat sources, electrical 
appliances and solar gains influenced by building orientation and fenestration design. 
Household heat consumption from gas fuel accounts for the majority of the household energy 
(approx. 80%) and over half of the household’s energy bill. (Kane et al., 2011).  
 Since the Energy Performance of Buildings Directive (EPBD) issued the 2010 guidelines 
(EU Parliament, 2010) for measurement and verification of energy consumption in buildings, 
a large focus has been on its calculation methodology, enforcement of minimum energy 
requirements and the certification process (Burman et al., 2014). In the UK the Standard 
Assessment Procedure (SAP) is the country’s National Calculation Methodology (NCM), 
producing an Energy Efficient and Environmental Impact score from 1 to 100 (G to A) (Kelly et 
al., 2012). The SAP scores are based on dwellings heat consumption. The steady state 
calculation reflects the predicted performance, however recent studies indicate that actual 
demand can differ by two and sometimes fourfold (Menezes et al., 2012). 

Results from a four year energy monitoring programme categorised by twelve 
different building suppliers is presented and discussed in this paper. These form part of the 
wider research project at the Housing Innovation Showcase (HIS) in Dunfermline, Scotland. 
The statistical study presents initial analysis on the differences between the predicted heat 
consumption (as calculated by the SAP method) of the dwellings and their delivered heat 
energy over a four year period. Its aim is to show the importance of longitudinal energy 
monitoring of buildings for determining the effects of heat energy performance gap. This 
paper shows the findings after statistically analysing the results using alternative clustering 
and normalisation methods and alternative means of comparing data. A more detailed 
explanation of the dwellings and their construction methods can be found in research by Bros-
Williamson et al. (2016). 

Methodology  

The study of this housing development focused on a variety of system providers, all innovative 
in their fabrication, material use and assembly (off-site or on-site) (Bros-Williamson et al., 
2016). A large focus was on comparing delivered heat energy since the dwellings handover in 
summer 2012 to winter 2016/17 against the predicted results using the SAP. The results are 
presented by calendar year; year 1 represents the occupied year of 2012 and so on until year 
2015 which finalises in 2016. Comparison results have been obtained by taking in-home 
display (IHD) hourly energy consumption data, corroborated with yearly meter readings, 
focusing on delivered space and water heating predominantly using natural gas as a fuel.  

The yearly delivered energy was analysed statistically to provide more insight into the 
energy consumption levels, patterns and behaviours of the households. The authors present 
the statistical data under well-established conventions however new ways of analysing and 
observing trends have been explored.  



The analysis begins by justifying the use of typical grouping and identifier methods. 
Convention in this area of research selects the use of archetypes of dwellings to obtain groups 
within the sample. As a result of the small sample size and the varied archetype, it was 
intended to observe the data differently. The mean (average) delivered heat demand results 
over the 4 years of monitoring against the heating predicted SAP results are plotted over 
monitored years, first by archetype followed by consumption grouping converted into Z 
scores and analysing variables in a K-means cluster analysis (MacQueen, 1967), with one 
iteration to establish groups. The results effectively divided the sample into three groups; ‘low 
energy consumer’, ‘medium energy consumer’ and ‘high energy consumer’’ relative to the 
yearly energy delivered within the group.  

The paper proceeds to identify the best normalisation factor. Most energy related 
studies will use delivered energy over a set period, normalised by the heated floor space of 
the building (kWh/m2/yr). However, in this paper the data is compared by using other 
conditions such as yearly energy demand per volume (kWh/m3), number of people (kWh/ppl) 
and predicted over actual energy consumption (kWh/kWh) (Stinson, 2015). The Coefficient of 
Variation (CV), as a percentage, was used as an indicator to describe which normalisation 
condition was a best fit for the data. The lower the percentage CV, the closer each individual 
data point is to the group mean. This would suggest that the mean is a good representation 
of the whole data set of that sample. 

Following this, the paper proceeds by statistically displaying results with a mixed-design 
analysis of variance (ANOVA) comparing the significant interaction between archetypes and 
the three groups K-means method using Z scores during the 4 years of the study.  

To conclude, the paper summarises all the methods and compares the predicted against 
delivered heat energy demand referred to as the heat energy factor (HEF). A HEF of 0 indicates 
the household consumed equal to its predicted result (SAP), results >0 show higher 
consumption and <0 show lower consumption than the predicted SAP. The HEF is presented 
as archetypes (n=4) and consumption levels (n=3). 

Pre-analysis of data  

Most appropriate identifier 

Four years energy consumption data and many of the household’s characteristics have been 
considered to identify the most appropriate grouping for the sample (n=12). 

Typically an archetype classification is used, in this sample there are (n=12), flats (n=2), 
Bungalow semi-detached (n=2), house semi-detached (n=7) and house mid-terrace (n=1). The 
flats belong to the denominated four-in-a-block configuration with a separate main entrance.  

The mean delivered heat energy and its corresponding mean SAP result by each 
archetype is plotted per monitored year, shown in Figure 1. The mean SAP results are 
noticeably lower than any year of the mean delivered heat energy by each archetype ranging 
from the 3,000kWh/year and 4,500kWh/year. The mean results for each monitored year of 
consumption are closely grouped. In order to interpret the yearly spread and amount of 
variability relative to the mean, the CV was calculated. Flats CV = 3%; Bungalow semi-
detached CV = 8%; House semi-detached CV = 4%. A CV for the House mid-terrace could not 
be calculated because of the small sample size. The level of variation within the archetypes is 
considerably low, signifying it is a good descriptor for the samples energy consumption. 

A second clustering method was applied which considered key variables of the 
household, including the dwellings floor area, volume, number of occupant adults (>16 years 



of age), number of occupant children (<16 years of age), the SAP results and the yearly 
delivered heat energy. This data was converted to Z scores and analysed as variables in a K-
means cluster analysis creating the three consumer groups; 1. ‘low energy consumer’, 2. 
‘medium energy consumer’ and  3. ‘high energy consumer’. Figure 2 shows how these 
compare over the 4 years. The clustering analysis combinations are shown in Table 1 below.   

 

 
Figure 1. Heat energy by archetype  Figure 2. Heat energy by variables clustering 

 

 
Table 1. Spread of sample group by archetype and variables clustering 

 Energy consumer groupings [group] 

Archetypes (n total = 12) Low [1] Medium [2] High [3] 

Flats (n=2) 1 1  

Bungalows semi-detached (n=2)  2  

House semi-detached (n=7) 4 1 2 

House mid-terrace (n=1) 1   
 
 
Analysing the yearly delivered heat energy demand with an on-way ANOVA (analysis of 

variance) showed that the differences in mean heat energy demand for each archetype was 
not statistically significant for any of the 4 years (p >.05). However, when the sample are split 
into their associated groups determined by k-means clustering the differences in mean heat 
energy demand are statistically significant for each individual year (p <.05).   

Similar to the observed results in Figure 1; the mean results for each monitored year of 
consumption are closely grouped. Low energy consumer (n=6) CV = 3%; medium energy 
consumer (n=4) CV = 5%; high energy consumer (n=2) CV = 10%. The level of variation within 
the group is also considerably low, signifying that identifying the sample by the household’s 
variables i.e. grouping using K-Means method is also a good descriptor for the samples energy 
consumption. The lower energy consumers are clustered around a mean of 6,500kWh/ year, 
medium energy consumers mean of 9,000kWh/year whereas the high energy consumers a 
mean of 12,000kWh/ year. 



Most appropriate normalisation factor 

Other authors investigating the performance gap in buildings have conventionally used a 
normalisation factor of delivered energy for every meter squared of heated floor space (m2).  

Results presented in Table 2 show that by normalising the heat energy consumption 
data by the volume of insulated space (kWh/m³) provided the lowest CV for the sample data. 
Normalising the heat consumption data by floor area (kWh/m²) or energy without 
normalisation provide the next lowest CV. Normalising the heat energy consumption by 
number of people (ppl) provided the highest CV, perhaps signifying that the weighting of 
people on a 1 to 1 ratio is insufficient to account for the complexities of heat consumption 
behaviour by households with very young and/or elderly occupants. Normalising the heat 
energy data by the SAP result (kWh/kWh) returned a high CV value meaning it is not the best 
for this sample (Stinson, 2015).  

 
 

Table 2. CV values for normalisation factors applied to heat energy 
  

2012 2013 2014 2015 
4 year 

average 

kWh 26% 23% 33% 31% 27% 

kWh/m2 26% 24% 32% 31% 27% 

kWh/ppl 35% 33% 38% 35% 34% 

kWh/m3 25% 23% 31% 27% 25% 

kWh/kWh 33% 33% 33% 35% 32% 

Results 

Longitudinal comparison of energy demand  

The yearly delivered energy was analysed to provide a clearer understanding of how energy 
was consumed identifying trends linked to occupant behaviour. 

The data in Figure 3 shows that the semi-detached houses, flats and semi-detached 
bungalows decreased their consumption between year 1 and 2 with a small increase in year 
3. The mid-terrace house increases in year 2, then decreases in year 3. The mid-terrace houses 
increase demand in year 4 meeting demand of year 3 and 4. The heat energy demand profile 
for the flats is of similar magnitude to that of the house mid-terrace. Also, the profile of the 
bungalow semi-detached is similar to that of the houses semi-detached.  

Results from a mixed-design ANOVA tests suggest that the delivered heat energy levels 
for each year are similar between the 4 archetypes. These showed that the level of heat 
consumed over the first 4 years of occupation are not statistically different within the 4 
archetypes category F(9,24) = 0.608 p>.05. Investigating this interaction further, contrasts 
were performed comparing each year of heat energy consumed to year 1 across the 4 
archetypes. These showed non-significant (p>.05) differences when comparing the 
archetypes heat energy consumption for year 2 to year 1 F(3,8) = 0.472. Year 3 to year 1 F(3,8) 
= 0.265. Year 4 to year 1 F(3,8) = 1.121. 

Figure 4 shows the heat energy demand profiles for each energy level type based on 
the K-means cluster analysis. The ANOVA results using the heat energy demand as grouped 
by the K-means clusters shows that there is a significant (p<.05) difference in means over the 
years and the grouping type, F(6,27) = 2.90.  

 



 
           Figure 3. Delivered heat energy by archetype           Figure 4. Delivered heat energy between the 3 groups 

 

Investigating this further, comparing each year of delivered heat energy demand to year 
1 across the 3 groups revealed a non-significant (p>.05) interaction when comparing the 3 
groups delivered heat energy for year 2 to year 1 F(2,9) = 0.258. Year 3 to year 1 F(2,9) = 
3.038. Year 4 to year 1 F(2,9) = 2.255. The group of lower and medium heat energy consuming 
households lowered their heat energy consumption year on year after year 1.  

The data presented provides evidence to support the theory that the heat energy 
demand for year 1 is different from the subsequent years and that that yearly heat energy 
demand data are statistically significant from heat energy consumed in year 1. Dependent 
paired samples T-test shows the highest consumption was in year 1 (M = 8502, SE = 634) 
compared to any of the other of the 3 years (year 2: M = 7892, SE = 534), (year 3: M = 8289, 
SE = 800), (year 4: M = 8297, se = 752). The difference between year 1 and year 2 delivered 
heat energy was found to be statistically significant t(11)=2.23, p<.05, r=0.9. The differences 
between other years to the previous year were found not to be statistically significant (p>.05). 

Predicted against actual energy demand  

The heat energy factor (HEF) with the sample grouped by archetype is presented in Figure 5 
and Figure 6 where the sample is grouped by consumption level. The dashed line indicates a 
HEF of 0 or the mean SAP score thus less of a performance gap between the groups. The 
results show that none of the groups align to a HEF of 0 but flats and low energy consumers 
are the closest. Figure 7 shows all the analysed dwellings delivered heat demand performance 
is compared against SAP as a percentage above the predicted annual heat energy demand. 

 



 
Figure 5. Energy factor by archetype  Figure 6. Energy factor by consumption groups 

 

 

Figure 7. Average of 4 years delivered heat energy compared to SAP 

Conclusion  

Using descriptive statistics, this paper investigates the use of conventional and un-
conventional methods for evidencing the impacts between predicted energy and actual 
delivered energy of a sample of twelve homes in Dunfermline, Fife.  
 The conventional use of clustering by archetype has been analysed, as well as 
proposing a different descriptor of energy demand by grouping low, medium and high energy 
consumer homes. Both were statistically convenient, however energy groupings evidences 
the gap in performance clearer over longer periods. In the same way, the normalisation 
methods used for analysing and benchmarking energy demand. Most will use conventional 
kWh/m2/yr, however this paper uses volume, people and SAP results. Lower confidence of 
variation (CV) results show that normalising by volume is better than conventional methods. 
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Finally, results comparing delivered energy over time against the predicted revealed a 
non-significant (p>.05) interaction. This was evident when comparing year 1 against other 
years, revealing that early occupation years give little evidence of the actual energy 
consumption with a preference for ≥3 years of occupation.  Furthermore, analysis of the 
individual household’s delivered heat energy showed that the dwelling built with 
conventional methods and technology, obtained a HEF close to 0 thus performing similarly to 
the predicted, as shown in Figure 7 as household 5. This observation could lead to concluding 
that the steady-state compliance tools for predicting energy are better suited to conventional 
dwellings and possibly not suited to alternative construction types with new technology. It 
also raises concerns over alternative heating technology, not used suitably by occupants 
leading to increased energy.  
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