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Figure 1: (a)-(d) Snapshots of a quadruped character walking over an uneven terrain and (e) a snapshot of a large number of biped
characters walking on uneven terrain in real-time.

Abstract

We propose a type of relationship descriptor based on carpet un-
rolling that computes the joint positions of a character based on the
sum of relative vectors originating from a local coordinate system
embedded on the surface of a carpet. Given a terrain that a char-
acter is to walk over, the carpet is unrolled over the surface of the
terrain. The carpet adapts to the geometry of the terrain and curves
according to the trajectory of the character. Because trajectories of
the body parts are computed as a weighted sum of the relative vec-
tors, the character can smoothly adapt to the elevation of the terrain
and the horizontal curves of the carpet. The carpet relationship de-
scriptors are easy to parallelize and hundreds of characters can be
animated in real-time by making use of the GPUs. This makes it
applicable to real-time applications such as computer games.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: locomotion, relationship descriptors, animation, char-
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1 Introduction

In computer animation and computer games, scenes where char-
acters walk over terrains with arbitrary geometry are very com-
mon. Characters need to walk over tilted terrains, stairs, and uneven
rocky terrains, while avoiding obstacles, self-collisions and colli-
sions with other characters. Although humans can easily adapt to
terrain with different geometry on-the-fly, synthesizing such move-
ments for virtual characters is not straight-forward.

One classical approach to synthesize such movements is to use in-
verse kinematics. Given a canonical walking cycle over a terrain,
the feet trajectories can be adjusted such that the character walks
over it. This requires specifying the moments that the feet are in
contact with the ground, and producing a trajectory that does not

collide with the ground. Also, the movements of the other parts of
the body, including the pelvis, torso and the arms must be adjusted
to make the motion appear natural.

Another approach is to apply data driven methods. Movements to
walk over various types of terrain can be pre-captured and blended
to produce movements that satisfies the constraints due to the ter-
rain. This requires capturing various movements and blending them
together. Various approaches based on radial basis functions and
Gaussian processes have been proposed for such applications. Cap-
turing and managing many types of movements is cumbersome and
memory intensive. It is easier if a canonical motion can be adapted
to terrains with different shapes.

In this paper, we solve the problem of terrain locomotion by mak-
ing use of relationship descriptors [Al-Asqhar et al. 2013] which
are known to be useful for retargeting motions to characters of dif-
ferent sizes or to interact with objects with different geometry. We
propose a simple and effective approach that we call “carpet un-
rolling” to adapt the locomotion to terrains with arbitrary shapes.
We present that the method is applicable to characters with differ-
ent topology, including bipedal and quadruped characters.

The approach is highly parallelizable, and easily runs on the GPU.
As a result, the trajectories and movements of hundreds of charac-
ters can be adapted during runtime, which makes it applicable to
real-time applications such as computer games, crown animation,
and virtual reality applications.

2 Related Work

In this section, we discuss the work related to character control in
crowds and motion adaptation methods.

Character Control in Crowd Animation As crowd animation
is a very large area, we limit ourselves to methods that involve
close character interactions. Very roughly, crowd animation can be
divided into global approaches and local agent-based approaches.
Global approaches control agents by producing global maps or po-
tential functions [Treuille et al. 2006] and guiding the characters
based on such global structures. Despite the fact they produce opti-
mal trajectories to avoid congestion, recently, there is higher inter-
ests in local, agent-based approaches, where the control is decen-
tralized to each individual characters.

Various agent-based controllers have been proposed in the area

193



of computer animation and crowd modeling. Based on Renold’s
flocking model [Reynolds 1987], Helbing et al. [2000] propose an
energy-based method that drives the characters toward their goal
while avoiding each other. Simulations of panicking crowd are pro-
duced, and such an approach is useful for evaluating the safety of
buildings. Reciprocal velocity obstacle [van den Berg et al. 2008]
is an approach that is widely adopted in robotics and character an-
imation to control the characters to avoid other characters in the
velocity space. Methods based on synthetic vision [Ondrej et al.
2010] can reproduce phenomena such as crowds producing vortices
at the intersection and lane-forming when a crowd of people pass
through each other.

In previous crowd animation, each character is mostly treated as
a particle or a rigid body and the body movements are simply re-
played such that the root of the body follows the trajectory com-
puted from the crowd simulation engine. Our proposed method can
be useful for producing an animation of crowds moving over a ter-
rain of arbitrary geometry.

Real-time Motion Adaptation to Different Geometry Recently,
there is an increasing interest in adapting character movements and
postures to interact with other characters, objects and the environ-
ment. A classical approach to edit the motion of the character to
adapt to different geometry, such as the terrain, is to apply inverse
kinematics [Lee and Shin 1999; Shin et al. 2001], or spacetime opti-
mization [Gleicher 1997]. Simple control of the end effectors based
on inverse kinematics or spacetime optimization does not always
work well, especially when the motion involves close interactions
with the geometry, as unexpected collisions may occur between the
body parts.

In order to reproduce more natural movements, data driven ap-
proaches are also introduced to follow positional constraints pro-
vided by the user. Rose et al. [1998] interpolate movements using
radial basis functions (RBF). Kovar et al. [2004] enhance this ap-
proach; they search movements of the same classes in the database
and produce the user desired movements by interpolating the rele-
vant movements by RBF. Mukai and Kuriyama [2005] apply Gaus-
sian processes to interpolate various movements to reach out, hold
objects, and step on stairs of different heights. Mukai [2011] fur-
ther extends the approach for biped locomotion and propose a data
structure called Motion Rings to adapt the locomotion to different
geometry. Although data driven approaches produce excellent re-
sults, they require many data samples and the constraints are not
precisely satisfied, especially when the training samples are sparse.

Ho et al. [2010] propose a method to adapt existing motion data to
different body sizes and environments of different geometry. This
approach is further enhanced by Al-Ashqar et al. [2013] to achieve
real-time performance. Based on this approach of relationship de-
scriptors, we present a system that allows the characters to adapt
interactively to terrains of different geometry. We also present a
parallelisation of the approach such that many characters can be
animated in real-time.

3 Relationship Descriptors

In this section, we review the relationship descriptor representation
proposed in [Al-Asqhar et al. 2013], This representation is espe-
cially useful for reproducing animation with the same context even
when the geometry of the object is changed. In our representation,
the joint positions are computed by the relative translations from a
static set of points called descriptor points. The descriptor points
are placed on the carpet as explained in Section 5.

Now, we explain how to compute the joint positions from the de-

Figure 2: The local coordinates defined at the body joints and at
the sample points on the object.

scriptor points. Let us define the position of joint j by pj, and
the descriptor points by (d1, ...,dN ) (see Fig. 2). We also ob-
tain the normal, tangent and binormal vectors from the geometry
of the surface, which are defined by (n1, ...,nN ), (t1, ..., tN ), and
(b1, ...,bN ), respectively. The tangent vectors are computed by
simply picking one of the edges connected to the vertex and project-
ing it to the tangent plane, and the binormal vectors are computed
by the cross product of the normal and tangent vectors. Given a mo-
tion, we represent the joint positions pj relative to di using these
three vectors:

pj = di + αi,jni + βi,jti + γi,jbi. (1)

As we want pj to be influenced by not only one but all the descriptor
points in proximity, we represent it as the weighted sum of Eq. (1)
of all the descriptor points instead:

pj =
PN

i wi,j(di + αi,jni + βi,jti + γi,jbi) (2)

where wi,j is the normalized weight between joint j and descriptor
point di whose value is dependent on the distance between the two
points and how much the normal vector ni is facing toward pj. For
computing the weights, we first calculate the following term for all
the descriptor points:

w′i,j =
ni · (pj − di)

‖pj − di‖
. (3)

The weight fades out as the distance between pj and di increases:

w′′i,j = w′i,jf(‖pj − di‖), (4)

where
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1 is the distance to the closest descriptor point and rj

2 is set to
rj
1 + 1

4
× bodyheight. Finally, we normalize the weights:

wi,j =
w′′i,jP
i w
′′
i,j

. (6)

Using Eq. (2), the position of each body joint can be reconstructed
from the carpet surface. When the surface of the carpet is changed,
the updated poses of the body joints can be computed by feeding the
mapped descriptor points and the axes of their local coordinates into
these equations. More about the reconstruction process is explained
in Section 4.
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Figure 3: The descriptors positions before deformation arranged
in a grid going out in front of the character (left) and the descrip-
tor positions after deformation bent to follow the trajectory of the
character and the surface of the terrain (right).

4 Motion Adaptation

Using the positions computed by Eq. (2) from the updated position
of the descriptor points as the target, we compute the final posture
of the character by an iterative inverse kinematics scheme based on
[Jakobsen 2001]. This scheme can be roughly broken down into
the following four steps: (1) the computation of the affinity, which
determines how strongly the joints must be pulled toward the target
positions, (2) the force accumulation and integration step, where the
effect of external forces such as pushing, pulling etc. are taken into
account, and (3) the bone length constraint step, where the joint
positions are updated such that the distance between the adjacent
joints are kept constant.

Affinity Calculation: The affinity values are computed by sum-
ming the weights of the associated descriptors on the surface com-
puted in Eq. (6) and normalizing them:

sj =

PN
i wi,jPNj

j

PN
i wi,j

(7)

where j is index of the joints and Nj is the number of joints.

Force Accumulation and Integration: Instead of explicitly ma-
nipulating the joints, we control them by applying virtual forces to
the particles that correspond to the joints. The forces are computed
by multiplying an elastic constant to the difference between their
current and target positions:

fj = k(ptar
j − pcur

j ) + fext. (8)

where k is an elasticity constant that is set to 1, ptar
j is the target

position of the joint computed using the relationship descriptors by
Eq. (2), pcur

j is the current joint position, and fext is the external
force that is added if an extra effect such as the wind blowing the
body needs to be applied.

The target position of the joints are then computed by Verlet inte-
gration

pnew
j = pcur

j + d(pcur
j − pprev

j ) +
1

2
fj

1

N2
s

(9)

where pprev
j is the position of the joint in the previous iteration and

d is a coefficient that is added to reduce the wobbling effect whose
value is set linear to the joint’s affinity value (d = 0.8 when sj = 0
and d = 0.2 when sj = 1).

Constraints Step: Using the updated particle positions pnew
j ,

we compute the final positions of the joints that satisfy the bone-
length constraint by iteratively updating the particle positions until
the errors of all the constraints are below a certain threshold. To

satisfy the bone-length constraints, the positions of each particle is
updated by the following equation:

∆pj =
sk

sk + sj

pj − pk

‖pj − pk‖
(l0 − ‖pj − pk‖) (10)

where pk is a particle that is connected to joint j by a bone, and l0

is the length of the bone. This will result in joints with large affinity
to move less and small affinity to move more.

5 Carpet Unrolling

We now describe about the carpet data structure that we use to adapt
the character movements to curves and along the geometry of the
terrain. The carpet is represented a regular grid of relationship de-
scriptors that extends outward in front of the character (see Fig. 3).
The carpet can be bent or twisted to make the character turn, or pro-
jected vertically onto terrain to allow for the character to walk on
some surface.

We therefore generate a regular grid of descriptors in front of the
character local to character’s world space. Given a grid of n by m,
grid length l, and grid width w, the position of a descriptor cij on
the surface of the carpet is then given by the following equation.

cij =

„
li

n
, 0, w

j − m
2

m

«
(11)

Using the descriptor points local to the character space c we can
find the global descriptor positions d by multiplying by the charac-
ter’s world matrix d = Wc. The opposite operation is also possible
by using the inverse of the character world matrix. The descriptor
positions in local space are given by c = W−1d.

Turning It is possible to turn the character by bending the carpet
along some curve. As the character always follows the location of
the carpet the turning motion will adapt naturally.

We use a NURBS curve to represent the central line of the loco-
motion. Here we assume the central line of the carpet is along the
z axis and the ground is represented by the xz plane. The pro-
jection of the descriptor point c on the z axis can be obtained by
zc = c(̇0, 0, 1)T , and the offset of the descriptor point from the
central line can be obtained by vc = c−zc (see Fig. 4, left). When
the central line is deformed by moving the NURBS curve con-
trol points, the descriptor points are recomputed by adding the ro-
tated offset vector to the corresponding projection point (see Fig. 4,
right): c′ = z′c +Rvc, where z′c is the updated position of the pro-
jection point after the curve is deformed, R is the rotation matrix
computed using the tangent direction of the curve at p′c.

Terrain Adaption To adapt the animation to some terrain the car-
pet can be projected onto the surface. To do this the descriptors are
converted to world space, projected vertically, and then converted
back to local space. Given the projection operation Φ this is rep-
resented as the following c′ = W−1Φ(Wc). Many applications
have accelerated data structures for this task such as height-maps,
but in the general case, where the terrain consists of triangular poly-
gons, the projection operation can use the barycentric coordinates
of each triangle t1, t2, t3 in the xz plane α, β, γ. These are first
used to test if a descriptor point d has xz coordinates which lie
within the triangle 0 < α, β, γ < 1. If this is the case the barycen-
tric weights can be used to find the projected position in world space
d′ = αt1 + βt2 + γt3. Many triangles can be discarded from this
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Figure 4: The descriptor point’s offset with respect to the central
line is computed in the canonical state (left). When the central line
is deformed (right), the descriptor point is computed by adding the
rotated offset to the updated projection point on the curve.

Figure 5: The flowchart of the motion adaptation scheme.

test by first calculating their axis aligned bounding boxes and not
performing any tests if the descriptor point lies outside of it on the
xz plane.

6 Parallel Implementation

Our approach is highly parallelizable and can be accelerated using
GPU devices where by many characters are animated. In this sec-
tion, we briefly describe how we divide the entire task into subtasks
that are executed by individual kernels written in the OpenCL lan-
guage.

For example, computing the target joint locations by summing the
relative vectors (Eq. 2) does not require to know the position of
other joints. As such, we can evaluate all joints of all characters in
the system simultaneously at many stages. As this current imple-
mentation of the system does not concern much interaction between
characters, we can evaluate the joints of all characters in the system
in parallel. As GPUs can execute hundreds of threads concurrently,
this allows us to evaluate hundreds of joints very quickly at the
same time. This results in extremely large speed ups compared to
the original sequential version.

The breakdown of the motion adaptation task is shown in Fig. 5. In
all stages, each character is processed independently from the other
and in parallel using an OpenCL workgroup. The description of
each stage is as follows:

• Resetting Joints: This stage is simply concerned with set-
ting the rest position of all the joints for the current frame. It
also resets the state of the system. Each joint is processed in-
dependently within the workgroup, using one thread per joint.

• Weighting Joints: Calculates the weights of the descriptors
and their effects on the joint of the system (Eq. 3-6). As
above, one thread per joint is used to performed this stage.

• Calculate Affinity: Calculate the affinity value (Eq. 7) that
determines how stiff the joint should stay in the space. This
stage is performed with one thread per character since the
joints cannot be processed independently.

• Joint targets: This stage deals with computing the target
position of the joints based on the deformed descriptor posi-
tions and the previously calculated weight and affinity values

Figure 6: The parallel pipeline of the system.

Figure 7: The breakdown of the execution time.

(Eq. 2). The joints are processed independently using multi-
ple threads.

• Force integration: This stage treats each joint as a particle.
Forces are applied to the particles by PD control (Eq. 8) and
the positions are integrated by Verlet integration (Eq. 10).
Each joint is processed independently by a thread.

• Constrain Bone Lengths: We constrain the distance be-
tween the joints (Eq. 10). This stage needs to be done with
one thread per character as the joints need to be traversed it-
eratively.

The parallel pipeline of the system is shown in Fig. 6, and the break-
down of the execution time is shown in Fig. 7.

7 Results

In this section we present the results of our system by producing
animation of characters walking over uneven terrain using the car-
pet technique. We also present the performance of the system when
running it on different parallel setups. The synthesized animation
can be viewed in the supplementary video.

Walking Over an Uneven Terrain We use our approach to gen-
erate locomotion for a quadruped character. Given a simple walk
loop consisting of just 35 frames of animation we generate a natural
looking motion of the character walking over terrain and turning in
various directions.
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Figure 8: Using the GPU animation for many characters can be generated. Here we show motion generated in real time for 256 quadrupeds
(left) and 256 bipeds (right).

First the looped walking motion is repeated to generate a long mo-
tion of the character walking in a straight line. Relationship de-
scriptors are generated under this motion and the weights for the
descriptors are calculated. The descriptors are then deformed along
a NURBS curve, which represents the trajectory of the character
across the terrain. This introduces the turning into the character’s
motion. Finally, the descriptors are projected vertically onto the ter-
rain and the joint positions integrated using the descriptor weights.
This creates the deformed motion of the character walking along
the terrain.

Snapshots of the quadruped walking over an uneven terrain are
shown in Fig. 1 (a)-(d). Also as can be viewed in the supplementary
video, the quadruped character can adapt well to the uneven terrain
and conduct a natural gait cycle.

Evaluation of Parallelism Four primary setups were tested:
CPU single thread, CPU multi-thread, Integrated Intel GPU (20
cores). and dedicated Nvidia GPU (2688 cores). By testing on
the different devices available in the system, we gain insight into
which may be best for this specific operation. For the evaluation of
the performance, 100 frames were measured and an average taken.
We tested with a number of characters ranging from 1 to 512. The
hardware used is composed of i7-4790k 4.0GHz CPU, 16GB RAM
and a Geforce Titan with 6GB GRAM. The system is written in
OpenCL 1.2 and compiled in Visual Studio 2013 on Windows 8.1.

The performance of the system in different setups are shown in
Table 1; it can be observed that parallelism provides a significant
speedup. The integrated GPU system shows better performance
up to ten characters, as it shares the host memory with the CPU,
while the the dedicated GPU requires transferring the data from the
host to the GPU device. However, the dedicated GPU shows better
scalability for more characters, thanks to the large number of cores
available. Note that the rendering time is not included in these num-
bers.

In summary, our algorithm is suitable to parallelize and can ani-
mate more than 500 characters in real-time on deformable terrains.
Results can be seen in Fig. 8 .

8 Discussions and Conclusion

The carpet unrolling approach is highly adaptive and can apply a
single type of locomotion to various terrains with different geom-
etry. Compared to classic methods based on inverse kinematics,
there is no need to specify when the feet are in contact with the
ground. The body movements are automatically computed from the
geometry of the terrain, and therefore there are very few parameters
to tune to produce natural movements. The method is highly par-
allelizable and can be implemented on the GPU, resulting in hun-

Figure 9: The method can suffer from very sharp turns (left) and
very steep terrains (right).

Figure 10: A sharp turn of the central line will result in a fast
translation of the joints when the body passes the acute region of
the central line.

dreds of characters animated in real-time. In the future, we plan to
enhance the method to simulate character-character interaction as
well as character-obstacle interactions.

Limitations Although the characters can adapt well to the terrain,
the method may suffer from sharp turns or very steep terrains, as
can be observed in Fig. 9. When such extreme cases happen, the
linear interpolation of the relative vectors result in bad movements.
For example, assume the central curve is turned very sharply as
shown in Fig. 10. As the offsets of the descriptor points are made
to be perpendicular to the central curve, the offset vector suddenly
change its direction when passing the acute region. As a result,
the trajectory of the joints farther from the central line will quickly
translate when the body passes the acute region, as shown in the
bold line of Fig. 10, where the ideal trajectory is a mild curve drawn
by the dashed line. A better scheme to locate the descriptor points
is needed to handle such a case.

Also, our system does not have any collision avoidance framework
between characters. This will involve re-planning the carpet trajec-
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Setup 1 10 20 30 64 128 256 512
CPU single thread 7.84 14.33 18.36 24.04 42.1 83.12 166.95 279.17

(0.67) (6.57) (10.43) (15.79) (33.27) (73.4) (155.87) (266.3)
CPU multi-thread 9.29 9.71 11 11.8 13.95 18.14 27.35 43.93

(0.29) (0.89) (1.5) (1.96) (3.99) (7.89) (15.8) (32)
GPU integrated 10.17 10.28 10.24 10.8 13.97 20.51 29.31 42.18

(0.54) (0.9) (1.22) (1.83) (4.09) (8.7) (16.48) (29.5)
GPU dedicated 10 11.62 12.44 13.2 13.68 15.03 19.17 23.64

(1.75) (2.33) (2.87) (3.44) (3.57) (4.14) (6.68) (12.26)

Table 1: The computation time (ms) for one frame in different setups. The numbers in the brackets are those spent by the kernel, excluding
the transmission time of the data.

tory on the fly.
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