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Abstract—This position paper is concerned with the challenge
of engineering multi-scale and long-lasting systems, whose
operation is regulated by sets of mutually-agreed, conventional
rules. The core of the problem is that there are multiple,
inter-dependent dimensions of flux, with numerous contextual
factors to take into account. These dimensions of flux include,
on the one hand, the set of rules itself; and on the other,
the system components (population), their social network, and
the operating environment. However, there appears to be no
‘one size fits all’ optimum ruleset for all combinations of
population, social network and environment; nor (given the
contextual factors) is there a planning-type algorithm that can
compute an ‘ideal’ ruleset for any particular combination of
population, social network and environment. These features of
the problem suggest that recent advances in machine learning
and evolutionary computation can provide the instruments for
facilitating self-adaptation of a rule-based system over different
timescales. This paper proposes that the integration of concepts
from socially- and biologically-inspired computing can pave the
way for eventual development of a computational framework
that will enable principled (methodological) development of
sustainable adaptive rule-based systems.

1. Introduction

As information technology in the form of distributed de-
vices and virtual agents becomes more and more embedded
in our society, its architecture and deployment have begun to
mirror human structures, whereby devices and agents form
electronic “institutions” and virtual “organisations” which
are governed by rules and policies. Examples include both
technical systems (sensor networks, robotic swarms) and
socio-technical systems (e.g. smart-grids, intelligent urban
transportation, participatory sensing applications). Engineer-
ing and operating these types of systems is challenging:
hard-wired local rules can result in complex global be-
haviours; rules can be executed without any awareness of the
global system consequences; systems can have no capacity
to adapt to unfamiliar environmental dynamics. As a result,

there remains a significant gap in knowledge as to how to
engineer adaptive systems which remain sustainable over
long periods of time and continue to fulfil their goals in the
face of dynamic and unpredictable changes.

In purely social systems, the Nobel prize-winning scien-
tist Ostrom [1] has outlined eight principles by which insti-
tutions (i.e. groups of people) that operate according to rules
and structures can achieve sustainability. Separately, study
of biological systems reveals mechanisms by which species
and/or populations can adapt over multiple timescales in
response to changes in their environment: learning mech-
anisms enable individual adaptations over the course of a
lifetime while evolutionary mechanisms adapt populations
over the course of many generations. We propose to combine
computational aspects of both systems in order to develop a
new framework and set of design principles for engineering
sustainable, distributed, autonomous systems. The proposed
method benefits from bringing together techniques which
overcome their individual limitations. Ostrom’s principles
define the requirement for self-awareness within a system
in order to be sustainable, but without the necessary mech-
anisms to operationalise this. Biological systems on the
other hand have no goal beyond “survival (of the fittest)”
but do have operational mechanisms to enable adaptation
to environmental change. By bringing these fields together,
we propose that it will become possible to understand the
principles by which it is possible to design and operate
multi-scale and long-lasting adaptive systems.

Therefore the aim of this position paper is to highlight
the ‘scientific push’ and ‘application pull’ that warrants
a deeper investigation into the confluence of the socially-
inspired and biologically-inspired computing methods for
the purposes of engineering sustainable socio-technical sys-
tems. The goal is to examine the relevant factors from the
social and biological domains that will pave the way for
eventual development of a computational framework that
will enable principled development of such systems.

Accordingly, the paper is structured as follows. Section
2 provides a brief background on the respective scientific
fields. In Section 3 we identify four inter-dependent, di-



mensions of flux that drive this work: this concerns the
institutional ruleset, the system components (the popula-
tion), their social network, and the operating environment.
Furthermore, there are several complicating ‘non-functional’
contextual factors which need to be taken into account,
as discussed in Section 4. Section 5 and Section 6 lay
out the proposed solution from (respectively) from the per-
spectives of socially- and biologically-inspired computing.
Section 7 concludes with some comments on developing a
unifying computational framework based on the confluence
of socially- and biologically-inspired computing, as a basis
for engineering open, adaptive, rule-based systems which
can ‘cope’ with the manifold dimensions (and contextual
factors) of flux.

2. Background

The study of social and biological systems has provided
both the scientific foundations for sub-fields of Artificial
Intelligence, and the basis for engineering methodologies
used to develop solutions to problems in computer science.

For example, in the study of biological systems, the
process of evolution has been identified as a mechanism
by which a species (or a population) can adapt its forms
and functions, over multiple timescales in response to en-
vironmental changes, resulting in sustainable biodiversity.
This has established the scientific foundations of genetic
algorithms [2] and evolutionary computation [3]. These
approaches provide a way of generating solutions to optimi-
sation problems in which different algorithms have differ-
ent performance characteristics on (even relatively “small”)
variations of the same problem [4], and have been made
systematic in the methodology of biologically-inspired com-
puting [5].

Correspondingly, in the study of social systems, self-
governing institutions have been proposed [1] as a means
by which a group of people can adapt conventional rules
and organisational structures, over multiple timescales in
response to environmental changes, to achieve sustainable
common-pool resource management. This has led to the
ideas of norm-governed multi-agent systems [6] and elec-
tronic institutions [7]. These approaches offer, for example, a
way of generating solutions to co-operative problem solving
in which knowledge, (institutionalised) power and function-
ality are distributed between autonomous and heterogenous
components [8], and have been made equally systematic in
the methodology of socially-inspired computing [9].1

Both biologically-inspired and socially-inspired ap-
proaches have been applied to resource allocation, for exam-
ple in job-shop scheduling [10] and in energy distribution in
community energy system [11]. However, there has, to date,
been relatively little crossover between the two approaches:
one notable exception, perhaps, being the application of

1. This methodology was originally termed “sociologically” inspired
computing, analogous to “biologically”. However, inspiration can come
from any of the social sciences: e.g. philosophy, psychology, politics,
economics, etc. Hence here we will use the term “socially-inspired”.

evolutionary computation to the evolution of sustainable
institutions using Ostrom’s ADICO grammar [12].

Moreover, although each approach has been applied to
the same applications, neither alone seems to be sufficient
to address the fundamental problem: how to engineer open,
adaptive rule-base systems which remain sustainable over
long periods of time and continue to fulfil their goals in
the face of dynamic and unpredictable changes. On the one
hand, the biologically-inspired approach tends to eschew,
for example, the explicit representation of rules, social net-
working, conventional aspects of higher-order communica-
tion, and the creation of externalities through interactions
and transactions. On the other hand, the socially-inspired
approach, at least as represented by work on self-governing
electronic institutions [8], tends to work mostly with fixed-
size populations of fixed-ability agents operating in largely
static environments.

However, in trying to find a ruleset that is congruent
with the population and the environment, both for ‘now’
and ‘in the future’, there appears to be no ‘one size fits
all’ optimum ruleset for all combinations of population,
social network and environment; nor (given the contextual
factors) is there a planning-type algorithm that can compute
an ‘ideal’ ruleset for any particular combination of pop-
ulation, social network and environment. Therefore, these
features of the problem suggest that recent advances in
machine learning and evolutionary computation can provide
the instruments for facilitating self-adaptation of a rule-
based system over multiple timescales, if the appropriate
computational framework could facilitate their integration.
For this, though, we need first to identify the dimensions of
flux, and their contextual factors, as addressed (respectively)
in the next two sections.

3. The Dimensions of Flux

The driving force of the proposed research is the need
to engineer systems that operate in dynamically changing
environments. Therefore, we now outline the ‘dimensions of
flux’, i.e. the features of an open complex network that can
change, and for which appropriate adaptation mechanisms
are required. These dimensions are broadly divided into four
categories, with some sub-division. They are:

• the specification space, either:

– by learning, i.e. coming to know which spec-
ification instance is most appropriate to meet
or satisfice current operational conditions,
and moving to that instance in time to be
‘useful’;

– by innovation, i.e. by adding or deleting rules,
or creating a completely new specification
space (cf. often a consequence of revolution
in social systems);

• the population:

– the improvement of individual functional
and/or reasoning capabilities, to being with,



by training; in some systems, it might also be
necessary to deal with decay (i.e. the deterio-
ration of functional or reasoning capability);

– evolution: change of population over time;

• the environment:

– by natural causes;
– by deliberate shaping (from terra-forming to

cyber-forming [13]);

• the social network:

– social learning and cultural evolution: for ex-
ample the change of values over time and
generations;

– dynamic social psychology [14]: changes in
the social network and structuration (the du-
ality of agency and structure: structures are
made out of agents, but agents have memory
and knowledge about structures [15]), and
also “rule-uration” (rules and processes are
applied by and to agents; but agents have
memory of rules and processes).

These dimensions of flux are inter-dependent, and note
there is a kind of ‘quantum’ effect in the interaction
of changeable rules with learning-capable components –
changing the rules also changes the behaviour of the com-
ponents, so the new rules no longer apply. Indeed, it is
well-known in social systems that people do not adjust their
behaviour in such a way as to simple comply with rules, but
instead modify their behaviour to comply with incentives
implied by the rules [16]. With this in mind, next section
identifies six ‘non-functional’ contextual factors that also
need to be considered when engineering systems in which
change can occur along all the dimensions of flux.

4. Six ‘Non-Functional’ Contextual Factors

Given these four dimensions of flux in adaptive systems,
we now highlight six non-functional factors that need to be
taken into account. These factors are cost, fitness, training,
fallibility, pace and externalities.

The first factor is that computation costs resources. Ap-
plying a process according to a set of rules comes with costs.
In socio-economic systems, these are referred to as transac-
tion costs. It has been observed that rules and processes work
best when transaction costs are lowered, especially when
‘piggy-backing’ on normal behaviour. For example, Ostrom
[1] observed that monitoring rules in irrigation systems were
most effective when the farmers were able to observe each
other in the transition from one supply to another. Similarly,
Ober [17] observed that knowledge aggregation was most
effective when citizens were given information to gossip
about, since they were going to gossip anyway.

Costs are also impacted in path dependency [18], when
the costs incurred by changing are greater than the perceived
short-term benefits of changing, and the long-term benefits

(which exceed the transaction costs) will be enjoyed by sub-
sequent generations (e.g. climate change). Costs are partic-
ularly pertinent in computational systems with endogenous
resources, and the cost of computation has to be ‘paid for’
from the very same resources that have to be distributed
(e.g. CPU time, memory, battery power, etc.). There is no
point, for example, in having an operational choice rule that
computes the fairest distribution of resources, if it uses up
all those resources in the computation.

Furthermore, it is essential to understand the relation
between the rules and processes and the collective values
that they are intended to serve. Crucially, the rules may have
no apparent productivity but are critical to creating the value;
in addition, they may be recognised as so critical to the
process that they have value in and of themselves.

For example, in the study of jurisprudence, a fundamen-
tal question is which legal system is preferable: one which
convicts all of the guilty and some of the innocent; or one
which convicts only some of the guilty but none of the
innocent. In deciding this question in favour of the latter,
the UK legal system has developed a set of procedures,
protocols, requirements and indeed rituals for trying court
cases. These appear to be extremely time consuming and
financially very costly – hence recent proposals for “fast
track justice” which obviate these mechanisms. However,
it is precisely these mechanisms that maintain a critical
property of the legal system – i.e. that the innocent will
not be convicted – and this turn gives the legal system its
real value, at least in the view of the citizens affected by it.
By contrast, “fast track justice” prioritises value in purely
base financial terms and assumes a cheaper system is more
‘preferable’ to one that derives its value from principles of
jurisprudence.

Related to cost and values, the second contextual factor
is fitness (for purpose). This necessitates evaluating the
degree to which the current specification instance (of the
institution) is effective in satisficing the shared values of its
members.

Note that this has to be an introspective process. One
approach has been based on the idea of interactional justice,
which supposes that; members have metrics for evaluating
satisfaction at least according to their own experience; that
there is an infrastructure that enables them to transform
knowledge gained from personal experience to aggregated
knowledge based on collective experience; and that there are
mechanisms for ‘reforming’ the institution if it is considered
to be falling short.

An additional complication is the trade-off between
attention and the entropic tendency to oligarchy [19]. For
example, it might again be costly if every agent participates
in the metrication and the evaluation. So, some agents
may perform the function, while other simply transmit the
received wisdom. According to Rescher [20], one of the
legitimate claims to consider in a system of distributive
justice is the ‘socially useful services’, so the fitness evalu-
ator may receive a larger proportion of resources thanks to
performing this service for the community. However, this
may breakdown, in two ways: one is that the evaluator



believes the recompense is too little with regard to the
service rendered and that the others are essentially free-
riding; or that the evaluator may misrepresent the fitness,
if the institution is generally unfit but personally beneficial.
Herein lies a seed of oligarchy: lack of attention, lack of
monitoring and motivation for personal gain.

The third contextual factor is training, if the population
or membership changes over time. In many computational
systems, it is assumed that new components enter ‘fully
fledged’, as it were. However, this is generally not the
case in either biological or social systems. Certainly in
some social systems, there is a mismatch between newly-
initiated members of a group, and the experience or long-
serving members of the group. The long-serving members
possess the knowledge, values and skills, and newcomers
need to be initiated in these. In social settings, there are often
various conventions, norms and rituals, some of which may
seem pointless, but actually serve to coordinate expectations,
provide a system of accountability between members, and
create social capital in a relational economy [21] (and
see below). According to Dewey [22], it is education that
manages the transformation from uninitiated to initiated, and
while this process also costs, it is arguably the key feature
that has enabled sustainable common-pool resource manage-
ment across multiple generations, i.e. those who were not
originally party to the formation of the conventional rules,
nevertheless proscribe their own behaviour accordingly.

The fourth factor to consider is the essential fallibility of
democratic choice. It is possible for a process of preference
selection to result in the wrong, or less favourable outcome.
Ober [17] states that it was classical Athenian methods for
organising useful knowledge that was at the root of the
sustained and successful city-state, but even then wrong
decisions were made (Ober cites the disastrous decision
to invade Sicily in 411BC as the prelude to a period of
oligarchic control before democracy was restored).

The recognition of fallibility, and the fact that rule
changes can not always be tested in a double-blind ran-
domised controlled trial in the same way as medicine (unless
one starts with an autocratic state and not adverse to some
negative consequences), is one of the motivating factors be-
hind agent-based social simulation and legal methodologies
such as ILTAM [23].

The fifth contextual factor is the pace of change. In
some respects, selecting a specification instance is not unlike
planning in a dynamic environment. If the rate of change
is faster then the speed of planning computation, then if
an agent starts re-planning after every perceived change in
the environment, it may never complete a plan. On the other
hand, it it proceeds to complete a plan regardless of changes
in the environment, it may find that the plan is irrelevant to
current state.

Therefore, the dilemma is that, on the one hand, reacting
to every change with a change in the specification instance
can be computationally costly and create instability; on the
other hand, not reacting to a small change can result in a
series of small changes not being reacted to, with a result
that the specification instance ends up a ‘long’ way from

the most desirable and the transactions costs in change are
now excessive – the same problem of path dependency.

In fact, the pace of change seems to be at its worst when
the rate of change of a sustainable resource synchronises
with rate of change population: although the situation is
worsening over generations, from the point of view of each
generation the cognitive bias of “just noticeable difference”
means that they accept the current situation as “normal” (it
was ever thus) and so take action to sustain the resource.

The sixth contextual factor is externalities. Externalities
in economics are consequences of commercial activities and
transactions which affect third parties, without this being
reflected in the price of the transaction. However, there are
also benefits that arise from complying with rules, and this
can have a significant affect on a social network. It is not just
the link between two nodes that is important: it is also the
strength and the nature of the link that has to be taken into
account, as this can have a significant affect on individual
decisions (e.g. forgiveness [24]) and collective action [21].

5. Self-Organising Electronic Institutions

The basic premise underlying self-organising electronic
institutions was to apply the methodology of socially-
inspired computing to Ostrom’s design principles for self-
governing institutions. This would supply institutions, i.e.
as sets of rules, which encapsulated the principles in logical
form: in [8], [25], the representation used was the Event
Calculus (EC: [26]). Since such a specification can be
its own program (i.e. executable specification), these EC
specifications could be directly executed, hence algorithmic
self-governance.

The precise details of the EC specification and operation
are not essential for current purposes (see [6] for details).
However, as an instance of the EC rules, consider the rule
shown in Rule 1. This rule (axiom), states the designated
agent C occupying the role of chair is empowered (has the
institutionalised power [27]) to declare the result of a vote
on a motion M in the context of institution I , subject to
certain conditions:

pow(C, declare(C,W,M, I)) = true holdsAt T ←
role of (C, head , I) = true holdsAt T ∧
status(M, I) = closed holdsAt T ∧
votes cast(M, I) = X holdsAt T ∧
eligible(M, I) = E holdsAt T ∧
quora(I) = Q holdsAt T ∧
quorate(X,E,Q) ∧
wdMethod(M, I) = WDM holdsAt T ∧
winner determination(WDM , X,W )

These conditions express that the winner should be declared
in accordance with the way the votes were cast, whether or
not the vote was quorate (enough of the electorate voted),
and the winner determination method wdMethod(M, I) for
this institution.
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Figure 1. Specification Space with 2 DoF, distance, and invalid instances

Logically, the quora and the wdMethod are multi-valued
fluents, i.e. they are propositions whose values can vary over
time. For example, the quora could be simple majority, i.e.
50%, or in cases of major constitutional significance (like
withdrawing from a major economic trading bloc and asso-
ciated international treaties), at least 66%. Similarly, there
are many different types of winner determination methods
for selecting a choice from a set of expressed preferences:
for example plurality, transferable vote, Borda count, etc.

Conceptually, these are variable parameters of the rule,
or degrees of freedom in the dynamic norm-governed sys-
tems specification framework of Artikis [6]. In this frame-
work, a set of rules R implicitly defines a specification
space L, where each instance of the specification space is
characterised by a different assignment of values to each
parameter in each rule. The size of this space is given by

| L | = (V1,1 × V1,2 × . . .× V1,P1)×
(V2,1 × V2,2 × . . .× V2,P2)× . . .×
(VR,1 × VR,2 × . . .× VR,PR

)

where Vi,j is the number of values that the jth parameter
of rule i can take, Pi is the number of parameters of rule i,
and R is the number of rules in the set.

There are three points to note. Firstly, for any practical
system, this space is likely to be “large”. Secondly, there
can also be rules about “moving” in the specification space:
for example, certain configurations of parameter values may
be considered unacceptable (invalid), or there may be con-
straints on how “far” the specification can be changed, based
on a distance metric d (see Figure 1: this shows a specifica-
tion with two degrees of freedom (unlikely), bold circle is
the current specification instance, filled circles are invalid,
allowable changes are within the gray area). Thirdly, it is
possible to modify the morphology of the specification space
altogether, for example by adding or deleting parameters,
and even adding or deleting rules. For example, voting is not
the only way to select one option from a set of alternatives.

The representation of institutional rules in axiomatic
form is a form of knowledge codification, and maintaining
codified knowledge is one of the knowledge management
processes identified previously. Other works have addresses
knowledge aggregation processes through opinion formation
on dynamic social networks [14], knowledge alignment
through voting protocols and social computational choice
[28], and their interleaving [29].

However, while this provides an effective approach to
self-organisation, e.g. by “moving” through the specification
space, the open challenge is to engineer systems which
can accommodate all the possible ‘dimensions of flux’ and
the contextual factors. This, we argue, requires evolutionary
computation and machine learning.

6. Bio-Inspired Computation

As just noted, the optimal parameter settings for a given
rule depend heavily on the current environment, the existing
population and the specific social network. As these three
factors vary over time, the parameter settings must also
vary. In the extreme, large shifts in the contextual space can
result in an obsolete ruleset, that cannot be parameterised
to achieve an acceptable level of performance. In this case,
new rules are required.

Studies of biological systems provide numerous exam-
ples of systems that are able to adapt over multiple-time
scales in order to maintain homeostasis (long-term stability)
with finite resources. Machine-learning offers insights into
systems that learn from data and adapt over time. Specif-
ically, methods inspired by evolution and/or reinforcement
learning have been successfully used to provide rapid param-
eter adaptation (i.e. learning) in collective systems, e.g. in
swarm robotics. For example, evolutionary algorithms are
used in [30] to adjust the parameters of a robot’s ruleset
during the course of a ‘lifetime’ to cope with a dynami-
cally changing environment. [31] use a distributed algorithm
based on an artificial-immune system algorithm (AIS) within
a swarm robotics application to enable robots to adapt their
individual foraging strategies over time based on available
resources, environmental conditions and behaviours of other
robots to maximise foraging.

While the above examples provide insight into how
bio-inspired methods can be used to adapt systems on-
the-fly to tune parameters to ensure congruence with an
environment, it is also essential that a system can generate
new knowledge when its current ruleset proves inadequate,
i.e demonstates innovation. Recent developments in hyper-
heuristics in an optimisation context have demonstrated that
life-long optimisers can be designed that continuously per-
form both exploration (innovation) and exploitation (learn-
ing) [4]; the former discovers new optimal strategies for
solving problems by evolving new semantic rules through
genetic programming (long-term adaptation), whilst the lat-
ter continually refines existing strategies based on accumu-
lated prior knowledge (rapid-adaptation). Others have used
grammatical evolution, e.g. [32] to evolve rules for collective
behaviours in robots or genetic programming to create rules
for stock-trading [33].

Therefore, we propose that augmenting socially-inspired
rule-based systems with methods to facilitate learning and
innovation will provide a sound basis from which to en-
gineer a new framework for engineering sustainable, dis-
tributed, autonomous systems. Biologically-inspired meth-
ods will provide the necessary machinery to operationalise
Ostrom’s principles that define the requirements that lead



to sustainable behaviour, but without the necessary mecha-
nisms to operationalise this. This brings about a paradigm-
shift in the field of self-organising systems by providing a
methodology to both design and operate long-lived, large-
scale open systems in a principled manner.

7. Summary and Conclusions

In summary, we believe that open, adaptive systems of
the kind that might be found in future ad hoc, opportunistic,
green and sensor networks can be based on specifications of
norm-governed systems. However, such systems can be in a
constant state of flux along multiple dimensions, including
the population, the social network, and the environment, as
well as the rules themselves.

In this situation, the adaptable rules, on the one hand,
interact in unexpected ways with an adaptive population,
a dynamic network and an unpredictable environment on
the other; with a number of other contextual factors thrown
in. We have proposed the convergence of the socially- and
biologically-inspired computing paradigms as the basis for
a unifying framework for engineering such systems.

However, the acid test for such systems, whether they
are really long-standing, is whether such systems can really
occur with drastic, unanticipated, ‘surprise’ events. The key
requirement is not that there should be be no loss in perfor-
mance, but that in the aftermath of the surprise, operation
should recover to achieve the same pre-surprise levels of
performance.
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