Research Output

An Edge-Based Architecture to Support Efficient Applications for Healthcare Industry 4.0

  Edge computing paradigm has attracted many interests in the last few years as a valid alternative to the standard cloud-based approaches to reduce the interaction timing and the huge amount of data coming from Internet of Things (IoT) devices toward the Internet. In the next future, Edge-based approaches will be essential to support time-dependent applications in the Industry 4.0 context; thus, the paper proposes BodyEdge, a novel architecture well suited for human-centric applications, in the context of the emerging healthcare industry. It consists of a tiny mobile client module and a performing edge gateway supporting multiradio and multitechnology communication to collect and locally process data coming from different scenarios; moreover, it also exploits the facilities made available from both private and public cloud platforms to guarantee a high flexibility, robustness, and adaptive service level. The advantages of the designed software platform have been evaluated in terms of reduced transmitted data and processing time through a real implementation on different hardware platforms. The conducted study also highlighted the network conditions (data load and processing delay) in which BodyEdge is a valid and inexpensive solution for healthcare application scenarios.

  • Type:

    Article

  • Date:

    01 June 2018

  • Publication Status:

    Published

  • DOI:

    10.1109/tii.2018.2843169

  • ISSN:

    1551-3203

  • Library of Congress:

    QA75 Electronic computers. Computer science

  • Dewey Decimal Classification:

    004 Data processing & computer science

  • Funders:

    Historic Funder (pre-Worktribe)

Citation

Pace, P., Aloi, G., Gravina, R., Caliciuri, G., Fortino, G., & Liotta, A. (2019). An Edge-Based Architecture to Support Efficient Applications for Healthcare Industry 4.0. IEEE Transactions on Industrial Informatics, 15(1), 481-489. https://doi.org/10.1109/tii.2018.2843169

Authors

Keywords

Body sensor networks, cloud computing, edge computing, heart rate variability, internet of things

Monthly Views:

Available Documents