Research Output
Digital Twin-Based Collaborative Management for Energy-Aware 6G IoT Systems
  Even though the emergence of 6G IoT systems has accelerated the deployment of hyper-connected networks, the inherent resource limitations of IoT sensors remain a significant problem. In addition, maintaining energy efficiency and low response times in such environments has become more challenging. However, the existing management methods often lack the real-time adaptability and intelligence to optimize energy consumption in 6G IoT networks. To tackle this, we propose a DT-based collaborative management consisting of a multi-agent twin layer, a collaboration protocol and a Reinforcement Learning (RL)-based learner model. In the multi-agent twin layer, each physical network sensor is modelled as an individual agent for enhanced granularity in the management. The collaboration protocol ensures information sharing among the sensors and, thus, lowers response times. Furthermore, in the learner model, we utilize a multi-agent Deep Deterministic Policy Gradient (MADDPG) algorithm to optimise actions according to the novel energy-aware reward function. According to our simulation results, the proposed DT-based collaborative management surpasses the traditional method by 27 % for longer battery levels and 65 % more rapid responses.

Citation

Duran, K., & Canberk, B. (2025, March). Digital Twin-Based Collaborative Management for Energy-Aware 6G IoT Systems. Presented at IEEE Wireless Communications and Networking Conference (WCNC), Milan, Italy

Authors

Keywords

collaboration, digital twin, energy-awareness, multi-agent

Monthly Views:

Available Documents