15 results

Algorithm selection using deep learning without feature extraction

Conference Proceeding
Alissa, M., Sim, K., & Hart, E. (2019)
Algorithm selection using deep learning without feature extraction. In GECCO '19: Proceedings of the Genetic and Evolutionary Computation Conference Companion. , (198-206). https://doi.org/10.1145/3321707.3321845
We propose a novel technique for algorithm-selection which adopts a deep-learning approach, specifically a Recurrent-Neural Network with Long-Short-Term-Memory (RNN-LSTM). In ...

A new rich vehicle routing problem model and benchmark resource

Conference Proceeding
Sim, K., Hart, E., Urquhart, N. B., & Pigden, T. (2018)
A new rich vehicle routing problem model and benchmark resource. In Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences. https://doi.org/10.1007/978-3-319-89988-6_30
We describe a new rich VRP model that captures many real-world constraints, following a recently proposed taxonomy that addresses both scenario and problem physical characteri...

A hybrid method for feature construction and selection to improve wind-damage prediction in the forestry sector

Conference Proceeding
Hart, E., Sim, K., Gardiner, B., & Kamimura, K. (2017)
A hybrid method for feature construction and selection to improve wind-damage prediction in the forestry sector. In GECCO '17 Proceedings of the Genetic and Evolutionary Computation Conference. , (1121-1128). https://doi.org/10.1145/3071178.3071217
Catastrophic damage to forests resulting from major storms has resulted in serious timber and financial losses within the sector across Europe in the recent past. Developing r...

On Constructing Ensembles for Combinatorial Optimisation

Journal Article
Hart, E., & Sim, K. (2018)
On Constructing Ensembles for Combinatorial Optimisation. Evolutionary Computation, 26(1), 67-87. https://doi.org/10.1162/evco_a_00203
Although the use of ensemble methods in machine-learning is ubiquitous due to their proven ability to outperform their constituent algorithms, ensembles of optimisation algori...

A hyper-heuristic ensemble method for static job-shop scheduling.

Journal Article
Hart, E., & Sim, K. (2016)
A hyper-heuristic ensemble method for static job-shop scheduling. Evolutionary Computation, 24(4), 609-635. https://doi.org/10.1162/EVCO_a_00183
We describe a new hyper-heuristic method NELLI-GP for solving job-shop scheduling problems (JSSP) that evolves an ensemble of heuristics. The ensemble adopts a divide-and-conq...

Genetic Programming

Conference Proceeding
Machado, P., Heywood, M. I., McDermott, J., Castelli, M., García-Sánchez, P., Burelli, P., …Sim, K. (2015)
Genetic Programming. In Genetic Programminghttps://doi.org/10.1007/978-3-319-16501-1
The 18th European Conference on Genetic Programming (EuroGP) took place during April 8–10, 2015. Copenhagen, Denmark was the setting, and the Nationalmuseet was the venue. Eur...

A Novel Heuristic Generator for JSSP Using a Tree-Based Representation of Dispatching Rules

Conference Proceeding
Sim, K., & Hart, E. (2015)
A Novel Heuristic Generator for JSSP Using a Tree-Based Representation of Dispatching Rules. In GECCO Companion '15 Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, (1485-1486). https://doi.org/10.1145/2739482.2764697
A previously described hyper-heuristic framework named NELLI is adapted for the classic Job Shop Scheduling Problem (JSSP) and used to find ensembles of reusable heuristics th...

A research agenda for metaheuristic standardization.

Presentation / Conference
Hart, E., & Sim, K. (2015, June)
A research agenda for metaheuristic standardization. Paper presented at 11th Metaheuristics International Conference, Agadir, Morocco
We propose that the development of standardized, explicit, machine-readable descriptions of metaheuris- tics will greatly advance scientific progress in the field. In particul...

A Lifelong Learning Hyper-heuristic Method for Bin Packing.

Journal Article
Hart, E., Sim, K., & Paechter, B. (2015)
A Lifelong Learning Hyper-heuristic Method for Bin Packing. Evolutionary Computation, 23(1), 37-67. https://doi.org/10.1162/EVCO_a_00121
We describe a novel Hyper-heuristic system which continuously learns over time to solve a combinatorial optimisation problem. The system continuously generates new heuristics ...

On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system.

Conference Proceeding
Hart, E., & Sim, K. (2014)
On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system. In Proceedings of PPSN, 13th International Conference on Parallel problem Solving from Nature, (282-291). https://doi.org/10.1007/978-3-319-10762-2_28
Real-world applications of optimisation techniques place more importance on finding approaches that result in acceptable quality solutions in a short time-frame and can provid...