Research Output

Artificial Immune System driven evolution in Swarm Chemistry.

  Morphogenetic engineering represents an interesting field in which models, frameworks and algorithms can be tested in order to study how self-* properties and emergent behaviours can arise in potentially complex and distributed systems. In this field, the morphogenetic model we will refer to is swarm chemistry, since a well known challenge in this dynamical process concerns discovering mechanisms for providing evolution within coalescing systems of particles. These systems consist in sets of moving particles able to self-organise in order to create shapes or geometrical formations that provide robustness towards external perturbations. We present a novel mechanism for providing evo- lutionary features in swarm chemistry that takes inspiration from artificial immune system literature, more specifically regarding idiotypic networks. Starting from a restricted set of chemical recipes, we show that the system evolves to new states, using an autonomous method of detecting new shapes and behaviours free from any human interaction.

  • Date:

    01 January 2014

  • Publication Status:

    Published

  • DOI:

    10.1109/SASO.2014.16

  • Library of Congress:

    QA75 Electronic computers. Computer science

  • Dewey Decimal Classification:

    006.3 Artificial intelligence

Citation

Capodieci, N., Hart, E. & Cabri, G. (2013). Artificial Immune System driven evolution in Swarm Chemistry. In Proceedings of IEEE SASO 2014, 40-49. doi:10.1109/SASO.2014.16

Authors

Keywords

Artificial Immune Systems; Morphogenetic engineering; distributed systems; swarm chemistry;

Monthly Views: