Racking performance of platform timber framed walls

  In platform timber frame construction, timber walls and diaphragms provide the overall stability for the structure to resist forces that are generated by wind action and vertical loading. Such walls, known as shear walls, are considered to act parallel to the direction of the wind to resist the applied forces. The respective strength and stiffness of these walls is referred to as racking resistance. Many research studies have been conducted on the racking performance of platform timber frame walls. However, these research studies have had limited objectives
and have not addressed several client and architectural requirements with regard to effects of the wall length and the size and position of openings in the wall for doors and windows, or possible design configurations such as fixing types and
configurations, or the effects of interaction between the adjoining walls or other components of the building. Hence, this research focuses on an in-depth understanding of the behaviour of platform timber frame walls and the factors that influence their racking performance; as well as, examining the accuracy of the
existing design methods in addressing the above issues and providing a simple but effective method for the analysis-design process of the shear walls in timber frame construction.

  • Dates:

    2012 to 2019

  • Qualification:

    Doctorate (PhD)

Project Team